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ABSTRACT
This paper addresses the filter design optimization (FDO)
problem that is to find a set of filter coefficients which yields
the least design complexity while meeting the required filter
constraints. The design complexity of a filter is defined in
terms of the total number of adders/subtracters, assuming
that the multiplication of coefficients by the filter input is
realized under a shift-adds architecture. Existing algorithms
use efficient search methods, but none of them can guaran-
tee the minimum design complexity. Hence, we propose an
exact algorithm, called SIREN, that finds an optimum solu-
tion of the FDO problem under the minimum quantization
value. It is based on a depth-first search method equipped
with an exact technique, that finds the minimum number of
adders/subtracters in the multiplier block of the filter, and
search pruning techniques that enable it to be applicable to
practical instances. Experimental results show that SIREN
can still find better solutions than efficient FDO algorithms
and its solutions lead to filters with significantly less area
when compared to a straightforward filter design technique.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization

General Terms
Algorithms, Design

Keywords
Filter design optimization, depth-first search, linear pro-
gramming, multiplierless filter design

1. INTRODUCTION
Finite impulse response (FIR) filters are widely used in

digital signal processing (DSP) applications due to their out-
put stability and phase linearity. The output of an N-tap
FIR filter y(n) is computed as

∑N−1
i=0 hi ·x(n−i), where hi is

the ith filter coefficient and x(n− i) is the ith previous filter
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Figure 1: Transposed form FIR filter design.

input. The realization of this expression in the transposed
form is shown in Figure 1, where the multiplication of coef-
ficients by the filter input dominates the design complexity.

However, the multiplier block of the FIR filter can be real-
ized using only shifts and adders/subtracters, since the filter
coefficients are determined to be constant [10]. Note that
shifts can be implemented using only wires without repre-
senting any hardware cost. Thus, a fundamental optimiza-
tion problem, called the multiple constant multiplications
(MCM) [13], is defined as: given a set of constants to be mul-
tiplied by an input variable, find the minimum number of
adders/subtracters that realize the constant multiplications.
Existing MCM algorithms [1, 2, 8, 13] aim to maximize the
sharing of partial products among the constant multiplica-
tions. In this manner, a straightforward way to design a
multiplierless FIR filter requires two steps. First, a set of
coefficients, that respects the filter constraints, is obtained,
and second, the multiplier block of the filter is designed un-
der a shift-adds architecture using an MCM algorithm.

In turn, the FDO problem [12] is defined as: given the
filter specifications (fspec) denoted as a 5-tuple (filter length
N , pass-band wp and stop-band ws frequencies, and maxi-
mum allowed pass-band δp and stop-band δs ripples), find a
set of coefficients that leads to a filter design with minimum
number of adders/subtracters and satisfies the filter con-
straints. The design complexity of the transposed form FIR
filter is computed based on the number of adders/subtracters
both in its multiplier and register-add blocks, assuming that
the constant multiplications in its multiplier block are re-
alized under a shift-adds architecture. Existing FDO algo-
rithms include efficient techniques that minimize the number
of nonzero digits in coefficients [3, 4, 11], maximize the com-
mon nonzero digits in coefficients [7, 14], and dynamically
expand a set of partial products which are shared among the
coefficient multiplications [12, 16]. However, to the best of
our knowledge, there is no algorithm that guarantees a filter
with the minimum design complexity.

In this paper, we first present the fundamental concepts
on multiplierless design of constant multiplications and give
an overview on prominent FDO algorithms. Then, we intro-
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duce the SIREN algorithm which can find a set of fixed-
point filter coefficients that satisfies the filter constraints
and leads to a filter design requiring minimum number of
adders/subtraters under the smallest quantization value (Q).
In SIREN, first, the floating-point lower and upper bounds
of coefficients are computed. In an iterative loop, these lower
and upper bounds of coefficients are quantized using Q, that
is initially set to 0 and is increased by 1 in each iteration.
Then, a depth-first search (DFS) method is applied to find a
solution that yields a filter design with minimum complexity,
satisfying the filter constraints or to prove that there exists
no solution to be selected from the quantized lower and up-
per bounds of coefficients. The most important properties of
the DFS method of SIREN are: i) it constructs a search tree
based on a predetermined ordering of coefficients; ii) as the
values of coefficients are determined, it updates the lower
and upper bounds of coefficients in the search tree; iii) it
computes the lower bound on the filter complexity and back-
tracks if this lower bound is greater than or equal to the best
solution found so far; iv) it uses the exact MCM technique
of [2] to find the minimum number of operations in the mul-
tiplier block of the filter. This paper also presents two vari-
ations of SIREN that are applied to slightly different FDO
problems where search space is highly restricted. Finally,
we introduce their time-complexity on randomly generated
FIR filters, compare their solutions with prominent FDO
algorithms, and give the gate-level results of FIR filters syn-
thesized based on the solutions of SIREN. Experimental re-
sults indicate that they can be applied to real-size FIR filters
and can find a minimum solution where prominent FDO al-
gorithms cannot obtain a solution with this value or cannot
ensure that their solutions are the minimum solutions.

2. BACKGROUND

2.1 Multiplierless Constant Multiplications
A straightforward method to realize constant multiplica-

tions under a shift-adds architecture, called the digit-based
recoding (DBR) [5], initially defines the constants in mul-
tiplications under a number representation, e.g., canonical
signed digit (CSD)1 [8] or binary. Then, for the nonzero dig-
its in the representation of the constant, it shifts the input
variable according to the digit positions and adds/subtracts
the shifted variable with respect to the digit values. As a
simple example, consider the constant multiplications 39x
and 83x. Their decompositions in CSD are listed as:

39x = (101001)CSDx = x � 5 + x � 3− x

83x = (1010101)CSDx = x � 6 + x � 4 + x � 2− x

and require 5 operations as shown in Figure 2(a).
The complexity of an MCM design can be further reduced

by sharing the partial products among the constant multi-
plications. Existing MCM methods can be grouped in two
classes: common subexpression elimination (CSE) [1, 8] and
graph-based (GB) [2, 13] techniques. The CSE algorithms
initially define the constants under a particular number rep-
resentation. Then, considering possible subexpressions that
can be extracted from the nonzero digits in representations
of constants, the “best” subexpression, generally, the most

1
In CSD, a constant is written as

∑n−1
i=0 bi2

i using n digits, where

bi ∈ {1, 0, 1} and 1 denotes −1. In its CSD representation, nonzero
digits are not adjacent and minimum number of nonzero digits is used.
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Figure 2: Shift-adds realizations of 39x and 83x:
(a) the DBR technique [5]; (b) the exact CSE al-
gorithm of [1]; (c) the exact GB algorithm of [2].

common, is chosen to be shared among the constant multi-
plications. The GB methods are not restricted to any partic-
ular number representation and find the intermediate partial
products that enable to realize the constant multiplications
with minimum number of operations. They consider a larger
number of realizations of a constant and may obtain better
solutions than CSE methods [2, 13].

Returning to our example, the exact CSE algorithm [1]
obtains a solution with 4 operations when constants are de-
fined under CSD (Figure 2b) and the exact GB method [2]
finds a minimum solution with 3 operations (Figure 2c).

2.2 Filter Design Optimization Algorithms
The zero-phase frequency response of a symmetrical FIR

filter is given as2:

G(w) =

�M�∑

j=0

djhjcos(w(M − j))

where M = (N − 1)/2 and dj = 2−Kj,M with Kj,M is the
Kronecker delta3, hj ∈ R with −1 ≤ hj ≤ 1, and w ∈ R is
the frequency in radians. Assuming that the desired pass-
band and stop-band gains are equal to 1 and 0, respectively,
the filter must satisfy the following constraints [3]:

1− δp ≤ G(w) ≤ 1 + δp, w ∈ [0, wp]

−δs ≤ G(w) ≤ δs, w ∈ [ws, π]
(1)

The pass-band gain is not relevant for many DSP applica-
tions. Thus, a scaling factor (s) can be added into the filter
constraints as a continuous variable as follows, where sl and
su are respectively the lower and upper bounds of s [7, 15].

s(1− δp) ≤ G(w) ≤ s(1 + δp), w ∈ [0, wp]

s(−δs) ≤ G(w) ≤ s(δs), w ∈ [ws, π]

sl ≤ s ≤ su
(2)

In some DSP applications, it is also desirable to minimize
the normalized peak ripple (NPR) [12, 16], which is defined
as δ/b, where δ and b are the peak ripple and pass-band
gain, respectively. Other considered parameters are the peak
weighted ripple [11] and the NPR magnitude [14].

FDO algorithms generally reduce the design complexity
in two different ways. The algorithms of [3, 4, 11] try to
find a set of coefficients with a minimum number of nonzero
digits, since a constant represented with fewer number of

2
Frequency response of an asymmetrical filter can be found in [9].

3
Ka,b function is 1 when a is equal to b. Otherwise, it is 0.
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SIREN(fspec)

1: Q = 0, sol found = 0, sol = [ ]
2: (hl, hu, sl, su) = CLUBFCSF(fspec)
3: O = OrderCoefs(hl, hu)
4: repeat
5: Q = Q+ 1, Hl = �(hl · 2Q)�, Hu = �(hu · 2Q)�
6: if are lubfc valid(Hl,Hu) then
7: (sol found, sol) = DFS(fspec, O, Q, Hl, Hu, sl, su)
8: until sol found
9: return sol

Figure 3: The SIREN algorithm.

nonzero digits requires fewer number of operations in gen-
eral. However, the reduction of the number of nonzero digits
does not always lead to a design with minimum number of
operations, since the sharing of partial products among the
constant multiplications is not considered (Figure 2). In or-
der to exploit the sharing of partial products, the algorithms
of [7, 14] search for the coefficients that have the most com-
mon nonzero digits. Also, in the methods of [12, 16], the
common partial products are expanded dynamically as the
filter coefficients are determined. However, these techniques
also cannot ensure the minimum number of operations in
the filter, since they are not equipped with exact methods.

FDO algorithms explore the filter coefficients using ex-
haustive [3, 7, 12, 15, 16] and local search [4, 11, 14] meth-
ods. The exhaustive search techniques use mixed-integer lin-
ear programming [7], branch-and-bound [3, 15], and DFS [12,
16] methods. While they can only be applied to low-order
filters due to an exponential increase in run-time [3, 12], the
local search methods can be applied to high-order filters,
but cannot ensure the minimum design complexity, since all
possible values of coefficients are not considered.

Meanwhile, SIREN is designed to handle the filter con-
straints in Eqn. 2, where the search space is increased due to
s, yielding better solutions [7]. Its variations, that can han-
dle the same filter constraints with a restricted s and those
in Eqn. 1, are also described. It is based on the exhaustive
DFS method and uses the exact MCM algorithm [2].

3. THE SIREN ALGORITHM
As shown in its pseudo-code given in Figure 3, SIREN

takes the 5-tuple fspec denoting the filter specifications as
input and returns a set of fixed-point filter coefficients sol.
First, it computes the lower and upper bounds of filter co-
efficients and s in its CLUBFCSF function, where the lower
bounds of coefficients are found by solving the following lin-
ear programming (LP) problem for each coefficient.

minimize : f = hi

subject to : s(1− δp) ≤ G(w) ≤ s(1 + δp), w ∈ [0, wp]

− s(δs) ≤ G(w) ≤ s(δs), w ∈ [ws, π]

sl ≤ s ≤ su

The filter coefficients and s are continuous variables of this
LP problem and the initial sl and su were set to 0.01 and
100, respectively. Thus, the value of hi in the LP solution
corresponds to its lower bound hl

i and is stored in hl. In a
similar way, the upper bound of each coefficient hu

i is found
when the cost function is changed to f = −hi and is stored
in hu. The sets hl and hu consist of the floating-point lower
and upper bound of each filter coefficient, respectively. The
values of sl and su are also updated similarly.

Then, its OrderCoefs function determines an ordering of
filter coefficients to be used by the DFS method described in

the following subsection while constructing the search tree.
The main idea on finding an ordering of coefficients is based
on a fact observed in experiments that if the coefficients with
narrower upper and lower bound intervals are placed in lower
depths of a search tree, less number of decisions are made
and conflicts occur earlier. Thus, the runtime of SIREN can
be reduced significantly, still exploring all possible values of
coefficients. This function sorts the coefficients in ascend-
ing order according to their hu

i − hl
i values and stores their

indices i in this order in O.
In the iterative loop of SIREN, starting with the quanti-

zation value Q equal to 1, the floating-point lower (upper)
bound of each coefficient is multiplied by 2Q, rounded to
the smallest following (the largest previous) integer, and is
stored in H l (Hu). The validity of these sets is tested by the
are lubfc valid function by simply checking each coefficient
if H l

i is less than or equal to Hu
i . If they are not valid, Q

is increased by one, and H l and Hu are updated. Other-
wise, the DFS method, that explores all possible values of
each coefficient in between H l

i and Hu
i , is applied to find a

set of filter coefficients which respects the filter constraints
and yields the minimum design complexity, or to prove that
there exists no such a set of filter coefficients. If the lat-
ter occurs, Q is increased by one, H l and Hu are updated,
and the DFS method is applied again. Hence, SIREN en-
sures that its solution is a set of fixed-point filter coefficients
obtained using the smallest Q. Note that Q is an impor-
tant parameter in the filter design complexity, because as
it increases, the bitwidths of coefficients are increased, re-
quiring larger sizes of registers and structural adders in the
register-add block (Figure 1), and most probably, requir-
ing more number of operations in the multiplier block since
larger integer coefficients are used. Similarly, in [3, 12, 16],
the effective wordlength (EWL) of a set of coefficients, com-
puted as max{�log2|hi|�} when fixed-point coefficients are
considered, was used to evaluate the quality of a solution in
addition to the total number of adders/subtracters.

3.1 The Depth-First Search Method
The search tree is constructed based on the ordering of

coefficients O, where a vertex at depth d, Vd, denotes the
filter coefficient whose index is the dth element of O, i.e.,
hO(d). An edge at depth d of the search tree, i.e., a fanout

of Vd, stands for an assignment to the vertex Vd from [V l
d ,V

u
d ]

where V l
d (V u

d ) denotes the lower (upper) bound of Vd. Note
that the values of the vertex at depth d are assigned incre-
mentally starting from V l

d to V u
d .

The DFS method first assigns H l
O(1) and Hu

O(1) respec-
tively to the lower and upper bounds of the vertex at depth
1, i.e., the initial depth, and sets the value of the vertex V1

to H l
O(1). However, at any depth greater than 1, d > 1, al-

though the lower and upper bounds of a vertex can be taken
from H l and Hu, respectively, we can use tighter lower and
upper bounds of a vertex, since the values of d − 1 coef-
ficients are determined and fixed at this stage. Thus, the
lower bound of the vertex Vd is computed by solving the fol-
lowing LP problem, where the non-determined coefficients
and s are the continuous variables of the LP problem.

minimize : f = hO(d)

subject to : s(1− δp) ≤ G(w)/2Q ≤ s(1 + δp), w ∈ [0, wp]

− s(δs) ≤ G(w)/2Q ≤ s(δs), w ∈ [ws, π]

hO(1) . . . hO(d−1) : determined sl ≤ s ≤ su
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In this LP problem, the lower and upper bounds of all
non-determined filter coefficients are taken from H l and
Hu, respectively. The upper bound of Vd is also computed
by solving a similar LP problem when the cost function is
f = −hO(d). If there exist feasible solutions for both LP
problems, the lower (upper) bound is rounded to the small-
est following (the largest previous) integer. Also, if this in-
teger lower bound is less than or equal to this integer upper
bound, these values are determined to be the lower and up-
per bounds of Vd. Whenever there are no feasible lower or
upper bounds for Vd, the search is backtracked chronologi-
cally to the previous vertex until there exists a value to be
assigned among its lower and upper bounds.

When the values of all coefficients are determined, the im-
plementation cost of the filter based on this coefficient set is
computed as TA = MA+SA, where TA is the total number
of adders/subtracters in the filter, and MA and SA are the
number of adders/subtracters in the multiplier block and
the number of structural adders in the register-add block,
respectively. While MA is found using the exact MCM al-
gorithm [2], SA is computed as N−ncz−1, where ncz is the
number of coefficients equal to zero. Naturally, no adder is
required for a coefficient set to zero in the register-add block.
This coefficient set is stored in sol and sol found is set to 1,
if its TA value is smaller than that of the best one found so
far, which was set to infinity in the beginning of search.

In order to prune the search tree, the implementation cost
of the filter (TA) is estimated at depth d greater than 2M/3
(2N/3) for symmetric (asymmetric) filters. This value is
found empirically not to waste an effort for computing an
estimate which usually does not yield a backtrack. The
lower bound on MA is found using the determined coeffi-
cients as described in [6]. The lower bound on SA is com-
puted after all non-determined coefficients are set to a value.
To do so, the upper and lower bound interval of each non-
determined coefficient is checked if 0 is included. If so, this
non-determined coefficient is set to 0. Otherwise, it is as-
sumed to be a constant different from 0.

The DFS method terminates when all possible values of
coefficients have been explored. If sol found is 0, it ensures
that there exists no solution which respects the filter con-
straints under the given quantized lower and upper bounds
of coefficients. Otherwise, its solution is a set of integer co-
efficients found using minimum Q that leads to a filter with
minimum design complexity, satisfying the filter constraints.

As a simple example, consider a symmetric filter with fspec
(8, 0.2π, 0.7π, 0.01, 0.01). The floating-point lower and
upper bounds of coefficients are respectively computed as
hl = {hl

0, h
l
1, h

l
2, h

l
3} = {−0.0966,−0.0915, 0.0015, 0.0039}

and hu = {hu
0 , h

u
1 , h

u
2 , h

u
3} = {−0.0003,−0.0002, 0.4144, 1}.

The ordering of coefficients is found as O = {1, 0, 2, 3}. The
quantized lower and upper bounds of coefficients are deter-
mined as H l = {−3,−2, 1, 1} and Hu = {−1,−1, 13, 32},
respectively when Q is 5 (no solution was found with Q < 5).

The search tree constructed by the DFS method is shown
in Figure 4, where a and b in [a b] given next to each ver-
tex stand respectively for its lower and upper bounds which
are dynamically computed as coefficients are determined. In
this figure, the actual traverse of the DFS method on filter
coefficients can be followed from top to bottom and from left
to right. Here, Conflict denotes that given determined co-
efficients, there exists no feasible lower/upper bound for the
current depth vertex. Also, Success presents that the set
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Figure 4: Search tree formed by the DFS method.

of determined coefficients leads to a solution satisfying the
filter constraints and Pruned indicates that the set of de-
termined coefficients cannot lead to a better solution than
the best one found so far. Observe that as values are as-
signed to coefficients, the intervals between the lower and
upper bounds of coefficients are significantly reduced when
compared to those in the original H l and Hu.

3.2 Modifications for Similar FDO Problems
Since SIREN is a general algorithm, it can easily be mod-

ified to handle filter constraints given in Eqn. 1 or those in
Eqn. 2 with a restricted s. For the former, the lower and
upper bounds of s are simply set to 1 and this type of the
SIREN algorithm is denoted as SIREN(1). For the latter,
its lower and upper bounds are set to given values. In an-
other type of the SIREN algorithm called SIREN(3), they
were respectively set to 0.7 and 1.4, ∓3dB gain tolerance.

4. EXPERIMENTAL RESULTS
In this section, we present the results of SIREN and its

variations, and compare them with those of prominent FDO
algorithms. We also introduce the results of a straightfor-
ward filter design technique (SFDT), where given fspec, the
firgr function of matlab was used to obtain the filter coef-
ficients which were quantized to integers with minimum Q,
avoiding the effect of quantization errors on the filter con-
straints. Then, the exact MCM algorithm [2] was applied to
these filter coefficients to realize the multiplier block of the
filter using minimum number of adders/subtracters. Note
that SIREN was written in matlab and was run on a PC
with Intel Xeon at 2.33GHz and 4GB memory. As an LP
solver, it uses lp solve 5.5.2.0.

As the first experiment set, we used 21 randomly gener-
ated symmetric low-pass FIR filters whose N values range
between 20 and 40. Figure 5 presents the results of algo-
rithms in terms of Q, TA, and CPU time in seconds.

Recall that SIREN and its variations iteratively increase Q
until they find a solution that satisfies the filter constraints.
Observe from Figure 5(a) that SIREN always finds a solution
on these instances using a smaller Q than its variations. The
difference between the average Q value in its solutions and
those in the solutions of SIREN(3), SIREN(1), and SFDT
is 1.5, 2.5, and 4, respectively. In this case, the EWL val-
ues of filter coefficients in its solutions are also smaller than
those in the solutions of these algorithms. This comes from
the fact that since there is no restriction on s in SIREN,
the filter constraints of Eqn. 2, can be satisfied with smaller
coefficients, but with a larger s. Simply because of this fact
and because no restriction on s increases the number of pos-
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Figure 5: Results of algorithms on randomly generated filters (a) Q; (b) TA; (c) CPU.

Table 1: Specifications of symmetric FIR filters.
Filter N wp ws δp δs

X1 15 0.2π 0.8π 0.0001 0.0001

G1 16 0.2π 0.5π 0.01 0.01

Y1 30 0.3π 0.5π 0.00316 0.00316

Y2 38 0.3π 0.5π 0.001 0.001

A 59 0.125π 0.225π 0.01 0.001

S2 60 0.042π 0.14π 0.012 0.001

L2 63 0.2π 0.28π 0.028 0.001

sible constants considered for a coefficient, SIREN generally
obtains better solutions in terms of TA than these algo-
rithms, as can be observed from Figure 5(b). On average,
it finds 0.6, 1.7, and 7.2 less number of adders/subtracters
than SIREN(3), SIREN(1), and SFDT, respectively. How-
ever, there is only one exception, the filter with an N value
31, where it obtains a worse solution than its variations.
This is because the use of a larger Q in its variations may
enable them to consider such filter coefficients that require
no adder/subtracter, like 0 or shifted versions of 1, or that
maximize the sharing of partial products4. On the other
hand, SIREN requires the most CPU time on average, sim-
ply because no restriction on s increases the upper and lower
bound intervals of coefficients, leading to a large number of
branches (assignments) in the DFS method. Additionally,
N and Q are other parameters that affect the runtime of
SIREN and its variations. While an increase in N increases
the number of vertices in the DFS method, an increase in Q
increases the number of runs of the DFS method, the num-
ber of branches in the DFS method that is due to a larger
upper and lower bound interval of a vertex, and the runtime
of the exact MCM algorithm [2] since larger coefficients are
considered. Hence, SIREN may obtain a solution using less
CPU time than its variations due to a smaller Q.

As the second experiment set, we used the symmetric
FIR filters given in Table 1. Table 2 presents the results
of SIREN, SIREN(3), and previously proposed algorithms
whose results were taken from [3, 12] as reported. The CPU
time limit was set to 2 days for SIREN and SIREN(3). In
this table, BST denotes the CPU time required to find the
best solution and TT stands for the total CPU time. The
algorithms were sorted according to their results on i) EWL,
ii) TA, iii) TT, and iv) BST. Note that the solutions of [12]
had been determined to be the best ones on these filters.

Observe from Table 2 that both SIREN and SIREN(3)
can find a solution with an EWL value less or the same

4
As SIREN can be initiated with any Q (Figure 3), it was applied

to this instance with the same Q that SIREN(3) and SIREN(1) used
and obtained better results than its variations.

Table 2: Summary of algorithms on FIR filters.
Filter Method EWL MA SA TA BST TT

X1

[14] 13 7 8 15 – –

SIREN(3) 10 5 8 13 4s 6s

SIREN 10 5 8 13 <1s 2s

[12] 10 5 8 13 – <1s

G1

[7] 7 2 13 15 – –

[12] 6 2 15 17 – <1s

SIREN(3) 6 2 15 17 <1s <1s

SIREN 6 2 15 17 <1s <1s

Y1

[16] 10 6 23 29 – 21m30s

SIREN(3) 9 7 29 36 2s 4s

[12] 9 7 23 30 – 6s

SIREN 9 6 23 29 2m17s 7m56s

Y2

[15] 12 – – 39 – –

[12] 10 10 37 47 – 11s

SIREN(3) 10 9 29 38 6m36s 7m29s

SIREN 10 9 29 38 3m52s 4m29s

A

[3] 10 18 58 76 3h2m 4h14m

[12] 10 14 54 68 – 2d2h

SIREN(3) 10 16 52 68 1d6h 2d*

SIREN 10 16 52 68 14h57m 2d*

S2

[3] 11 27 59 86 23m 27m

[12] 10 17 59 76 – 16h42m

SIREN 9 14 57 71 16h4m 2d*

SIREN(3) 9 14 57 71 7h27m 2d*

L2

[3] 10 18 62 80 26m 54m

SIREN 10 16 60 76 1d23h 2d*

SIREN(3) 10 15 58 73 1d22h 2d*

[12] 10 17 56 73 – 16h28m

* Time-limit is exceeded.

as prominent algorithms. The solutions of SIREN on small
size filters X1, G1, Y1, and Y2 include the least or the same
number of operations as those of the FDO algorithm [12].
In turn, on medium size filters A, S2, and L2, both SIREN
and SIREN(3) cannot complete the search due to the CPU
time limit. However, while SIREN(3) yields a solution with
less or the same number of operations as the FDO algo-
rithm [12], SIREN obtains a worse solution than SIREN(3)
only on Filter L2. This is because it generally requires more
CPU time than SIREN(3) to explore the whole search space.

We also designed Filter Y2 based on the solutions of SFDT
and SIREN when N was in between 34 (the minimum N
value found using the firgr function of matlab) and 38, and
Filter G1 based on the solutions of SIREN when Q was 6 and
7. FIR filters were described in VHDL when the bitwidth of
the filter input was 16, and they were synthesized using the
Synopsys Design Compiler and UMCLogic 180nm Generic
II library. Tables 3 and 4 present the results of FIR filters,
where CA, NCA, and A denote the combinational area, non-
combinational area, and total area, all in mm2, respectively.
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Table 3: Summary of results of algorithms on Filter Y2.

N
SFDT SIREN

Q EWL MA SA TA CPU CA NCA A Q EWL MA SA TA CPU CA NCA A gain

34 15 14 18 31 49 5m6s 33.2 16.5 49.7 11 11 10 27 37 19m48s 23.2 15.1 38.3 23.0

35 15 14 18 34 52 7s 34.6 16.8 51.4 11 11 12 28 40 34m19s 25.0 15.0 40.0 22.2

36 14 13 15 29 44 1s 28.8 16.7 45.5 11 11 10 27 37 18m38s 23.3 15.3 38.6 15.3

37 14 13 17 36 53 15s 35.9 17.2 53.1 10 10 12 36 48 23s 30.0 15.6 45.6 14.1

38 14 13 15 35 50 15s 33.1 17.6 50.7 10 10 9 29 38 4m29s 23.5 16.1 39.6 21.9

Table 4: Summary of results of SIREN on Filter G1.
Q = 6 Q = 7

EWL MA SA TA CPU CA NCA A EWL MA SA TA CPU CA NCA A

6 2 15 17 <1s 9.1 5.6 14.7 7 2 13 15 25s 8.1 5.9 14.0

Also, gain in Table 3 is the area gain in percentage between
the designs obtained by the solutions of SIREN and SFDT.

Observe from Table 3 that the solutions of SIREN with
less number of adders/subtracters and with filter coefficients
having smaller EWL values lead to FIR filters occupying
smaller area with respect to the solutions of SFDT. Note
that as N is increased, the EWL values of coefficients is
decreased. Thus, the area values of Filter Y2 designed using
the solutions of SIREN when N is 34 and 38 are close to each
other, indicating the tradeoff between N and the EWL value
of coefficients on the filter complexity. Hence, it is useful to
design a filter with different N values, since different sets of
coefficients yield filter designs with different complexity.

Also, observe from Table 4 that a filter with coefficients
having a smaller EWL value does not always yield a filter
design occupying smaller area. In this case, it is because of
less number of structural adders in the register-add block.
Thus, it is useful to run SIREN with also Q+1 to obtain such
solutions. More importantly, these experiments suggest that
to evaluate the quality of a solution of an FDO algorithm
more accurately, the metrics, which take into account the
gate-level implementation cost, should be derived.

5. CONCLUSIONS
This paper introduced the SIREN algorithm equipped with

a DFSmethod, an exact MCM technique, and efficient search
pruning techniques, and its variations applied to slightly dif-
ferent FDO problems. To our knowledge, they are the only
algorithms that can guarantee the minimum filter design
complexity defined as the total number of adders/subtracters
using the minimum Q. Experimental results showed that
they can be applied to medium size FIR filters and can still
obtain better solutions than previously proposed prominent
FDO algorithms. Also, the solutions of SIREN lead to less
complex FIR filters with respect to the solutions of SFDT.
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