SIRENA - Service Infrastructure for Real-time Embedded Networked Devices:
A service oriented framework for different domains

Hendrik Bohn, Andreas Bobek, Frank Golatowski
University of Rostock
Institute for ME and CE
18051 Rostock, Germany
{hendrik.bohn, andreas.bobek, frank.golatowski } @uni-rostock.de

Abstract

The SIRENA project started in 2003 to leverage Ser-
vice Oriented Architectures (SOA) to seamlessly intercon-
nect (embedded) devices inside and between four distinct
domains - the industrial, telecommunication, automotive
and home automation domain. A framework was devel-
oped to achieve this aim as well as to assure interoperabil-
ity with existing devices and extensibility of networks based
on SIRENA technology. The core of the framework is the
Devices Profile for Web Services (DPWS) which will play
an important role in the upcoming Microsoft Windows Vista
platform. The first DPWS stack worldwide for embedded
devices developed by the SIRENA consortium is described
and its operation evidenced in several demonstrators. This
paper presents the results of the SIRENA project, provides
insight into the technologies used and presents tools, com-
ponents and services for advanced development, deploy-
ment and maintenance of devices.

1. Introduction

Market research from IDC predicted that the annual sale
of network-enabled (non-PC) devices will reach $44 bil-
lion in 2005 and Forrester Research forecasts a market ex-
pansion for network-connected devices to 14 billion units
by 2010 [2]. These figures highlight the need for new ap-
proaches to ease the integration and interaction of devices
in today’s networks.

The SIRENA (Service Infrastructure for Real-time Em-
bedded Networked Applications) project was started in the
framework of the European premier cooperative R&D pro-
gram "ITEA” in 2003 to define an innovative Service Ori-
ented Architecture (SOA) framework to seamlessly connect
heterogeneous (resource constrained) devices from the in-
dustrial, automotive, telecommunication and home automa-

tion domains [1]. 15 partners from Germany, France and
Spain formed the consortium. Among them were compa-
nies like Siemens Business Services (D), Schneider Elec-
tric (F), EADS Defence and Security (F), Capgemini (F),
Materna (D), Robotiker (E) and other small and medium
size companies, research institutes (e.g. Fraunhofer FIRST)
and several universities. It was required to support plug-
and-play connectivity, to base on open standards, to apply
down to sensor and actuator level and to be technology neu-
tral regarding programming languages, operating systems
and network media.

This paper describes the developed SIRENA Framework
and shows its feasibility and advances in various demon-
strators and tools. Section 2 presents an overview of evalu-
ated technologies and points out the advances of the Devices
Profile for Web Services (DPWS) chosen for the SIRENA
base technology. In section 3/the SIRENA Framework is de-
scribed in detail which builds the foundation for the demon-
strators - section 4. Finally a conclusion is drawn and future
work is discussed in section 5.

2. Evaluation of base technology

The Service Oriented Architecture (SOA) approach pro-
vides a standardized view to networked devices and applica-
tions. These entities are called Services. The functionality
of a service is entirely and exclusively defined by the in-
terface (or “contract”) that the service exposes. The imple-
mentation is totally hidden. A service interface is described
in a standardized format (Service Description), which is
used to integrate, announce, find and use the functionality
offered. Furthermore, services can subscribe to other ser-
vices to get informed about state changes. Although SOAs
should be platform and programming language independent
in order to be widely applicable, they still rely on some stan-
dards (e.g. most SOAs built up on TCP/IP and more and
more XML is used as a standard information format).

Several service-oriented middleware approaches have
been identified and evaluated as potential SIRENA base
technology: Open Service Gateway Initiative (OSGi),
Home Audio/Video Interoperability (HAVi), Java Intelli-
gent Network Infrastructure (JINI), Universal Plug and
Play (UPnP), Web services and Devices Profile for Web Ser-
vices (DPWS), respectively.

The OSGi specification defines a service platform that
serves as a common architecture for service providers, ser-
vice developers and software equipment vendors who want
to deploy, develop, and manage services [13]. The spec-
ification is based on the Java platform and application in-
dependent thereby enabling the easy integration of existing
technologies. Deployed services are called bundles and are
plugged into the framework. An OSGi service is a simple
Java interface but the semantics of a service are not clearly
specified. The drawback for SIRENA is the reliance on
Java.

HAVi was developed for and is still restricted to the
home domain, in particular IEEE1394 networks [15]]. It of-
fers plug-and-play capability as well as Quality-of-Service
(QoS) support (relying on IEEE1394 QoS capabilities). Re-
cent research demonstrates that HAVi can be combined
with other middleware such as UPnP and OSGi [7]. The
SIRENA consortium rejected HAVi technology due to its
restrictions and its rather low availability on the market.

JINI was developed by Sun Microsystems for sponta-
neous networking of services and resources based on the
Java technology [14]]. Services/devices are registered and
maintained at a centralized meta service called Lookup Ser-
vice but carry the code (proxy) needed to use them. This
code is dynamically downloaded by clients when they wish
to use the service. Each service access has to be performed
by using the lookup service. JINI was not chosen by the
SIRENA consortium due to its reliance on Java and the need
of a centralized service registry.

UPnP is a simple, easy-to-use SOA for small net-
works [16]. It supports ad-hoc networking of devices and
interaction of services by defining their announcement, dis-
covery and usage. Programming languages and transmis-
sion media are not assumed. Only protocols and inter-
faces are specified instead. The UPnP specification divides
the device interaction patterns into six phases: Address-
ing, Discovery and Description specify automatic integra-
tion of devices and services, Control (operating a remote
service/device), Eventing (subscribing to state changes of a
remote service/device) and Presentation (URL representa-
tion of a service/device) specify how to use them. UPnP
was a choice for SIRENA basic technology but has the dis-
advantage of supporting only smaller networks. With an
increasing amount of services/devices the amount of broad-
cast messages grows exponentially in a UPnP network. Fur-
thermore UPnP supports IPv4 only.

The Web service architecture provides a set of modu-
lar protocol building blocks that can be composed in vary-
ing ways to create protocols specific to particular applica-
tions [18]. They address networks of any size and pro-
vide a set of specifications for service discovery, service
description, security, policy and others. Web services are
self-describing using WSDL (Web Services Definition Lan-
guage). The implementation is entirely hidden from their
interfaces and may be changed at run-time. Unfortunately,
Web services do not bring Plug and Play capabilities and a
sufficient solution (spec and guideline) for device integra-
tion. This is overcome by DPWS.

DPWS, first published in May 2004 and revised in Octo-
ber 2005, is a profile identifying a core set of Web services
that enables dynamic discovery of, and event capabilities for
Web services [12]. The profile arranges several Web service
specifications such as WS-Addressing, WS-Discovery, WS-
MetadataExchange, and WS-Eventing for devices, particu-
larly. In contrast to UPnP, it supports discovery and inter-
operability of Web services beyond local networks. DPWS
is intended to become the successor of UPnP. However, the
replacement is hindered by the fact that DPWS is not com-
patible with UPnP. DPWS is therefore most easily adopted
in environments with no “legacy” UPnP devices, such as
industrial automation.

OSGi | HAVi JINI UPnP WS | DPWS

Plug and Play - X X X - X
Device support X X X X X
Frogramml ng Lang X X X
independent

Network media X X X X
independent

Large scalability X - X X X
Security X X X X X
High market X X X X X
acceptance

Figure 1. Excerpt from comparing evaluated
technologies for device integration.

Figure |1 shows an excerpt of the evaluation results. The
requirements for the SIRENA project reduced the choice to
either UPnP, Web services and DPWS. UPnP fulfills most
requirements but does not have security aspects included
and does not support larger networks. Web services only
support software services. The SIRENA consortium de-
cided for DPWS as the basic technology for the SIRENA
Framework. Due to the late release of the DPWS proposal
and the existence of ”legacy” UPnP devices some SIRENA
developments focus on UPnP with the aim of replacing it
later by DPWS.

3. SIRENA framework

The SIRENA Framework is displayed in figure 2. Al-
though DPWS is designed in such a way that any kind
of transport protocol could be used, IPv4 and IPv6 form
the underlying protocols in the SIRENA project because of
their wide acceptance. The SIRENA Basic Framework de-
fines the basic service oriented technology used for device
integration and interaction. All SIRENA enabled devices
should comply with the Basic Framework. The SIRENA
Framework Enhancements are a set of tools, components
and services making the development, deployment, main-
tenance and lifecycle management of devices and services
easier. Devices and services from other SOAs may be at-
tached to the SIRENA Framework by using the SIRENA
Framework Extension Interface.

Device Device Device

SIRENA Framework
SIRENA Framework Enhancements
SIRENA
SIRENA Basic Framework Féartnevs{ork
Devices Profile for Web Services xtension
Interface

Figure 2. The SIRENA Framework.

3.1 SIRENA Basic Framework

The SIRENA Basic Framework defines the basic archi-
tecture to seamlessly connect heterogeneous devices and
services offered by such devices. At the time when the
SIRENA consortium was working on a specification, the
DPWS proposal became available. DPWS fulfilled most
of the SIRENA requirements and a high market acceptance
was anticipated due to the alignment with Web services.

DPWS: Web services specifications are a set of proto-
cols that can be used independently or that can be reused by
combining or profiling them to form a new specification to
meet different services requirements. DPWS is such a pro-
file combining the following protocols - shown in figure 3.

WS-Addressing introduces two new concepts to the Web
services world: endpoint references and message informa-
tion headers. An endpoint reference is a transport-neutral
mechanism to address Web services, e.g. instead of widely
used HTTP-depending URLs the more general Uniform Re-
source Identifier (URI) can be used which possibly can not

Application-specific protocols

jas
—
—~
7o)

IPv4/IPv6 |

Figure 3. The Devices Profile for Web ser-
vices.

be resolved into an accessible physical address. More-
over, message information headers enrich messages with
meta-information. Messages can be marked with sender,
response and error receiver endpoint references, and with
message IDs that uniquely identify messages. The combi-
nation of these concepts enables Web services to commu-
nicate asynchronously: they no longer need to rely on syn-
chronous HTTP message exchange only.

WS-Discovery allows dynamic detection of Web services
by defining a specific multicast group. For that purpose
it introduces three different endpoint types: target service,
client and discovery proxy. The target service is a service
container which offers services by announcing them to the
network. Clients can search for target services and dis-
cover them. Discovery proxy is an optional component. If
available, all discovery messages are exchanged with the
proxy via unicast. Furthermore WS-Discovery defines how
transport-neutral addresses of endpoint references can be re-
solved to transport-specific addresses.

WS-MetadataExchange defines two operations to obtain
metadata from endpoint references. Metadata is static data
(e.g. WSDL, XML schema data) which describe endpoint
references in such a way that they facilitate communication
with endpoint references.

WS-Eventing allows a Web service (subscriber) to sub-
scribe to another Web service (event source) to obtain event
notification messages when state changes occur.

The devices profile puts these protocols together and
adds some device-oriented constraints and usage rules, e.g.
it defines a dialect called “ThisModel” for describing device
characteristics accessed using the WS-MetadataExchange
specification.

SIRENA-DPWS-Stack: The SIRENA-DPWS-Stack
was developed by Schneider Electric and is the first DPWS
implementation worldwide [10]. It is based on the open
source package gSOAP [17] and is implemented in C.
Main features of the stack are service invocation using the
SOAP 1.2 engine and WS-Addressing specification, au-

Client code Server code

Response (SOAP-XML)
Request (SOAP-XML)

Figure 4. Remote operation invocation in
gSOAP/DPWS.

tomated discovery via WS-Discovery, partial support of
WS-MetadataExchange and event management using WS-
Eventing. The stack includes a toolkit which follows the
same approach as gSOAP - the automated code generation
for mapping SOAP-XML-messages and C/C++ structures
back and forth. In other words, it is responsible for gener-
ating the stub (DPWS client interface) and skeleton (DPWS
server interface) and the marshalling and demarshalling of
messages.

Figure 4] illustrates the operation of the DPWS Stack.
Only the server and client code must be implemented by
a service developer. The SIRENA-DPWS-Stack is not a
stand-alone implementation. It is statically bound to the
client and server program, respectively. Thereby it is ideal
for small embedded devices, as execution times are opti-
mized. The stack was ported to ThreadX, Linux, Solaris,
Windows CE and XP, VxWorks and Quadros (Schneider
Electric Ethernet FIRE brick) and has less than 200 kBytes
of footprint. Its development will be continued and com-
mercial support is provided by Schneider Electric.

The University of Rostock currently develops a Java
DPWS protocol stack which is based on the upcoming
Apache Axis Architecture 2.0 [3]. It will be finished in
2006.

UPnP support: Devices relying on Java are attached to
the SIRENA network by using UPnP (until a Java DPWS
stack is available). Those devices are DPWS-ready. They
have an abstraction layer integrated allowing simple re-
placement of Java UPnP by Java DPWS.

3.2 SIRENA Framework Enhancements

The SIRENA Framework Enhancements have been de-
veloped to ease the development, integration, deployment,
maintenance and (lifecycle) management of devices and
services in a SIRENA based network (figure [6). It is a set
of tools, components and services, described in more detail
below.

DPWS-Stub-Skeleton-Generator: The SIRENA-
DPWS-Stack includes a toolkit for automated generation of

stub (proxy) and skeleton for service developers to provide
transparent access to the remote operations from a client.
The developer specifies the WSDL or SOAP description
of the service being developed as shown in figure 5. It
involves operations and data types used as parameters and
return values to those operations. Only the implementations
of the server operations and client remote operation calls
are left to the developer.

Developer

Generated

h+
gsoap

Client sids/

o]]

o]

S S
.h .c

Generated Generated Generated
Stub (client) Marshalling Skeleton (server)
= = gSOAP Runtime = =
.h . .h .c
Client Server
Implementation Implementation
Server side

Figure 5. Design flow for service develop-
ment using DPWS.

WebWSDL: The WebWSDL tool was developed by the
University of Rostock and is a Web based tool to simplify
the definition of a WSDL for a device using a Web front end.
WSDL data types are stored in a database and can be sim-
ply selected. When the Web editing process is finished the
WSDL file is generated and passed to the SIRENA-DPWS-
Stack. All files generated by the stack can be downloaded
by the developer. WebWSDL allows collaborative develop-
ment.

Device Lifecycle Management: The Device Life-Cycle
Management (DLCM) Service has been developed by
Fraunhofer FIRST. It can be used to control the life-cycle
of local device software such as installing, starting, stop-
ping, updating and removing devices in a UPnP network.
The DLCM service is based on the OSGi Service Platform
(open-source implementation “Oscar”) and therefore run-
ning as a UPnP service in a Java run-time environment (us-
ing the Siemens UPnP stack). The DLCM is DPWS-ready.

MoBaSeC: The Model Based Service Configuration

tool enables developers to visually model the design of con-
figurations for management services and generates those
management services automatically [9]. The model is pol-
icy based. MoBaSeC results from a joint effort of Univer-
sity of Dortmund and Materna (D). A model of the service-
oriented system is created visually and incorporates all de-
vices and services including their relevant parameters. Cre-
ated management services supervise running services and
their environments, can react on changes and reconfigure
managed services at runtime. Using management services
metatasks can be performed by combining heterogenous
services - Service Orchestration. This unfolds the whole
potential of SOAs. A service-oriented abstraction layer al-
lows the support of DPWS and UPnP in MoBaSeC.
GINGER: GINGER is a process management system
developed in Java by kachel GmbH (D) for the integration
of applications and systems based on configurable work-
flow definitions [5]. It provides an open and flexible plug-
in mechanism for accessing systems and/or applications,
where plug-ins are used to couple an activity to a system
and/or application. For configuration and administration
of workflow-based applications GINGER provides tools to
support definition-time as well as run-time. The University
of Paderborn and Siemens Business Services implemented
an abstraction layer making GINGER UPnP and DPWS en-
abled. A slideshow as a workflow scenario using UPnP was
presented at the CeBIT 05 computer fair in Hanover (D).

Design Phase Run-Time Phase
— 'Device Life-Cycle\i Device/Service
y Management Orchestration

|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
VDM | :
J /
,
]
|

Bridges to DPWS

Figure 6. Overview of DPWS tools in the
SIRENA Framework.

Device metadata management: The Manage Device
Metadata (MDM) service was developed by Capgemini in
cooperation with Schneider Electric. This service extends
DPWS with management capabilities by requesting and
changing metadata information of remote devices. Meta-
data is used in DPWS to describe device characteristics and
discovery information (e.g. device type). The MDM service
can manage the device’s life-cycle by adjusting metadata in-
formation of remote services.

UPnP AV Stack: The UPnP Audio/Video Java stack of

the University of Rostock is a software component that can
be used to develop AV applications (MediaServer, Medi-
aRenderer or AV Control Points) [4]. The AV interfaces are
the core of this component. They provide a layer to access
AV devices, AV services and their actions. AV interfaces
hide the complexity of UPnP AV Architecture and peculiar-
ities of specific underlying UPnP stacks. Vendor AV stacks
implement AV interfaces. Vendor AV stacks are accessible
by specific factory methods in a vendor factory class only (a
Factory Method is a well known design pattern for creating
an instance of an unknown class that implements a specific
interface) [8]. AV applications use the factory methods and
AV interfaces only. Therefore, applications written to this
paradigm are independent of a specific vendor UPnP stack.
Currently, we provide AV stack prototype implementations
for the Siemens UPnP stack and the Cyberlink UPnP stack.

3.3 SIRENA Framework Extension Inter-
face

The SIRENA Framework Extension Interface describes
the requirements for integrating non-SIRENA devices into
the SIRENA Framework. The SIRENA consortium has
written tutorials for a SIRENA-OSGi bundle, an abstrac-
tion layer to replace a Java UPnP stack by DPWS and a
DPWS-Bluetooth-Bridge.

DPWS-Bluetooth SDP bridge: The DPWS-Bluetooth
SDP bridge was developed by the University of Rostock
to connect resource constrained devices to a SIRENA net-
work [6]. Bluetooth Service Discovery Protocol (SDP) is a
service-oriented approach for Bluetooth devices including
description and discovery. SIRENA Bluetooth devices can
be discovered by their specific SIRENA description, which
is mapped to a corresponding DPWS metadata description.
Therefore a central device - the Bluetooth Device Manager
(BDM) - is required in a Bluetooth network in order to man-
age connected Bluetooth devices and to map their descrip-
tion. The BDM is a DPWS device in the SIRENA network
and all services from the Bluetooth devices are offered as
services of the BDM.

4. SIRENA demonstrators

Several demonstrators were developed to show the inte-
gration and interaction of described devices, components,
stacks and tools. One demonstrator was designed for each
domain and one that presented domain crossing applica-
tions.

Industrial demonstrator: The industrial demonstrator
is a fully functional model of a production chain compo-
nent - a dose maker [11]. Its purpose is to fill granules
from a tank into small bottles. It includes a motor to move
the granules from the tank via a trap to the bottles. Various

sensors observe the state of the dose maker. The dose maker
components are SIRENA-DPWS devices and entirely com-
municate via DPWS.

Telecommunication demonstrator: The telecommuni-
cation demonstrator presents SIRENA-DPWS based man-
agement of cellular network equipment. It enables dynamic
configuration of network devices and cells, reaction on fail-
ures in networking equipment as well as supervision of end-
user services (e.g. Short Message Service). Plug-and-play
capabilities of attached devices provide a significant advan-
tage in this context.

Automotive demonstrator: A central device in the car
(UPnP and DPWS enabled) forms the core of the auto-
motive demonstrator. MoBaSeC manages the integration
of Bluetooth-enabled temperature sensors. A real-time de-
vice offers information from the Controller Area Network
(CAN) bus for emission-reduced driving and a Digital Au-
dio Broadcast (DAB) device plays back audio media on the
central device using UPnP.

Home demonstrator: The home demonstrator realizes
media distribution, streaming and replication as a testbed
for network-connected devices. It uses UPnP for legacy de-
vices and DPWS for new devices. The legacy devices are
made DPWS-ready.

Cross-domain demonstrator: Cross domain capabili-
ties of SIRENA devices were demonstrated by combining
usage scenarios from the home domain in the automotive
domain such as the UPnP AV scenario - playing music from
a notebook on the central device in the car.

5. Conclusion

The presented paper has pointed out the need for new
technologies for device integration in heterogeneous do-
mains, which was the motivation for the SIRENA project.
DPWS was selected as the best choice to achieve this aim
and the first stack worldwide for embedded devices was de-
veloped. Several tools, services and components for DPWS
ease the development, deployment and integration of de-
vices and services, and support legacy devices from other
service-oriented technologies. The demonstrators show the
feasibility of the SIRENA approach.

In April 2005 the SIRENA DPWS stack was success-
fully presented to Microsoft. It also successfully partic-
ipated in the first DPWS interoperability workshop held
in California in September 2005. Microsoft is integrating
DPWS technology into their new Windows Vista platform.
In November 2005 the SIRENA project was successfully
evaluated by ITEA, German and French public authorities.

The SIRENA technology is developed further - far in ex-
cess of the SIRENA project which will be finished in March
2006. A Java stack will be available in 2006 and real-time
functionality will be provided by a real-time IP stack that

manages Quality of Service (QoS) aspects in the SIRENA
Basic Framework. Schneider Electric is currently develop-
ing such a stack and QoS framework enhancement, as well
as bringing the SIRENA technology to the market. Fraun-
hofer FIRST plans to develop a DPWS-OSGi bundle to at-
tach DPWS devices to the OSGi framework.

The ITEA project Service Oriented Device Architectures
(SODA) will continue the research and development around
device integration.

References

[1] SIRENA. http://www.sirena-itea.orgl year =
2005.

[2] Forrester Research: The Rebirth Of European Telecoms.
http://www.forrester.com, 2001.

[3] Apache Software Foundation. Axis Architecture Guide 2.0,
2005.

[4] A. Bobek, H. Bohn, and F. Golatowski. UPnP AV Architec-
ture: Generic Interface Design and Java Implementation. In
PDCN’05, Innsbruck, Austria, 2005.

[5] A. Bobek, H. Bohn, F. Golatowski, G. Kachel, and
A. Spreen. Enabling Workflow in UPnP Networks. In IN-
DIN’05, Perth, Australia, 2005.

[6] H. Bohn, A. Bobek, and F. Golatowski. Bluetooth De-
vice Manager Connecting a Large Number of Resource-
Constraint Devices in a Service-Oriented Bluetooth Net-
work. In ICN’05, St. Gilles Les Bains, La Reunion, 2005.

[7] M. Ditze, G. Kaemper, L. Jahnich, and R. Bernhardi-Grisson.
Service-based Access to Distributed Embedded Devices
through the Open Service Gateway. In INDIN’04, Berlin,
Germany, 2004.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[9] S.Illner, H. Krumm, I. Lueck, A. Pohl, A. Bobek, H. Bohn,
and F. Golatowski. Management of Embedded Service Sys-
tems - An Applied Approach. Submitted to AINA 2006,
2005.

[10] E. Jammes and H. Smit. Service-Oriented Architectures for
Devices - the SIRENA View. In INDIN’05, Perth, Australia,
2005.

[11] F. Jammes, H. Smit, J. L. M. Lastra, and I. M. Delamer.
Orchestration of Service-Oriented Manufacturing Processes.
In ETFA’05, Catania, Italy, 2005.

[12] Microsoft. Devices Profile for Web Services, 2005.

[13] OSGi Alliance. OSGi Service Platform Release 4 CORE,
2005.

[14] Sun Microsystems. Jini Architecture Specification Version
1.2,2001.

[15] J. Teirikangas. HAVi: Home Audio Video Interoperability.
Technical report, Helsinki University of Technology, 2001.

[16] UPnP Forum. UPnP Device Architecture v.1.0.1, 2003.

[17] R. A. van Engelen and K. A. Gallivan. The gSOAP Toolkit
for Web Services and Peer-To-Peer Computing Networks. In
CCGrid’02, Berlin, Germany, 2002.

[18] W3C. Web Services Architecture, 2004.

http://www.sirena-itea.org�
http://www.forrester.com�

