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Subway emergency may lead to passengers’ panic, especially under self-organizing circumstance, which will spread rapidly and
have an adverse impact on the society.�is paper builds an improved SIRSmodel of passengers’ panic spread in subway emergency
with consideration of passengers’ density, the characteristic of subway car with the con	ned space, and passengers’ psychological
factors.�e spread of passengers’ panic is simulated by use ofMatlab, which draws the rules of howgroup panic spreads dynamically.
�e trend of stable point of the infection ratio is analyzed by changing di
erent parameters, which help to draw a conclusion that
immunization rate, spontaneous immune loss rate, and passenger number have a great in�uence on the 	nal infected ratio. Finally,
we propose an integrated control strategy and 	nd the peak of passengers’ panic and the 	nal infected ratio is greatly improved
through the numerical simulation. �e research plays a vital role in helping the government and subway administration to master
the panic spreadmechanism and reduce the panic spread by improvingmeasures and also provides certain reference signi	cance for
rail system construction, emergency contingency plans, and the construction and implementation of emergency response system.

1. Introduction

Since the 	rst subway, named LMS (London metropolitan
subway), was built in 1863, nowadays, there are more than
6000 kms lines in more than 100 cities of 35 countries and
regions in the world that have been constructed. With the
growing population and the increasing speed of urbanization,
the subway is becoming the 	rst choice for the public
transportation of passengers to travel due to the advan-
tage of the large volume, fast speed, convenience, and so
forth. However, because of the large population density and
the small enclosed space of the metro, the panic caused
by emergency would be spread rapidly and result in the
confusion, which would further magnify the impact of the
entire event. In 2003, up to 25 million passengers were
trapped in the subway because of a major blackout in London
and caused panic, leading to great dissatisfaction. What
is more, the spreading panic of passengers may cause a
number of secondary accidents. For example, in the evening
of September 2, 2013, Guangzhou Metro Line 2 subway
suddenly braked and another one in the back caught up,

the passengers in the back of carriage mistook it as a rear-
end accident and �ed toward the front of the cars with
shouting, and some passengers were injured in the stampede.
At noon of March 4, 2014, two youngsters played antiwolf
spray in the back of Guangzhou Metro Line 5 and suddenly
pungent odor was emitted, panicking passengers rushed to
the front of the cars continuously and caused stampede,
wounds, and luggage scattering, seriously disrupting social
order and public transport. Even more, those incidents will
further lead to people’s psychological panic and it will not
only a
ect the individual physical and mental health but also
cause serious damage to the politics, economy, and social life.
�erefore, the study of passengers’ psychology and emotion
in the emergency has got extensively concerned.

�e related research on subway emergencies began in the
1990s, and the majority concentrated in the emergency was
evacuation capability assessment [1, 2], emergency evacua-
tion strategies [3], emergency location [4], and establishing
emergency system [5, 6]. In addition, some scholars have
established emergency evacuation models [7–10] to simulate
subway emergencies scenarios. But most of these studies only
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considered the safety of passenger; few scholars considered
the psychological impact of the passengers caused by the
subway emergencies. When subway emergencies occur, the
normal social environment will be disrupted and inner
tensionwill be expanded, andwhen the psychological tension
reaches a certain level, it will cause group psychological
panic, the inherent performance, which is panic emotion.
Earlier studies suggested that people would lose essential
humanity and fall into fear beast in the face of terrible
disaster. Quarantelli [11] believed that panic is a collection of
sel	sh behavior; when psychological panic occurs, people are
more concerned with their own destiny rather than collective
one. Le Bon [12] thought that people are impulsive and
irrational and lack accountability, due to the factors such
as anonymity, infection, and hint. �e individual will lose
rationality and responsibility, once he entered themasses, and
then shows impulsive, brutal antisocial behavior. �ere are
some researches on factors for panic; Mawson [13] pointed
out that the panic comes from awareness and has relationship
with social organization, culture, environment, situational
factors, and social control. Aguirre [14] pointed out that the
generation of panic is in�uenced by architecture structure,
group members, group density, the relationship between the
groups, the resource situation, and the amount of informa-
tion. Panic can be described as the psychological panic as
well as the panic behavior. Panic in behavioral performance
is panic behavior. On the study of panic behavior, Kelley et
al. [15] provided the simulation study about cluster behavior
under the panic environment. Ebihara et al. [16] explored the
behavior of individual panic. Saloma et al. [17] considered
the existence of the self-organization queue behavior and
freedom scale behavior. Low [18] assumed that groups are
made up of di
erent individuals with ideas and the ability,
establishing a quantitative model to study the characteristics
of irrational group behavior. He thought those group behav-
iors are generated because the widespread impact occurred
under the situation of relatively spontaneous behavior and
disorganized situation and it is dependent on stimulation
of each participant. Helbing et al. [19] studied simulation
dynamic characteristic of the panic to escape. As a special
group behavior, the fugitive groups behavior in emergencies
shows imitation, no purpose, spontaneity, vulnerability, and
other nine characteristics. Because panic is re�ected by the
panic behavior, therefore, we can conclude that panic can be
infectious.

Two of the most common and far-reaching models,
SIS model [20] and SIR model [21], which were originally
used for propagation mechanism of the virus, could be
used and thoroughly researched for studying the infection
and communication processes of crisis information [20–33].
Pastor-Satorras et al. [34–37] classi	ed the complex nodes in
the network according to their value and established the SIS
model. Moreno et al. [38, 39] con	rmed that there exist a
certain number of infected nodes in the end, even if the initial
infection is very low by applying the SIR model. Li et al. [40]
believed that, in real life, there are some viruses that cannot
be immune for all life and built a complex heterogeneous net-
work SIRS epidemicmodel to amore realistic portrayal of the
spread of infection. Based on this work, Zhao et al. [24, 26, 39]

applied the epidemic model to the study of spread of rumors
issues. Yuanyuan et al. [41] applied SIR epidemicmodel to the
stock market crisis communication research. Scholars have
also studied the problem for the speci	c context and the
classic epidemicmodel has been improved. In the study of the
propagation of the disease, taking into account the nonuni-
form interaction between nodes, Dybiec [23] extended the
classical SIR model. Sekiguchi et al. [40, 42, 43] studied
the distributed delay characteristics of infectious diseases in
the model. Tchuenche et al. [44–47] believed that the total
population is changing in real life due to the birth and death
rates. Li et al. [48–51] thought that the infection rate and cure
rate in the spread of disease are nonlinear. Zhao et al. [24]
used infectious disease model to study the rumor spread
issue. Considering the characteristics of rumors spread and
social networks, they added forgetting factor in the model
to describe the node spontaneous autoimmune conditions
and then concluded that forgetting rate coe�cient and
immunization rates have a signi	cant impact on the spread of
rumors in the social network. Between the listed companies
and the main stock holders, Yuanyuan et al. [41] established
a susceptible-infected-removed model of crisis spreading
(SIR) in the stock markets by taking the mutual in�uences
into account which resulted from reduced cash �ows or the
fracture of capital chain.�en, a numerical simulation is used
to analyze the crisis spreading in the correlated networks
when the networksmeet the random failure or the intentional
attacks. �ese models did not consider the crowd density,
dynamic infection rates, and some other conditions, whereas
these conditions are very important in the study of the panic
spreading in subway emergencies. �is paper simulates the
panic spread of the passengers under the subway emergency
based on the epidemic models.

In summary, with the occurrence of unexpected events,
people’s ability to think will draw down. It will be more
likely for them to accept the implied information, and they
will be much more thirsty for information than usual. At
this time, people’s psychological emotions are in extreme
tension and become panicked, and the most outstanding
performance is the herd mentality of the individual. When
some of the passengers appear confused in verbal expression,
actions, or abnormal panic expression, panic will infect
neighboring passengers. �en, the neighboring passengers
will probably become panicked and then spread panic mood
in the whole metro. When the emergency calms down, part
of passengers may calm down, and then individuals become
immune with a certain probability. However, immunity is
not permanent; if their surroundings are still in a state
of panic due to their own poor mentality, the group will
become susceptible with certain probability, which makes it
very similar to the propagation mechanism of SIRS model
to a certain extent. �erefore, we chose SIRS model as an
analysis model to study the spread of panic in the subway
emergency. It is worth noting that, comparing with the
classical SIRS model which describe the spread of viruses
or rumors, the SIRS model describing the passengers also
exist three corresponding state that are healthy state (S),
infection status (I) and immune status (R), but this one
is established based on the actual existence of exchanges
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between the panic passengers in the subway. First of all, we
need to verify whether it is peak period. Secondly, panic
may spread from one of the cars to another in the narrow
closed space, and therefore the probability to be infected
or lose immunity between the passengers is not 	xed. But
the infection rate and the immunity loss rate are nonlinear
functions rather than constants in the situation that panic
spreads, and the immunization rate is related to the state
of the emergency situation. �irdly, the infected passengers
are likely to be spontaneously immune because of their own
mentality, and immune passengers are likely to spontaneously
lose immunity and become susceptible groups due to the
psychological factors of passengers. Besides, it should be
emphasized that we only studied the self-organizing behavior
without considering the participation of the government and
the media.

It is important to grasp the mechanism of panic spread
and improvingmeasures to reduce the spread of panic, which
will provide a reference for providing the rail system emer-
gency plans and emergency information system construction
and implementation. In this research, the study method on
virus spreading is introduced to the subway emergencies
to analyze the psychological and behavioral research, and
then the SIRS model of emotional panic spread of subway
passengers in emergencies is built, and the spreading process
is analyzed by quantitative analysis and numerical simulation
to reveal its spread rule and predict its spreading trends.
�e main contents are as follows. In Section 2, the subway
passengers in the speci	c context in subway emergencies are
classi	ed; model assumptions are provided; then the model
with improved parameters is established. Section 3 analyzes
the model stability and Section 4 gives the simulation of the
model. Finally, in Section 5, the 	ndings of this study are
summarized and the direction of future research is pointed
out.

2. The Propagation Model of Panic in the
Subway Emergency

2.1.�e De�nition of the Passenger State Node. In the event of
the emergency, passengers in the cars may be in three kinds
of states, � state, � state, and � state.

Susceptible state (� state) is as follows: the susceptible
ones are comprised of individuals who are not in panic
and are susceptible to become panicked, who are also called
susceptible persons. �e ratio of susceptible person is �(�),
indicating the ratio of passengers that have not been infected
and remain calm at the time �.

Infection state (� state) is as follows: the infected ones are
those who are in panic and spread the panic to others; panic
can be caused by the emergency itself or the fact that they are
infected by the surroundings. And the ratio of infected ones
is �(�), indicating the ratio of passengers that have become
panicked with the ability to spread panic at the time �.

Immune state (� state) is as follows: the passengers who
were a
ected by panic but later become patient and not afraid
in the eased situation are known as the immune ones. And
the ratio of immune ones is �(�), indicating the ratio of

Figure 1: �e individual contact model in dimensional lattice
diagram.

passengers who are in immune state from the infection state
at the time �. However, these passengers are also likely to
become susceptible once again.

2.2. �e Model Assumptions

(1) �e total passenger number in the subway is always
maintained at a constant�.

(2) �e passengers in the subway cars are uniformly
distributed and the average degree of mutual contact
between individuals is ⟨�⟩ during the normal driving
which means at the o
-peak or o
-peak time.

(3) �ere are no birth or death issues in the process of
panic spreading.

(4) Suppose that the probability of a susceptible passen-
ger being infected by an infected one is constant, so
the probability of an immune person losing immunity
a�er contact with an infected one.

(5) At the initial period of the emergency, there are
only the passengers who are in susceptible state and
infection state but no immune state.

2.3. Improved Model Parameters

2.3.1. Population Density. �e variable of passenger density is
, which may vary from time to time; the moving crowd can
be simulated by using the two-dimensional regular lattices;
we assume that the metro is an area of � ∗  zone, where� is the length of the metro and  is the width of it. In the
subway, the total number of this passenger group is� and the
group makes randommotion in the two-dimensional lattice.
In the graph, each square represents an individual. �e state
towhich he belongs is not taken into account and it just shows
the mutual contact between the individual in the middle and
the surrounding one in the graph. Besides, the number of
the contacted individuals is ⟨�⟩, which equals 6, and it is the
degree to the node.�e simulated passenger contact model is
shown in Figure 1.
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Figure 3: Structure of spreading process.

�erefore, the passenger density can be expressed as
follows:


 = �� ∗. (1)

2.3.2. �e Infection Rate. As is known about the assumption
about the same infection rate among individuals and the
constant probability � to converse to the panic state when
the healthy person contacts the infected person and suscep-
tible people contact an infected person, the probability of
susceptible individuals infected is related to the number of
infected individuals around the susceptible passengers. As
the susceptible individual degree is ⟨�⟩, 
⟨�⟩�(�) means the
number of infected state individuals whom the susceptible
individuals may contact at time �; (1 − �) represents the
no-infection probability a�er the healthy person contacts an
infected person, and the number of the infections around
the healthy is 
⟨�⟩�(�), so the no-infection probability a�er
the healthy person contacts all the infected persons around

is (1 − �)�⟨�⟩�(�) and the probability of being infected is1 − (1 − �)�⟨�⟩�(�); the contact rendering in unit space is
shown in Figure 2.

As a result, we can get the infection rate of the susceptible
individuals, which is as follows:

� (�) = [1 − (1 − �)�⟨�⟩�(�)] . (2)

2.3.3. �e Immunization Rate. Immune rate represents the
recovery ability of the infected individual. As we only study
self-organization without considering the impact on passen-
gers panic by another organization, the immunization rate in
themodel is related to the calm-down speed and the dramatic
degree of the emergency. As some emergencies are caused

by the rumor from some passengers in the subway, so it
can become immune state when 	nally the scared passengers
discover the truth of events; we assume that this kind of
immunization rate is �. Besides, the immunization rate is
related to the psychological state, educational level, age, and
so forth, and the panic passengers can spontaneously become
immune with the spontaneous immune probability of �.
2.3.4.�e Immune Loss Rate. Based on the assumption (4) in
Section 2.2, the immune losing rate among individuals is the
same when the immune contact with the infected person, we
assume that this kind of immune loss rate is�.�e probability
of immune individual becoming susceptible is related to the
number of infected individuals around. So the probability
function of the immune loss rate of immune individuals is

� (�) = [1 − (1 − �)�⟨�⟩�(�)] . (3)

At the same time, even when there is noninfected indi-
vidual, there are still a handful of individuals becoming
susceptible to the factors such as the psychological mentality,
marking this state of immunization rate as spontaneous
immunization rate �.
2.3.5. �e Model. �is kind of spreading process is shown in
Figure 3.

Based on the assumption and conditions, we established
a subway emergencies propagation model which improves
SIRS epidemic model, and it is shown as follows:

�� (�)�� = − [1 − (1 − �)�⟨�⟩�(�)] � (�)
+ [1 − (1 − �)�⟨�⟩�(�)] � (�) + �� (�)

�� (�)�� = [1 − (1 − �)�⟨�⟩�(�)] � (�) − (� + �) � (�)
�� (�)�� = (� + �) � (�) − [1 − (1 − �)�⟨�⟩�(�)] � (�) − �� (�) .

(4)

3. The Lyapunov Stability for the New
Epidemic Model

�e model represented above is established on the assump-
tion that the population size � is a constant. �e condition�(�)+�(�)+�(�) = 1 can omit the equation of �(�) by �(�) and�(�), so the two-dimensional system is given by

�� (�)�� = − [1 − (1 − �)�⟨�⟩�(�)] � (�)
+ [1 − (1 − �)�⟨�⟩�(�) + �] (1 − � (�) − � (�))

�� (�)�� = [1 − (1 − �)�⟨�⟩�(�)] � (�) − �� (�) .
(5)
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Let ��(�)/�� = 0 and ��(�)/�� = 0; then
− [1 − (1 − �)�⟨�⟩�(�)] � (�)
+ [1 − (1 − �)�⟨�⟩�(�) + �] (1 − � (�) − � (�)) = 0

[1 − (1 − �)�⟨�⟩�(�)] � (�) − (� + �) � (�) = 0.
(6)

�eorem 1. When −⟨�⟩
 ln(1 − �)/(� + �) < 1, there is one
and only disease-free equilibrium for Model (4) in the positive
invariant set, and the equilibrium is �(�), �(�) = (1, 0).
Proof. �e Jacobian matrix � is as follows:

� = (−�, ⟨�⟩ 
 ln (1 − �)0, − (� + �) − ⟨�⟩ 
 ln (1 − �)) . (7)

When |�| > 0, it means the trace of matrix tr(�) = −(� +�) − ⟨�⟩
 ln(1 − �) < 0, and it also means when −⟨�⟩
 ln(1 −�)/(� + �) < 1, (�(�), �(�)) = (1, 0) is stable.
�eorem 2. When 1 < −⟨�⟩
 ln(1 − �)/(� + �) < 1/�∗, there
exists the local asymptotically stable equilibrium point (�∗, �∗).

Assuming that (�∗, �∗) ̸= (1, 0) is an another positive
equilibrium state of system (6), the objective is to prove if
there exist one pair or more pairs (�∗, �∗) to ensure the
existence of the solution when −⟨�⟩
 ln(1 − �)/(� + �) > 1.

Let �(�) = [1 − (1 − �)�⟨�⟩�(�)] and �(�) = [1 −(1 − �)�⟨�⟩�(�)] for calculating easily. So (6) can be shown as

−� (�) � + (� (�) + �) (1 − � − �) = 0
� (�) � − (� + �) � = 0. (8)

Substituting the point (�∗, �∗) in system (8), we can
rewrite this system as

−� (�∗) �∗ + (� (�∗) + �) (1 − �∗ − �∗) = 0
� (�∗) �∗ − (� + �) �∗ = 0. (9)

We use the elimination method as

− (� + �) �∗ + (� (�∗) + �)(1 − (� + �) �∗
� (�∗) − �∗) = 0. (10)

Let#(�) = −(� + �)� + (�(�) + �)(1 − ((� + �)�/�(�)) − �),
where $(0) = %(0) = 0, $	(0) > 0, %	(0) > 0, $		(0) < 0, and%		(0) < 0; then

#(0) = �(1 − � + ��	 (0)) > 0
# (1) = − (� + �) − � + �� (1) (� (1) + �) < 0

#	 (�)
= − (� + �) + �	 (�) (1 − (� + �) �

� (�) − �)

+ (� (�) + �)(1 − � − (� + �) [� (�) − ��	 (�)]
�2 (�) ) < 0.

(11)

So a point makes the system stable exist, and the point is
not equal to zero. �e Jacobian matrix of (8) is

� = (−� (�∗) − � (�∗) − � −�	 (�∗) �∗ − �	 (�∗) (1 − �∗ − �∗) − � (�∗) − �� (�∗) �	 (�∗) �∗ − (� + �) ) . (12)

When the trace of matrix �(�∗) + �(�∗) + � − �	(�∗)�∗ +� + � > 0, it can be simpli	ed as �	(�∗)�∗ < � + �.�	(�) is decreasing, and �	(�) > 0, so if it satis	ed the
condition �	(0)�∗ < � + �, that is, −⟨�⟩
 ln(1 − �)/(� + �) <1/�∗, the system (6) can achieve a globally asymptotically
stable, and, at this time, the infected people will not gone, but
the proportion of it can asymptotically stable as a constant(�∗, �∗).
4. Numerical Simulation

4.1. Dynamic Simulation of Panic Spreading. A�er actual
survey, we make numerical simulation of the panic spread
model built in Section 2 and set model parameters as number
of passengers � = 1400, length and width of the subway
car � = 164.78 meters and  = 3 meters, the average
degree of mutual contact between individuals ⟨�⟩ = 6,
and initial proportion of the susceptible and the infected

�(�) = 0.95, �(�) = 0.05. Given the con	ned space in
the subway car, panic will spread quickly once emergency
happens, so we set the infected rate a higher value � = 0.9.
As the immunization rate is related to the development, � is
set to be 0.4. �e immune loss rate is the rate of passengers
who become susceptible again, in�uenced by the infected
passengers around, so we set � = 0.1. Meanwhile, the
probability of the infected persons turning to be immune by
self-mentality is generally higher than that of the immune
persons turning to be susceptible, and we set � = 0.1
and � = 0.05. By solving the model equations using the
ODE45 arithmetic of Matlab, we change the proportion of
the susceptible, the infected, and the recovered persons in the
spread process of panic, as shown in Figures 4(a) and 4(b).

According Figure 4(b), we can 	nd out that, with the
rapid spread of panic in the subway car, the proportion of
the infected persons increases quickly from the initial 5%
to the maximum value 52.14% with 730 infected passengers
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 = 0.000001, � = 0.4,� = 0.1,  = 0.1, � = 0.05, and� = 1400

Figure 4: �e dynamic variation of �, �, and � (the 	gure on the right is the top 20 steps of the le�).

when � = 1.502 and reaches steady state on 42.38% with 593
infected passengers when � = 12.39. With time step going
on, the proportion of the susceptible persons �(�) descends
quickly while the proportion of the recovered persons�(�)
increases. And the trends of both curves of �(�) and �(�)
	nally reach steady state with �∗ = 0.2119. All the model
parameters meet 1 < −⟨�⟩
 ln(1 − �)/(� + �) < 1/�∗ and
�eorem 2 is proved.

In order to verify �eorem 1, we randomly assign model
parameters as � = 0.000001, � = 0.4, � = 0.1, � = 0.1, and� = 0.05 to meet −⟨�⟩
 ln(1 − �)/(� + �) < 1. Simulation

results are showed in Figures 4(c) and 4(d).�emodel 	nally
reaches its stable point at (�, �) = (1, 0) and �eorem 1 is
proved.

4.2.�e Impact of Di�erent Parameters on Panic. �is section
will use control variate method to analyze howmodel param-
eters in�uence the number of the infected people by sepa-
rately changing infection rate, immunization rate, immune
loss rate, and passenger number onMatlab simulation, based
on themodel parameters setting of Figures 4(a) and 4(b).�e
simulation results are shown in Figure 5.
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Figure 5: In�uence of the infected passengers number by di
erent parameters.
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Figure 6: Changing curves of the stable point by di
erent parameters.

According to Figure 5, we can 	gure out that the changes
of some parameters make the number of the infected passen-
gers in steady state change greatly while the others change
little. In order to re�ect the relationships between parameters
range and stable point, we draw the relationships in curves
and 	t them into equations, as shown in Figure 6.

In conclusion, according to Figures 5 and 6, we can 	gure
that the infected proportion have a great in�uence on the
	nal panic passengers number when the infected rate rises
to 0.3 or the immunization rate goes to 0.2, and a�er that the
curve becomes gentle. Figure 6(d) shows that changing the
spontaneous immune loss rate does not have so many e
ects
on the 	nal number of panic passengers; the proportion of
infected people will be changed from 0.4 to 0.55. However, if
the immunization rates and spontaneous immunization rates
are in a state of low value, passengers’ panic spreads quickly

and cannot be restored, which will make the proportion of
infected passengers in a high dangerous state which is shown
in Figure 6(b). Changing the total number of passengers, in
other words, is changing passenger density; in this study, we
set the maximum available vehicle capacity of the subway to
2000 persons according to statistics. As shown in Figure 6(e),
it is obvious that the more the number of passengers in the
car, the greater the proportion of panic at last.

4.3. Simulation of the E�ect of Comprehensive Control Strategy
on Panic Spreading. Table 1 displayed the impact of 	nal
infection rate and the amount of infected people by, respec-
tively, changing multiple model parameters, because we have
a lot of dates, so we cut out only intercept part of them. As
you can see, certain priority relation between the parameters
exists, such as 1st–10th, 11th–20th, and 21th–26th lines of
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Table 1: �e impact of 	nal infection rate and the amount of infected people by respectively changing multiple model parameters.

No. � � + � � � � Stable point Infected amount

1 0.9 0.5 0.1 0.05 1400 0.4238 593

2 0.8 0.5 0.1 0.05 1400 0.4238 593

3 0.9 0.6 0.1 0.05 1400 0.3663 513

4 0.8 0.6 0.1 0.05 1400 0.3663 513

5 0.9 0.5 0.05 0.05 1400 0.3073 430

6 0.8 0.5 0.05 0.05 1400 0.3095 433

7 0.9 0.5 0.1 0.03 1400 0.4167 583

8 0.8 0.5 0.1 0.03 1400 0.4167 583

9 0.9 0.5 0.1 0.05 1000 0.3764 376

10 0.8 0.5 0.1 0.05 1000 0.3762 376

11 0.9 0.6 0.05 0.05 1400 0.2456 344

12 0.8 0.6 0.05 0.05 1400 0.2454 344

13 0.9 0.6 0.1 0.03 1400 0.3581 501

14 0.8 0.6 0.1 0.03 1400 0.358 501

15 0.9 0.6 0.1 0.05 1000 0.3154 315

16 0.8 0.6 0.1 0.05 1000 0.3152 315

17 0.9 0.5 0.05 0.05 1000 0.2418 242

18 0.8 0.5 0.05 0.05 1000 0.2415 242

19 0.9 0.5 0.1 0.03 1000 0.3647 365

20 0.8 0.5 0.1 0.03 1000 0.3646 365

21 0.9 0.6 0.05 0.03 1400 0.2211 310

22 0.8 0.6 0.05 0.03 1400 0.2209 309

23 0.9 0.6 0.1 0.03 1000 0.3017 302

24 0.8 0.6 0.1 0.03 1000 0.3016 302

25 0.9 0.5 0.05 0.03 1000 0.2085 209

26 0.8 0.5 0.05 0.03 1000 0.2078 208

27 0.9 0.6 0.05 0.03 1000 0.1512 151

28 0.8 0.6 0.05 0.03 1000 0.1499 150

comparison which shows that the immune loss rate is the
most signi	cant impact on the proportion of 	nal infected
proportion. In addition, comparing lines 1, 2, 4, 12, 22, and
28 to each other, we conclude that the passenger density also
has great in�uence on the infection proportion. However,
the infection rate almost had no e
ects on the proportion of
infected people between 0.3 and 0.9.

�e reduction of the degree of passengers’ panic depends
on themeasures that the subway departments take.�e safety
management of the subway should be strengthened, national
educational activities for subway emergencies should be
carried out, and the passengers’ number in the subway cars
should be controlled strictly. Figure 7 is the propagation
curve simulation with the parameters � = 0.8, � = 0.6, � =0.01, � = 0.01, � = 0.05, and � = 1000.

�e 	nal numbers of the infected and the immune
passengers have an obviously big di
erence by comparing
Figure 7 with Figure 4(b). When the infected passengers’
number in Figure 4(b) is 686, it reaches the stable state. �e
	nal infected passengers’ proportion is 8.56% in Figure 7.
�ey use di
erent group numbers. While the former uses� = 1400, the latter uses � = 1000, so the number
of infected passengers is about 86. Without the control

strategies, the panic peak reaches 57% and the number of
panic passengers is 798. By the use of the control strategies,
the panic peak reaches 46.66% and the number of panic
passengers is 467, which suggests that the control strategies
have greatly improved the panic peak and the 	nal number
of panic passengers.

5. Conclusions

�is paper takes the spread characteristic of passengers panic
under subway emergency into consideration and improves
traditional SIRS model and parameters.

(1) �e parameter, passengers’ density 
, which may
change signi	cantly in di
erent time, is added in the
model.

(2) In the subway car with strait and con	ned space,
when the panic happens, it is probably not integrated
panic, but the panic that spreads from the emergency
car to another, which means that the distribution of
panic passengers is not homogeneous. �e infection
rate and immune loss rate between passengers are
determined by the surroundings.�erefore, it is more
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Figure 7: Result of integrated control strategies.

conformed to describe the infection rate and immune
loss rate as

� (�) = [1 − (1 − �)�⟨�⟩�(�)] ,
� (�) = [1 − (1 − �)�⟨�⟩�(�)] . (13)

(3) �e in�uence of passenger psychological factors is
needed to be considered, because the infected pas-
sengers possibly become spontaneously immune by
their own psychological mentality while the immune
passengers possibly become susceptible again by their
own spontaneous immune loss characteristic. �ere-
fore, the spontaneous immune parameters � and �
are added to the model to represent the spontaneous
immune probability of the infected passengers and
spontaneous immune loss probability of the immune
passengers.

According to the three aspects above, the SIRS model of
panic spread of passengers under subway emergency is built
and is to be used to simulate the panic spread of the passen-
gers, which reveals the rules of how group panic dynamic
spread and veri	ed the model stability. �e trend of stable
point of the infection rate is analyzed by changing di
erent
parameters and comes to a conclusion that immunization
rate, spontaneous immune loss rate, and passengers’ number
had a great in�uence on the 	nal infected passengers’ number,
rapidly reducing the e
ect of panic spread. Finally, this paper
proposed integrated control strategies to strengthen the safety
management of the subway, carry out national educational
activities for subway emergencies, and strictly control the
passengers’ number in the subway car andmade simulation to
	nd that the passenger panic peak and the 	nal infected pas-
senger number were greatly improved. Currently, the model
and conclusions are established under self-organizing subway

emergencies. However, there are more factors that need to
be considered, such as government or subway administration
and some control strategies made by other organizations,
which should be taken into account and it deserves more
attention in the future research.
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