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Abstract

Background: SIRT2 belongs to a highly conserved family of NAD+-dependent deacylases, consisting of seven members
(SIRT1–SIRT7), which vary in subcellular localizations and have substrates ranging from histones to transcription factors and
enzymes. Recently SIRT2 was revealed to play an important role in inflammation, directly binding, deacetylating, and
inhibiting the p65 subunit of NF-kB.

Methods: A Sirt2 deficient mouse line (Sirt22/2) was generated by deleting exons 5–7, encoding part of the SIRT2
deacetylase domain, by homologous recombination. Age- and sex-matched Sirt22/2 and Sirt2+/+ littermate mice were
subjected to dextran sulfate sodium (DSS)-induced colitis and analyzed for colitis susceptibility.

Results: Sirt22/2 mice displayed more severe clinical and histological manifestations after DSS colitis compared to wild type
littermates. Notably, under basal condition, Sirt2 deficiency does not affect the basal phenotype and intestinal morphology
Sirt2 deficiency, however, affects macrophage polarization, creating a pro-inflammatory milieu in the immune cells
compartment.

Conclusion: These data confirm a protective role for SIRT2 against the development of inflammatory processes, pointing
out a potential role for this sirtuin as a suppressor of colitis. In fact, SIRT2 deletion promotes inflammatory responses by
increasing NF-kB acetylation and by reducing the M2-associated anti-inflammatory pathway. Finally, we speculate that the
activation of SIRT2 may be a potential approach for the treatment of inflammatory bowel disease.
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Introduction

Intestinal bowel disease (IBD) is a chronically recurring

inflammatory disorder arising from genetic predispositions and/

or environmental or immunological modifying factors [1,2] that

negatively affect the interaction between the commensal micro-

flora and the intestinal mucosa [3]. The two most common forms

of IBD are Crohn’s disease (CD) and ulcerative colitis (UC). These

diseases often result in morbidity due to a high incidence of

diarrhea, abdominal pain, rectal bleeding and malnutrition [1].

Despite significant progresses, our understanding of the inflam-

matory regulators that contribute to the pathogenesis of IBD is still

limited.

Recently, SIRT2, an NAD+-dependent sirtuin deacetylase, was

revealed to play an important role in inflammation [4,5,6,7].

SIRT2 belongs to a highly conserved family of NAD+-dependent

enzymes, consisting of seven members (SIRT1–SIRT7), which

vary in subcellular localizations and have substrates ranging from

histones to transcription factors and enzymes [8,9]. SIRT2 is

primarily a cytosolic protein, but can shuttle into the nucleus

[10,11], thus explaining its ability to deacetylate both cytosolic

(e.g. a-tubulin) [11] and nuclear (e.g. histones) [10] substrates. In

the context of inflammation, SIRT2 was shown to directly bind

and deacetylate the p65 subunit of NF-kB [4], a major

transcriptional regulator of the inflammatory response [12].

Accordingly, p65 is hyperacetylated in Sirt22/2 mouse embryonic

fibroblasts following TNFa stimulation, resulting in NF-kB-

dependent gene activation and increased apoptosis [4]. Further-

more, in vivo experiments show that SIRT2 is an important

inhibitor of microglia-mediated inflammation in the brain [5], and
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of inflammatory factors leading to arthritis [6]. These discoveries

led to the use of SIRT2 as an anti-inflammatory therapeutic

target, as was recently demonstrated by using a permeative

protein, Pep-1, to transduce SIRT2 into epithelial cells [7].

Transduction of cells with Pep-1-SIRT2 reduced inflammation by

attenuating the expression of cytokines and activation of both NF-

kB and mitogen activated protein kinases (MAPKs). These recent

findings prompted us to examine the potential contribution of

SIRT2 in the development of IBD.

In the present study, we demonstrate that SIRT2 is critical for

modulating macrophage polarization and intestinal permeability,

thereby inhibiting the development of colitis. More specifically,

SIRT2 knockout (Sirt22/2) mice developed more severe colitis

when exposed to the chemical colitis inducer, dextran sulfate

sodium (DSS) [13]. This phenotype appears to be consequent to a

hyper-activated immune cell compartment with secondary chang-

es in the intestinal epithelium. In fact, the intestinal histological

appearance and the expression of genes involved in intestinal

permeability are similar between untreated Sirt22/2 and wild type

(Sirt2+/+) mice. However, Sirt22/2 bone marrow-derived macro-

phages (BMDMs) show an activation of inflammatory genes, along

with the hyperacetylation of the NF-kB subunit p65, confirming a

pro-inflammatory state in untreated mice. Therefore, since sirtuins

are considered druggable enzymes, our results suggest that

targeting SIRT2 may be of particular interest for the management

of IBD.

Materials and Methods

Generation of mice
The generation of Sirt2 floxed (Sirt2L2/L2) mice has been

described before [14]. Sirt2L2/+ mice (heterozygote conditional

animals that have the conditional allele with Lox sites) were

selected and intercrossed with CMV-Cre mice to delete the Sirt2
gene in the male germline. Offspring with a deleted allele (Sirt2L2/+

mice) were then mated to C57BL/6J mice in order to remove the

Cre-transgene. The resulting Sirt2L2/+ offspring without the Cre

transgene were then backcrossed for 10 generations onto commer-

cial C57BL/6J mice purchased from the Jackson Laboratory to

generate heterozygous Sirt2L2/+ mice, from now on simply termed

Sirt22/+ mice. Breedings were only performed with such congenic

heterozygous Sirt22/+mice to generate the cohorts of male Sirt22/2

and Sirt2+/+ littermates used for the in vivo studies. Animal

experiments were done in accordance with institutional and Swiss

guidelines and approved by the authorities of the Canton of Vaud.

Moreover, all animal experiments were conformed to the Swiss

Animal Welfare legislation and reviewed by the State Ethical Board

of the Canton de Vaud (Animal Welfare Act 2005; Project License

Nu 2463.1 licensed to Prof. Johan Auwerx). Mice were euthanatized

using a brief exposure to CO2. This method leads to quick and

painless asphyxiation of mice. All the experiments were carried out

from January 2013 to May 2014.

Antibodies
FACS analysis of mesenteric lymph node cells: CD4-APC

(eBioscience, clone GK1.5), TCRb-PE (eBioscience, clone H57-

597), CD69-biotin (eBioscience, clone H1.2F3), Streptavidin-

FITC, (eBioscience). Immunohystochemistry: F4/80 (AbD Ser-

otec; MCA497). Western blot: SIRT2 (H-95, SantaCruz sc-

20966), Acetyl-NF-kB (Acetyl-K310, Abcam, ab19870), phospho-

IKba (ser32/36, Cell Signaling 9246), IKba (L35A5, Cell

Signaling 4814), Hsp90 (BD Transduction Laboratories, 610418).

DSS-induced colitis
DSS-induced colitis was induced as previously described [15]

using 2.5% dextran sulfate sodium (36–50 KDa, MP Biomedicals)

solution in water. Daily changes in body weight were assessed.

Rectal bleeding was scored on a scale from 0 to 5, indicating no (0)

or highly severe (5) rectal bleeding. Colons were snap-frozen or

fixed with 4% Forma-Fixx (Thermo scientific) and embedded in

paraffin. In vivo intestinal permeability was examined in mice as

was previously described [16].

Mesenteric lymph nodes isolation and FACS analysis
Mesenteric lymph nodes (MLNs) were dissected from DSS-

treated mice and a single cell suspension was obtained by passing

the MLNs through a 40 mm filter. After counting, the cell

suspension was incubated in HBSS containing 25 mM HEPES

and the primary antibody. Incubation with anti-biotin antibody

was performed when indicated. FACS analysis was performed on

CyAn ADPS analyzers (Beckman Coulter).

Cytokine measurement
Blood was collected from mice at sacrifice and plasma EDTA

was obtained after centrifugation at 3000 rpm for 10 minutes at

4uC. Cytokine concentration in the plasma was measured by using

the Mouse Proinflammatory Panel 1 kit (Meso Scale Diagnostics)

following manufacturer’s instructions.

mRNA extraction and RT-qPCR analysis
RNA was isolated from colon or bone marrow-derived

macrophages using the TriPure reagent (Roche) according with

manufacturer’s instructions. cDNA was generated from 1 mg of

total RNA using QuantiTect Reverse Transcription Kit (Qiagen).

qRT-PCR was carried out using LightCycler 480 SYBR Green I

Master Mix (Roche) and analyzed through DDCT calculation.

Values were normalized to Cyclophilin expression. Primers: Il6

(Fw GAGGATACCACTCCCAACAGACC; Rv AAGTGCAT-

CATCGTTGTTCATACA); Il1b (Fw CAACCAACAAGTGA-

TATTCTCCATG; Rv GATCCACACTCTCCAGCTGCA);

Tnfa (Fw GGGACAGTGACCTGGACTGT; Rv AGGCTGTG-

CATTGCACCTCA); Occludin (Fw AGCCTCGGTACAGCA-

GCAAT; Rv CCTTCGTGGGAGCCCTTT); Claudin-1 (Fw

CATAGGCACGGACTTCTGGTA; Rv CCAGGCGATTT-

TATTCGAGTCAC); Zo1 (Fw GACTCCAGACAACATCCC-

GAA; Rv AACGCTGGAAATAACCTCGTTC); Jam-A (Fw

ACCCTCCCTCCTTTCCTTAC; Rv CTAGGACTCTTGCC-

CAATCC); Mcp-1 (Fw AGGTCCCTGTCATGCTTCTG; Rv

GCTGCTGGTGATCCTCTTGT); Gata3 (Fw CTCGGCCAT-

TCGTACATGGAA; Rv GGATACCTCTGCACCGTAGC);

Arg1 (Fw GCAGAGGTCCAGAAGAATGGAA; Rv GCGTGG-

CCAGAGATGCTT); CD11c (Fw ACGTCAGTACAAGGA-

GATGTTGGA; Rv ATCCTATTGCAGAATGCTTCTT-

TACC); Il4R (Fw TCTGCATCCCGTTGTTTTGC; Rv GCA-

CCTGTGCATCCTGAATG); Il10 (Fw CATGGCCCA-

GAAATCAAGGA; Rv GGAGAAATCGATGACAGCGC), Cy-

clophilin (Fw CAGGGGAGATGGCACAGGAG; Rv CGGCT-

GTCTGTCTTGGTGCTCTCC).

Intestine isolation, immunohistochemistry, and scoring
Colon was excised and collected from the cadavers, carefully slit

opened longitudinally along the antimesenteric side. Feces were

removed from the lumen and each segment was rolled on a

wooden stick with the serosal side adhering to it. The Swiss rolls

were then placed in 4% Forma-Fixx for 24 hours. Paraffin
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embedding was then performed. 5 mm thick sections were cut from

paraffin blocks. Slides were respectively stained with hematoxylin/

eosin for morphologic analysis of the tissue and with F4/80 for

quantification of macrophages. The number of F4/80 positive

cells in the tunica mucosa was scored as count of number of

positive cells with clear morphology in 6 random fields at 4006

magnification. Areas presenting artifacts were excluded from the

analysis. The histopathological evaluation of the specimens was

performed by a European board certified veterinary pathologist in

a blinded fashion according with the following scoring: Erosion/

ulceration: 5–10% (1); 20–30% (2); 40–50% (3); 60–70 (4); 80–90

(5); 100% (6). Inflammation severity: minimal (1); mild (2);

moderate (3); severe (4); very severe (5). Mural involvement:

mucosa (1); submucosa (2); tunica muscularis (3); serosa (transmu-

ral) (4); transmural reaching mesentery (steatitis) (5). Damage

distribution: ,25% (1); 26–50% (2); 51–75% (3); .75% (4).

Bone marrow-derived macrophages (BMDM) isolation
and stimulation
Bone marrow derived macrophages (BMDMs) were isolated

from femurs and tibias of sibling 8- to 10-week-old male Sirt2+/+

and Sirt22/2 sibling mice. Cells were plated on bacteriological

plastic plates in macrophage growth medium consisting of RPMI-

1640 (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 16 non

essential amino acids (Invitrogen), 5 mM penicillin/streptomycin

(Invitrogen), 10% heat-inactivated foetal bovine serum (GE

Healthcare) supplemented with 10% L-cell-conditioned medium

as a source of CSF-1. After one day, non-adherent cells were

collected and seeded at 105 cells/ml in bacteriological plates and

grown for 7 days. Differentiated BMDMs were stimulated with

LPS (10 ng/ml) or with IL-4 (10 nM) for 6 and 24 h, respectively.

Statistical Analyses
The comparison of different groups was carried out using a

Student’s t-test and a two-way analysis of variance (ANOVA), and

differences with a P,0.05 were considered statistically significant

(*P,0.05, ** P,0.01, *** P,0.001).

Results

Sirt22/2 mice have normal colon morphology
To study the possible involvement of SIRT2 in the pathogenesis

of colitis, we first generated a Sirt2 deficient mouse line (Sirt22/2)

by targeting part of the SIRT2 deacetylase domain (exons 5–7), by

homologous recombination in ES cells (Figure 1A). In silico
translation of this Sirt2-deletion product, results in short incom-

plete peptides when examining all potential reading frames. As a

result, no SIRT2 protein was detected in any of the tissues

analyzed from Sirt22/2 mice (Figure 1B). The offspring of

heterozygous Sirt2+/2 breeders were born under normal Mende-

lian (+/+ : +/2 : 2/2=24.7% : 48.1% : 27.2%) and sex ratios

(male : female = 48.1% : 51.9%) (Figure 1C), with no differences

observed in body weight or body composition between Sirt22/2

and Sirt2+/+ mice (Figure 1D). Colon morphology of Sirt2+/+ and

Sirt22/2 mice was then examined under basal conditions. The

morphological analysis of the colons did not reveal any qualitative

and/or quantitative differences, in terms of crypts depth, epithelial

cell differentiation, wall thickness or density of leukocytes in the

colon between the two genotypes (Figure 2A). Moreover, the

immunohistochemical quantification of macrophages (F4/80+

cells) within the tunica mucosa of the colon revealed no differences

between the two groups (Figure 2B). Thus, Sirt2 deficiency does

not appear to affect the basal phenotype and intestinal morphol-

ogy of Sirt22/2 mice when compared with their wild type

counterparts.

Sirt2 deficiency increases the severity of DSS-induced
colitis
To test whether Sirt2 deficiency contributes to the development

of colitis, we exposed Sirt2+/+ and Sirt22/2 mice to DSS to

chemically induce intestinal inflammation [17]. Sirt2-deficiency
significantly accelerated body weight loss (Figure 3A) and

increased the rectal bleeding score (Figure 3B) after DSS

treatment. Furthermore, plasma levels of FITC-conjugated

dextran were markedly increased in Sirt22/2 mice (Figure 3C),

indicating increased intestinal epithelial permeability. The total

histological score, accounting for the overall severity of intestinal

inflammation, was significantly higher in the colons of Sirt22/2

mice (Figure 3D). In particular, Sirt22/2 mice showed a three-fold

increase in the extent of epithelial cell loss (ranging from erosion to

ulceration) compared to Sirt2+/+ littermates (Figure 3E). The

inflammation severity, evaluated by the leukocytic infiltration

density, was also significantly increased in Sirt22/2 mice, with a

strong tendency to form follicular aggregates within the mucosal

layer (Figure 3F). Finally, more frequent transmural infiltration of

inflammatory cells was observed in the tunica serosa (peritonitis)

and even in the mesenteric fat tissue (steatitis) of Sirt22/2 mice

(Figure 3G), while mural extension occurred less in Sirt2+/+ mice.

The overall distribution of intestinal damage was often multifocal

for both groups, although, in Sirt22/2 mice the percentage of

affected tissue was significantly higher (Figure 3H). Thus, DSS

resulted in a heavily exacerbated form of colitis in the Sirt22/2

mice when compared to the Sirt2+/+ animals.

Furthermore, the cell composition of mesenteric lymph nodes,

as determined by FACS analysis, was distinct between the two

genotypes. Although no difference was observed in the total

amount of CD4+ T lymphocytes, Sirt22/2 mice had an increased

proportion of activated lymphocytes (CD4+/CD69+) compared to

the control mice (Figure 4A–B), consistent with an enhanced

inflammatory response.

Taken together these data show that SIRT2 plays an important

role in protecting from DSS-induced colitis and that its deficiency

exacerbates the clinical and pathological severity of disease

progression.

Sirt2 deficient mice show increased levels of pro-
inflammatory cytokines
Pro-inflammatory cytokines such as TNFa, IL1b, and IL6 play

pivotal roles in the pathogenesis of colitis [18]. Since colitis is a

systemic inflammatory disease, we measured cytokine levels in the

plasma of Sirt2+/+ and Sirt22/2 mice, during basal conditions and

after DSS treatment. Under normal conditions both genotypes of

mice showed similar levels of plasma cytokines (Figure 5A–C).

However, after DSS treatment, plasma levels of TNFa and IL1b

were more elevated in Sirt22/2 mice, compared to the Sirt2+/+

animals (Figure 5A–B), whereas IL6 levels, although increased by

DSS treatment, remained indistinguishable between the two

genotypes (Figure 5C). Unlike the plasma cytokine levels, the

colon mRNA levels of Tnfa and Il1b were already modestly

higher in Sirt22/2 mice in basal conditions (Figure 5D–E).

Following DSS, an induction in the expression of the mRNAs

coding for these cytokines occurred in both genotypes; however,

only the induction of Tnfa transcript was significantly different in

Sirt22/2 from Sirt2+/+ mice (Figure 5D). Notably, Il6 mRNA

levels were again indistinguishable between both genotypes, both

before and after DSS (Figure 5F).
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Together with inflammatory mediators, tight junctions (TJs),

which control epithelial paracellular permeability, have a funda-

mental role in IBD development and progression. Patients with

IBD have both disrupted intestinal epithelial barrier function and

altered expression of TJ proteins [19,20]. Thus, we analyzed the

transcript levels of some principal TJ proteins, including Occludin
(Ocln), Claudin-1 (Cldn1) and Zona Occludens-1 (Zo1) [21].

Under basal conditions no differences in the expression of the

aforementioned genes were observed between Sirt2+/+ and Sirt22/

2 mice, confirming that Sirt2 deficiency in colon tissue does not

directly affect intestinal physiology (see also Figure 2). However,

upon the DSS challenge a significant decrease in the transcripts of

these TJ proteins was observed in Sirt22/2 mice (Figures 5G–H).

Interestingly, only Cldn1 expression decreased in both genotypes

following DSS treatment (Figure 5H), yet the percent reduction

was significantly higher in Sirt22/2 mice. These results clearly

indicate that Sirt2 deficiency promotes inflammatory processes

and intestinal permeability during the development DSS-depen-

dent colitis.

Sirt2 deficiency alters immune cell activation following a
DSS-challenge
Considering that SIRT2 deficiency does not alter the homeo-

stasis of the intestinal epithelium under normal conditions, we

hypothesized that the contribution of the immune cell compart-

ment may be the primary event causing more severe DSS-induced

colitis in the Sirt22/2 animals. Therefore we examined the

immune status of bone marrow-derived macrophages (BMDMs)

from Sirt2+/+ and Sirt22/2 mice. Under basal conditions, gene

expression analysis in Sirt22/2 BMDMs showed an induction of

the transcripts of pro-inflammatory cytokines, including Il1b,
Tnfa, Il6, and Mcp-1 (Figure 6A–B), and the down-regulation of

anti-inflammatory genes, like the Il4 receptor (Il4r) and Il10
(Figure 6C), highlighting a pro-inflammatory state in Sirt22/2

BMDMs in basal conditions.

In response to different stimuli, macrophages may undergo

classical M1 or alternative M2 polarization. The M1 phenotype is

characterized by the expression of high levels of pro-inflammatory

cytokines, while M2 macrophages are considered to have

immunosuppressive functions [22]. According to the observed

gene expression patterns (Figure 6B–C), BMDMs from Sirt2+/+

and Sirt22/2 mice possess different phenotypic profiles. We hence

treated BMDMs with either LPS or IL4 (Figure 6D–E), which

respectively are responsible for the induction of M1 or M2

polarization. LPS treatment induced the transcript levels of pro-

inflammatory cytokine genes in both genotypes, but the increase

was significantly more pronounced in the Sirt22/2 BMDMs

(Figure 6D). Alternatively, the IL4-mediated M1-to-M2 switch is

driven by the activation of the STAT6/GATA3 pathway [22].

IL4-stimulated Sirt22/2 BMDMs showed reduced Gata3 induc-

tion together with a lower expression of Arginase 1 (Arg1) and
Cd11c (Figure 6E), two well known M2 marker genes [23]. These

data demonstrate that SIRT2 deficiency also directly affects

macrophage polarization, mimicking a pro-inflammatory milieu.

The absence of SIRT2 expression triggers the
hyperacetylation of NF-kB in BMDMs
NF-kB activation plays a fundamental role in the transcriptional

regulation of inflammation-related genes and is associated with

several chronic inflammatory diseases [24]. Previous findings have

demonstrated a link between SIRT2 and NF-kB [4,5,6].

Hyperacetylation of the p65 subunit of NF-kB at Lys310, after

Sirt2 knockdown, has been linked to an increase in NF-kB-

dependent transcription, causing deleterious effects on inflamma-

tory diseases [4,5,6]. To gain further insight into the molecular

mechanisms underlying the effects of Sirt2 deletion on DSS-

induced colitis, we investigated whether the effects observed in

BMDMs were associated with alterations in the acetylation of NF-

kB. Sirt22/2BMDMs exhibited higher NF-kB acetylation under

both basal and LPS-treated conditions, while a slight increase in

acetylation was observed in Sirt2+/+ BMDMs after LPS stimula-

tion (Figure 7). Moreover, the basal phospho-IkBa levels in Sirt22/

2 BMDMs were similar to those of LPS-treated Sirt2+/+ BMDMs,

confirming the constitutive activation of NF-kB in Sirt22/2

BMDMs. Our data therefore supports that SIRT2 targets

Lys310 on the p65 subunit of NF-kB in BMDMs, resulting in

pro-inflammatory gene expression.

Discussion

In the present study, we identified a novel role for SIRT2 as a

potential suppressor of DSS-induced colitis in the mouse [13]. First

by interfering with intestinal barrier function, then stimulating

local inflammation and dysplasia, DSS-induced colitis resembles

the clinical progression of human UC, representing an important

model for the translation of mouse data to human disease

relevance [25]. Here we showed that SIRT2 deficiency led to a

more severe colitis compared to that seen in Sirt2+/+ control mice.

Although Sirt22/2 mice were indistinguishable from Sirt2+/+ mice,

with respect to body weight and intestinal morphology (Figures 1

and 2), upon a DSS challenge they developed more severe colitis

(Figures 3–5). Several reasons can be invoked to explain the absence

of a difference in the intestinal epithelium between Sirt2+/+ and

Sirt22/2 mice under basal conditions. First, Sirt2 belongs to the

family of Sirtuins, with 7 different members (Sirt1-7) that are

evolutionary conserved. The loss-of-function of one of the Sirtuins

could hence cause a compensatory increase in the function of other

family members. Second, intestinal epithelium undergoes a very fast

proliferation/differentiation/death cycle, due to the necessity for

continuous cell renewal. This fast regeneration of intestinal cells

implies the presence of several redundant checkpoints and makes it

unlikely that the mutation of a single gene, unless it is a master

regulator of proliferation (like b-catenin, p53, Notch, etc), exerts a
dominant effect under basal conditions.

However upon DSS challenge, together with increased accel-

eration in body weight loss and rectal bleeding, intestinal

permeability and histological score were exacerbated. Concor-

dantly, a more detailed histological analysis of the intestine showed

an increase in the extent of erosion/ulceration, and leukocytic

infiltration density with mural involvement (Figure 3). The

increased inflammation in Sirt22/2 mice was also highlighted by

the measurements of cytokine levels in the plasma and cytokine

mRNA expression in colon tissue. TNFa and IL1b levels in the

plasma and their transcript levels in the colon were increased in

Figure 1. Generation and characterization of the Sirt22/2 mouse model. (A) Schematic representation of the gene targeting strategy for
exons 5–7 of the Sirt2 gene. (B) Western blot analysis of SIRT2 expression in the liver, heart, and colon of Sirt2+/+ and Sirt22/2 mice. (C) Genotype and
sex distributions of newborn mice summarized from 162 colonies. (D) Body weight and body composition of Sirt2+/+ and Sirt22/2 mice.
doi:10.1371/journal.pone.0103573.g001
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Figure 2. Sirt22/2 and Sirt2+/+ mice colons are morphologically similar under normal conditions. (A and B) Representative images of
hematoxylin/eosin (A) and F4/80 staining (B) of the colon in Sirt2+/+ and Sirt22/2 mice. Number of F4/80+ cells are shown (right panel of B). n = 3/
group. Scale bar = 20 mm.
doi:10.1371/journal.pone.0103573.g002
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Sirt22/2 mice following DSS, while basal upregulation was limited

and only observed in colon tissue mRNA measurements

(Figure 5). In addition, the increased intestinal permeability in

Sirt22/2 mice upon DSS treatment was underscored by their

more pronounced reduction of colon TJ proteins, Ocln, Cldn1,
and Zo1, when compared to Sirt2+/+ animals.

Although germline Sirt22/2 mice represent a reliable genetic

model to study the pathophysiology of IBD, it is difficult to

determine the potential involvement of different tissues, including

intestine and immune cell compartment, in the development of

colitis. However, both morphological and gene expression analysis

in basal conditions defined the role of the intestinal tissue in the

development of colitis as secondary (Figure 2 and 5). Since the

Figure 3. Sirt22/2 mice are more sensitive to DSS-induced colitis compared to Sirt2+/+ animals. (A–D) Severity of DSS-induced colitis was
determined by body weight change (A), rectal bleeding scores (B), intestinal permeability (C), and histological scores (D) in Sirt2+/+ and Sirt22/2 mice.
n = 10/group. (E–H) Histological changes in the intestine of the DSS-treated Sirt2+/+ and Sirt22/2 mice. Representative images demonstrating the
extension of erosion/ulceration (arrows and dashed line indicate the extent of ulceration) (E), inflammation severity (arrows indicate leukocytic
infiltrate and follicular aggregates) (F), mural involvement (arrows indicate transmural infiltration) (G), and damage distribution (arrows indicate sites
of damage) (H). Corresponding histological scores are shown (lower panels). n = 10/group. Scale bar = 20 mm. Results are expressed as the mean 6
SEM. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0103573.g003

Figure 4. CD4+CD69+ T cells are increased in mesenteric lymph nodes from Sirt22/2 mice with DSS-induced colitis. (A) Representative
images of FACS analysis demonstrating TCRb+ cells (left), and their composition sorted by CD4 and CD69 staining (right). (B) The composition of
MLNs is compared between Sirt2+/+ and Sirt22/2 mice; TCRb+, CD4+, CD4+CD692, and CD4+CD69+ cells. n = 10/group. Results are expressed as the
mean 6 SEM. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0103573.g004
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Figure 5. Plasma cytokine levels and cytokine mRNA levels in the colon of Sirt22/2 mice with DSS-induced colitis. (A–C) Measurements
of serum cytokine levels in Sirt2+/+ (+/+) and Sirt22/2 (2/2) mice after DSS-induced colitis; TNFa (A), IL1b (B), and IL6 (C). (D–E) Cytokine mRNA levels
in the colon of Sirt2+/+ and Sirt22/2 mice before and after DSS-induced colitis. Tnfa (D), Il1b (E), and Il6 (F). (G–H) mRNA levels of the genes related to
maintenance of intestinal permeability, Ocln (G), Cldn1 (H), Zo1(I) in Sirt2+/+ and Sirt22/2 mice with or without DSS treatment. n = 10/group (with DSS
treatment); n = 5/group (without DSS treatment). Results are expressed as the mean 6 SEM. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0103573.g005
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inflammatory cells of the gut are initially recruited from the bone

marrow compartment [26], bone marrow derived macrophages

(BMDMs) from Sirt2+/+ and Sirt22/2 mice were isolated and

examined ex vivo for functional differences. Notably, macrophages

have the unique ability to respond to environmental cues by taking

on one of two functional phenotypes designated as pro-inflamma-

tory M1 and anti-inflammatory M2 macrophages. Classically

activated M1 cells are implicated with initiating and sustaining

inflammation, while M2 cells are associated with the resolution of

chronic inflammation [27]. These two distinct phenotypes, M1

and M2, can be induced ex vivo by treating BMDMs with LPS or

IL4, respectively. Before macrophage activation, we found that

Sirt2 deficiency resulted in the basal induction in the transcript

levels of pro-inflammatory cytokine genes in BMDMs (Figure 6).

Moreover, upon LPS stimulation and M1 phenotype induction,

differences observed in Sirt22/2 mice-derived BMDMs under

basal conditions became accentuated (Figure 6). In addition,

Sirt22/2 BMDMs exhibited reduced basal mRNA expression

levels for the M2-associated anti-inflammatory cytokine Il10 and

the Il4 receptor [28,29]. IL4R activates the STAT6/GATA3

signaling cascade, which in turn controls transcription of genes

typical of M2 polarization (e.g. Arg1, Cd11c) [30]. Correspond-

ingly, after IL4 stimulation, Gata3 [22], Arg1, and CD11c [23]

mRNA expression is reduced in Sirt22/2 mice. In addition, the

hyperacetylation of the p65 subunit of NF-kB in Sirt22/2 BMDMs

may mechanistically contribute to the pro-inflammatory effect

exerted by Sirt2 deficiency. Consistent with previous studies [4,5],

hyperacetylation of NF-kB induces its activity, triggering inflam-

matory pathways. Moreover, it has been previously demonstrated

that the IL4/STAT6/GATA3 pathway negatively regulates NF-

kB-dependent gene expression [31]. Thus, the inhibition of the

IL4-dependent activation may unhinge an important repressive

mechanism used to counterbalance the inflammatory process.

These data hence demonstrate that Sirt2 deficiency predisposes to

and promotes inflammation, while also inactivating the classical

M2-associated anti-inflammatory pathways, as a primary cause for

the more severe development of colitis in these animals.

Our results demonstrate a potential role for SIRT2 as a

suppressor of colitis in the mouse. This also leads us to speculate

that the activation of SIRT2 may be a potential approach to treat

inflammatory bowel disease. Further investigations to identify

therapies targeting SIRT2 to improve inflammatory bowel disease

are hence warranted. Moreover, these findings also highlight the

novel role of SIRT2 in macrophage M1/M2 polarization, which

Figure 6. Increased mRNA levels of pro-inflammatory genes and decreased levels of anti-inflammatory genes in Sirt22/2 mouse-
derived BMDMs. (A) Sirt2 mRNA levels in Sirt2+/+ (+/+) and Sirt22/2 (2/2) mice. (B and C) mRNA levels of pro-inflammatory cytokine genes (Il1b,
Tnfa, Il6, Mcp1) (B) and anti-inflammatory genes (Il4r, Il10) (C) in BMDMs from Sirt2+/+ and Sirt22/2 mice under basal conditions. n = 3/group. (D) mRNA
levels of pro-inflammatory genes in BMDMs from Sirt2+/+ and Sirt22/2 mice upon LPS treatment. (E) mRNA levels of Gata3, Arg1, and Cd11c in BMDMs
from Sirt2+/+ and Sirt22/2 mice upon IL4 treatment. Results are expressed as the mean 6 SEM. *P,0.05; **P,0.01; ***P,0.001.
doi:10.1371/journal.pone.0103573.g006
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could have far reaching implications for other inflammatory-

diseases.
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