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While multiple mechanisms of BRAFV600-mutant melanoma resistance to targeted MAPK

signaling inhibitors (MAPKi) have been reported, the epigenetic regulation of this process

remains undetermined. Here, using a CRISPR–Cas9 screen targeting chromatin regulators, we

discover that haploinsufficiency of the histone deacetylase SIRT6 allows melanoma cell

persistence in the presence of MAPKi. Haploinsufficiency, but not complete loss of SIRT6

promotes IGFBP2 expression via increased chromatin accessibility, H3K56 acetylation at the

IGFBP2 locus, and consequent activation of the IGF-1 receptor (IGF-1R) and downstream AKT

signaling. Combining a clinically applicable IGF-1Ri with BRAFi overcomes resistance of SIRT6

haploinsufficient melanoma cells in vitro and in vivo. Using matched melanoma samples

derived from patients receiving dabrafenib+ trametinib, we identify IGFBP2 as a potential

biomarker for MAPKi resistance. Our study has not only identified an epigenetic mechanism

of drug resistance, but also provides insights into a combinatorial therapy that may overcome

resistance to standard-of-care therapy for BRAFV600-mutant melanoma patients.
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T
he incidence of cutaneous malignant melanoma is rising
and its therapeutic management remains challenging1. In
recent years, there has been extensive therapeutic devel-

opment to inhibit key biological targets, such as constitutively
activated BRAF (BRAFV600E/K) and its downstream effectors
MEK and ERK2–4. Although a large proportion of patients with
advanced metastatic melanoma harboring BRAFV600E/K mutation
respond to MAPKi, subsequent resistance remains a major clin-
ical challenge5. While a variety of genetic mutations, amplifica-
tions, and splicing alterations have been described in acquired
resistance to MAPKi6, these mechanisms account for only a
fraction of cases. Notably, the epigenetic mechanisms of mela-
noma drug resistance remain poorly understood.

Emerging evidence suggests that chromatin-mediated pro-
cesses are linked to the development and progression of cancer.
Our group and others have revealed a key role for histone var-
iants7,8, histone deacetylases9–12, histone methyltransferases13–16,
histone readers17,18, chromatin remodeling complexes19,20, or
DNA hydroxymethylation (5-hmC)21 in the pathogenesis of
melanoma. Further, a growing body of evidence suggests that
altered chromatin states can modulate the response to targeted
therapies in multiple tumor types22,23. Relevant to our study,
recent reports have implicated DNA methylation, transcriptional
changes, microRNA alterations, as well as microenvironmental
stressors in promoting melanoma drug resistance to MAPKi in
BRAFV600-mutant melanoma24–30, suggesting non-genetic
mechanisms of plasticity of melanoma tumors to overcome
these therapies. Moreover, it suggests that epigenetic alterations
may play a key role in rewiring the chromatin landscape of
melanoma cells to allow adaptation to MAPKi. Thus, shedding
light onto the transcriptomic and epigenetic alterations under-
lying acquired MAPKi resistance in melanoma is of critical
importance.

In order to probe the chromatin-mediated mechanisms
involved in melanoma resistance to MAPKi, here we perform a
CRISPR–Cas9 screen in BRAFV600E human melanoma cells tar-
geting chromatin modifiers in the context of MAPKi. We identify
SIRT6 as a regulator of resistance to the clinically relevant BRAF
inhibitor (BRAFi), dabrafenib, or combination dabrafenib+ tra-
metinib (MEK inhibitor, MEKi) in BRAFV600E melanoma.
Through integrated transcriptomic, proteomic, and epigenomic
analyses, we discover that SIRT6 haploinsufficiency increases
IGFBP2 expression and promotes melanoma cell survival through
the activation of IGF-1R/AKT signaling. In contrast, complete
loss of SIRT6 does not promote IGFBP2 expression, but rather
allows sensitivity to MAPKi through a DNA damage response.
Collectively, our study provides information on: (1) a previously
unknown epigenetic mechanism of melanoma drug resistance, (2)
a dose-dependent effect of SIRT6 levels on the drug resistance
phenotype, and (3) a combinatorial therapy that may overcome
resistance to MAPKi for a subset of BRAFV600-mutant melanoma
patients.

Results
A CRISPR–Cas9 screen identifies histone acetylation modifiers
in melanoma MAPKi resistance. We performed a
CRISPR–Cas9 screen targeting ~140 chromatin factors contain-
ing enzymatic activity in BRAFV600E human melanoma cells
(Fig. 1a, Supplementary Fig. 1a, Supplementary Data 1). SKMel-
239 cells stably expressing Cas9 were infected with the single-
guide RNA (sgRNA) library (3–4 sgRNAs per gene encoded in
pLKO.1-EGFP); GFP-positive cells were sorted for expansion
(Fig. 1a) and cultured with DMSO (control), dabrafenib, or
dabrafenib+ trametinib for 6 weeks (Fig. 1a). While the majority
of cells were sensitive to MAPKi31, a fraction of cells survived the

drug treatments. Genomic DNA was isolated from all conditions,
including control cells at days 0 and 42, and the abundance of
each sgRNA was determined using next-generation sequencing
(Fig. 1a, Supplementary Fig. 1b). As expected from the strong
selection of the screen, the sgRNA distribution of drug-treated
cells at 6 weeks was significantly different than control cells
(Supplementary Fig. 1b).

Our screen revealed genes whose depletion conferred resistance
to MAPKi, with enrichment of enzymes that mediate histone
acetylation. These include the histone acetyltransferases (HATs),
KAT1 (HAT1), and KAT2B (PCAF), as well as the NAD
+ -dependent histone deacetylase SIRTUIN 6 (SIRT6) (Fig. 1b).
We focused on SIRT6, which has been reported to act as a tumor
suppressor32, but has not been implicated in melanoma
resistance. Functionally, SIRT6 deacetylates a variety of protein
substrates, including histone H3 at lysines 9 and 56 (H3K9ac and
H3K56ac), and regulates cellular metabolism as well as DNA
damage responses32–36. We validated the functional impact of
SIRT6 deficiency on drug resistance by introducing individual
sgRNAs, and deriving clonal cell lines (Fig. 1c, d, Supplementary
Fig. 1c). First, using the precise sgRNA identified in both screens
(i.e., SIRT6.2, Fig. 1b), we found that SIRT6 protein levels were
reduced, but still detectable (Fig. 1c). Consistent with this finding,
we found mono-allelic editing of the SIRT6 genomic locus
(Supplementary Fig. 1d-f). To further confirm a role for SIRT6 in
melanoma drug resistance, we generated SKMel-239 MAPKi-
resistant cells by prolonged drug treatment37, and observed
decreased SIRT6 levels in all resistant clones (Fig. 1e), indicating
that lower levels of SIRT6 are associated with acquired resistance.
By examining short-term cultures (STCs) derived from paired
BRAFV600E tumor biopsies collected prior to treatment (Pre) and
upon onset of resistance to vemurafenib (Prog) from three
melanoma patients38, we observed decreased levels of SIRT6 in
two out of three samples upon resistance (Fig. 1f). Similar results
were observed for KAT2B and KAT1 (Supplementary Fig. 1g),
consistent with the hits identified in our screen.

SIRT6 haploinsufficiency in BRAFV600E melanoma cells
decreases sensitivity to MAPKi. To further investigate SIRT6, we
generated additional CRISPR–Cas9 edited clonal cell lines that
exhibited either decreased or complete loss of SIRT6 (Fig. 2a, top
panel). As expected from our validation studies (Fig. 1c), clones
with decreased levels of SIRT6 displayed MAPKi resistance
(Fig. 2a, bottom panel). Unexpectedly, however, clones devoid of
SIRT6 were as sensitive, if not more sensitive, to MAPKi as
control cells (Fig. 2a). Strikingly, similar results were observed in
additional BRAFV600E melanoma cell lines (Supplementary
Fig. 2a, b). Next, we aimed to reproduce the reduction, but not
complete loss of SIRT6 levels using shRNAs. Knockdown of
SIRT6 in several BRAFV600E melanoma cell lines and an STC
exhibited resistance to MAPKi (Fig. 2b, Supplementary Fig. 2c, d).
Notably, the clonal cell lines SIRT6.2–7, SIRT6.1–1, as well as
SIRT6 knockdown cells, displayed similar growth rates as their
respective controls (Supplementary Fig. 2e), suggesting that their
differential sensitivity to the inhibitors is independent of
proliferation.

To investigate whether decreased expression of SIRT6 mediates
the response to BRAFi in vivo, two resistant clones (SIRT6.2–7
and SIRT6.4–1) were injected into nude mice and grown as
xenografts to assess their response to vemurafenib29. As expected,
while control tumors were sensitive to the drug, SIRT6
haploinsufficient tumors were significantly less so (Fig. 2c).
Collectively, these in vitro and in vivo results suggest that partial
suppression of SIRT6 confers BRAFV600E melanoma cells the
ability to persist in the presence of MAPKi.
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SIRT6 haploinsufficiency promotes MAPKi resistance in an
ERK-independent manner. Because SIRT6 is a chromatin-
associated histone deacetylase35,39, we next investigated whether
reduced levels of SIRT6 altered H3 acetylation. Under baseline
conditions (i.e., no inhibitors), we observed a dose-dependent
increase of only H3K56ac in both mono- and bi-allelically
(Supplementary Fig. 3a, b) edited SIRT6 clones (Fig. 2d, compare
lanes 1, 4, 7) as reported39. However, H3K56ac further increased
in the presence of drugs only in the SIRT6.1-1 clone (Fig. 2d,
lanes 8, 9). These high levels of H3K56ac are consistent with
increased DNA damage detected by comet assay in SIRT6 null
cells (Supplementary Fig. 3c) and previous reports34,36. Overall,

these data suggest that H3K56ac is the primary target of SIRT6 in
the context of melanoma.

Since ERK signaling reactivation is the primary mechanism of
resistance in response to MAPKi40, we next sought to determine
whether SIRT6 reduction promotes ERK signaling, and is thus
responsible for the resistance observed in SIRT6.2–7 cells.
Intriguingly, decreased SIRT6 expression did not alter the levels
of MEK or ERK phosphorylation compared to control cells in
either short (e.g., 6 h) or extended (4 days) time frames (Fig. 2e,
f). Together, these data suggest that SIRT6 haploinsufficiency in
BRAFV600E melanoma cells decreases sensitivity to MAPKi
independent of ERK signaling. Of note, we also validated the
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in SKMel-239. Histones used as a loading control. L-C-B and SIRT6.2–7 cells were seeded at the same density and cultured in DMSO or in the presence of

the MAPKi as indicated for 1 or 2 weeks. d Growth inhibition curves are shown for BRAFi (top), as well as BRAFi+MEKi (bottom) at 72 h of treatment

(n= 3). Data are mean ± SEM. e. Immunoblot of SIRT6 in the indicated whole-cell lysates of SKMel-239 or MAPKi-resistant clones generated after

continuous exposure to the indicated drugs. B-Actin was used as a loading control. f Immunoblot of SIRT6 in the indicated whole-cell lysates of patient-
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loading control
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functional impact of KAT2B deficiency on drug resistance where
similar results were observed, supporting alternative resistance
mechanisms through these chromatin modifiers (Supplementary
Fig. 4a, b).

IGFBP2 is a direct SIRT6 target that is upregulated upon
haploinsufficiency. To understand how SIRT6 participates in
drug resistance, we performed transcriptomic (RNA-seq) analyses
of L-C-B (control), SIRT6.2–7 and SIRT6.1-1 cells in the absence
or presence of MAPKi. First, our transcriptomic analyses of
control cells identified 2178 MAPKi-sensitive genes (i.e.,

downregulated) with enrichment of cell cycle genes (Fig. 3a,
Supplementary Fig. 5a, b), in accordance with the proliferation
arrest and cell death observed upon MAPKi as previously
reported31,41. We next compared these MAPKi-sensitive genes
with 864 and 222 upregulated genes identified in SIRT6.2–7 cells
under control or MAPKi conditions, respectively (Fig. 3a). We
identified molecular functions such as transmembrane RTK
(receptor tyrosine kinase) and growth factor binding (Supple-
mentary Fig. 5c-e). This integrated strategy aimed to identify
upregulated SIRT6 targets/pathways whose inhibition might
prevent resistance to MAPKi. We identified 20 genes (e.g.,
IGFBP2, AEBP1, SPOCK1, etc.) that potentially promote
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resistance to MAPKi upon SIRT6 haploinsufficiency (Fig. 3a,
Supplementary Data 2), some of which were validated by quan-
titative RT-PCR (qPCR) (Supplementary Fig. 5f). Importantly,
some of these genes have been implicated in resistance to BRAFi
in melanoma28,42, reinforcing our strategy.

Strikingly, however, the majority of these genes are down-
regulated in SIRT6.1-1 cells (Supplementary Data 2). Consistent

with the comet assay data (Supplementary Fig. 3c), gene ontology
analyses for SIRT6.1-1 upregulated genes (vs. control) in the
absence of MAPKi showed enrichment for a DNA damage
checkpoint, while downregulated pathways included key func-
tions such as transcriptional regulation and axon guidance
(Supplementary Fig. 6a, b, Supplementary Data 2). Moreover,
SIRT6.1-1 cells essentially lost the ability to grow as xenografted
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tumors, suggesting survival deficiencies in vivo (Supplementary
Fig. 6c). These collective data are consistent with the observed
sensitivity of SIRT6.1-1 cells to MAPKi.

We also performed Reverse Phase Protein Array (RPPA) of L-
C-B (control), SIRT6.2–7, and SIRT6.1-1 cells in the absence or
presence of MAPKi (Supplementary Data 3). This RPPA is an
antibody-based array that includes ~300 antibodies to detect total
protein levels or specific post-translational modifications of
proteins43. Notably, this study revealed one upregulated candi-
date in common with the transcriptomic analyses in SIRT6.2–7
cells, namely IGFBP2. This was confirmed by immunoblot;
IGFBP2 protein levels were elevated in SIRT6.2–7 cells in both
untreated and drug-treated cells, consistent with their ability to
persist in the presence of MAPKi, while IGFBP2 levels were lower
than control cells for SIRT6.1-1 (Fig. 3b), consistent with their
sensitivity to MAPKi.

As SIRT6 is a chromatin-associated deacetylase, we hypothe-
sized that it could directly influence gene expression of its target
genes by modifying chromatin structure. We performed ATAC-
seq, ChIP-seq for SIRT6, as well as histone modifications in L-C-
B, SIRT6.2–7, and SIRT6.1-1 cells, including H3K4me1,
H3K4me3, H3K9ac, H3K27ac, as well as the main target site of
SIRT6 deacetylation, H3K56ac. We discovered that among
SIRT6-occupied loci, 56% were at promoters, among which
75% co-localize with H3K9ac and H3K56ac; 27% within gene
bodies; and 17% in distal regions (Fig. 3c, Supplementary Fig. 7a).
Only 30% of these latter two categories co-localize with H3K9ac
and H3K56ac (Supplementary Fig. 7a). Thus, the majority of
SIRT6-binding sites were at promoters, enrichment for which was
reduced in the SIRT6.2–7 cells and nonexistent in SIRT6.1-1 cells
(Fig. 3d).

To identify direct SIRT6 targets/pathways whose inhibition
might prevent resistance to MAPKi, we integrated SIRT6-bound
promoters identified by ChIP-seq in control cells with the
transcriptome of SIRT6.2–7 cells and identified 325 down-
regulated and 383 upregulated genes bound by SIRT6 around the
transcription start site (TSS) (Supplementary Fig. 7b). We focused
on the 383 SIRT6-occupied upregulated genes, which showed
enrichment for specific molecular functions such as receptor and
growth factor binding (Supplementary Fig. 7c). As SIRT6
deacetylates H3K56ac, we next sought to identify those genes
bound by SIRT6 in control cells that display increased H3K56ac
at their TSS in SIRT6.2–7 cells (Fig. 3e). Although we did not
observe a global increase in H3K56ac at the promoters of such
genes in SIRT6.2–7 cells (Supplementary Fig. 7d), we identified
201 genes bound by SIRT6 with increased H3K56ac, among
which, 23 were upregulated in SIRT6.2–7 cells (Fig. 3e). Finally,

integration of genes that were SIRT6-bound, upregulated in
SIRT6.2–7 cells, and displayed increased promoter H3K56ac
(Supplementary Data 4) with the 20 genes identified to facilitate
resistance to MAPKi (Fig. 3a), led us to six candidates of which
we focused on IGFBP2 (Fig. 3e, f, Supplementary Data 4). We also
noted increased H3K4me3 signal and open chromatin at the
IGFBP2 TSS, consistent with increased mRNA expression
observed in SIRT6.2–7 cells (Fig. 3b, f). A putative enhancer
marked by H3K4me1 and H3K27ac within the IGFBP2 locus also
showed increased H3K56ac (Fig. 3f). Importantly, chromatin
accessibility and marks of active transcription were reduced at the
IGFBP2 TSS in SIRT6.1-1 cells, consistent with their sensitivity to
MAPKi and supporting a role for IGFBP2 expression in
promoting resistance to MAPKi (Fig. 3f). Taken together, our
data suggest that SIRT6 directly regulates the IGFBP2 locus and
the levels of SIRT6-binding appear to determine the transcrip-
tional output of this locus.

Co-targeting of MAPK and IGF-1R signaling impedes mela-
noma drug resistance. Because IGFBP2 controls the bioavail-
ability of IGFs, which in turn modulates IGF-1R/IR (insulin
receptor) signaling pathways44,45, we next queried whether
IGFBP2 plays a role in the MAPKi resistance phenotype. To this
end, we treated control cells with insulin and/or ectopic expres-
sion of IGFBP2, which revealed decreased sensitivity to MAPKi
when both were applied (Fig. 4a, Supplementary Fig. 8a). Con-
sistent with this, IGFBP2 protein levels correlate with resistance
to MAPKi in several BRAFV600-mutant melanoma cell lines
(Supplementary Fig. 8b). Next, we tested whether IGF-1R and its
downstream effectors (ERK and AKT) were activated in
SIRT6.2–7 cells in the absence or presence of BRAFi. No changes
were observed under baseline conditions (Fig. 4b). As mentioned
above (Fig. 2e, f), MEK and ERK phosphorylation were similar
between control and SIRT6.2–7 cells (Fig. 4b). However, upon
BRAFi, SIRT6.2–7 cells showed elevated levels of phosphorylated
IGF-1R and AKT compared to control L-C-B cells (Fig. 4b).
Therefore, in the context of SIRT6 haploinsufficiency, the IGF-
1R/AKT survival pathway is activated, consistent with a MAPK-
independent resistance mechanism.

We next tested whether inhibiting IGF-1R signaling might
suppress MAPKi resistance using linsitinib, which inhibits ligand-
stimulated autophosphorylation of IGF-1R and IR46. Combina-
tion treatment of SIRT6.2–7 cells with dabrafenib+ linsitinib led
to a substantial decrease of IGF-1R and AKT phosphorylation
(Fig. 4b). Importantly, this combination significantly reduced
proliferation and led to increased apoptosis compared to cells
treated with dabrafenib or linsitinib alone (Fig. 4c, d,

Fig. 3 IGFBP2 is a SIRT6 target that is upregulated in MAPKi melanoma resistance. a Schematic of the integrated transcriptional profiling of MAPKi (left)

on SKMel-239 L-C-B or SIRT6.2–7 and the SIRT6 regulatory network in the absence (middle) or presence (right) of MAPKi. 2178 shared downregulated

genes were identified as MAPKi-sensitive genes; 864 upregulated genes were identified in SIRT6.2–7 cells; 222 shared upregulated genes upon MAPKi

treatment in SIRT6.2–7 cells. Twenty genes identified as potential targets are shown in the bracket. b Haploinsufficiency of SIRT6 increases IGFBP2

expression. Log2 fold change from RNA-seq for IGFBP2 (top); blue: L-C-B with the indicated drugs or DMSO; black: DMSO-treated cells; purple: SIRT6.2–7

or SIRT6.1-1 with the indicated drugs. IGFBP2 protein expression after 4 days of 2 µM of BRAFi or 100 nM BRAFi+ 1 nM MEKi in the indicated CRISPR cell

lines by RPPA analysis (middle), represented by heatmap (Normalized Log2 Median Centered is shown) and by immunoblot (bottom). GAPDH was used

as a loading control. c SIRT6, H3K9ac, and H3K56ac ChIP-seq meta-profiles in L-C-B cells at SIRT6-associated promoters. Plot represents average read

counts per 10 bp bins. d ChIP-seq meta-profiles for SIRT6 in L-C-B, SIRT6.2–7, and SIRT6.1-1 cell lines at SIRT6-associated promoters. Upper left quadrant

shows zoom in for SIRT6 signal in SIRT6.2–7 and SIRT6.1-1 at SIRT6-bound promoters. Plot represents average read counts per 10 bp bins. e Venn diagram

displaying SIRT6-occupied genes at TSSs (transcription start sites) associated with increased H3K56ac in SIRT6.2–7 cells. 399 TSS show an increase in

H3K56ac in SIRT6.2–7 cells and 201 SIRT6-bound TSS show an increase at H3K56ac in SIRT6.2–7 cells compared to L-C-B. 23 SIRT6-bound TSS show an

increase for H3K56ac and are upregulated in SIRT6.2–7 vs. L-C-B (top). Venn diagram displaying SIRT6 targets identified by integrating transcriptomic and

genomic analyses (bottom). f Capture of the UCSC (GRCh37/hg19) genome browser showing the IGFBP2 locus. L-C-B (black), SIRT6.2–7 (red), and

SIRT6.1-1 (blue) ATAC-seq and ChIP-seq profiles for H3K4me1, H3K27ac, H3K4me3, H3K9ac, H3K56ac, and SIRT6 are shown (Reads Per Kilobase per

Million reads). Genomic coordinates shown on top and IGFBP2 locus on bottom
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Supplementary Fig. 8c, d). We confirmed these results in
additional SIRT6-edited clones (Supplementary Fig. 8c, d). To
evaluate the clinical implications of our findings, we performed
xenograft experiments with SIRT6.2–7 cells. While BRAFi
stabilized growth in xenografted tumors, the combination
treatment of BRAFi+ linsitinib caused significant tumor regres-
sion (Fig. 4e). Together, these data indicate that SIRT6
haploinsufficiency allows BRAFV600E melanoma cells to survive
in the presence of MAPKi by increasing IGFBP2 expression,
which in turn activates IGF-1R/IR and downstream AKT
signaling, that can be blocked by IGF-1R/IR inhibition.

IGFBP2 is a potential biomarker for MAPKi resistance in
melanoma. By probing The Cancer Genome Atlas (TCGA), we
found significant upregulation of IGFBP2 mRNA and protein in
melanoma harboring BRAF mutation compared to other muta-
tional subtypes (Fig. 5a). To confirm these findings, we performed
IGFBP2 immunohistochemistry (IHC) on treatment-naive tumor
biopsies from 34 melanoma patients (21 BRAFV600E/K and 13
non-BRAF mutant tissues) (Supplementary Data 5). Strikingly,
we found significantly increased IGFBP2 in BRAFV600E/K tumors

compared to non-BRAF mutant tumors (Fig. 5b). Next, we per-
formed IGFBP2 IHC on matched tumor biopsies from five
patients with BRAFV600E/K metastatic melanoma treated with
dabrafenib+ trametinib taken before treatment (Pre), early dur-
ing treatment (EDT), and at disease progression (Prog)47 (Sup-
plementary Data 5). Four of the five patients developed resistance
to MAPKi during the course of therapy. Biopsies from Patients 1
and 2 were low/negative for IGFBP2 (Supplementary Fig. 9a).
Patient 1 showed a complete response, while Patient 2 had stable
disease with an acquired MEK1 mutation48. Strikingly, Patients 3,
4, and 5 who succumbed to their disease, showed high levels of
IGFBP2 at baseline, which decreased at EDT biopsy, but returned
upon progression (Fig. 5c, Supplementary Data 5). This is con-
sistent with our findings that point towards a role for IGFBP2 in
MAPKi resistance.

To evaluate whether SIRT6 and IGFBP2 levels anti-correlate in
human melanoma tissues, we performed SIRT6 IHC on 21
BRAFV600E/K melanomas stained for IGFBP2, and observed a
statistically significant inverse correlation (Spearman’s r=
−0.462; P= 0.035; Fig. 5d, e). Moreover, analysis of TCGA data
for primary melanomas revealed that 20% display high SIRT6
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mRNA, which anti-correlates with IGFBP2 (via RPPA) (Supple-
mentary Fig. 9b), suggesting a repressive role of SIRT6 on
IGFBP2 expression in melanoma. Finally, we found that IGFBP2
protein and mRNA levels are associated with poor prognosis in
primary melanoma (Fig. 5f, Supplementary Fig. 10a, b),
supporting IGFBP2 as a potential biomarker for MAPKi
resistance in melanoma.

Discussion
Mechanisms of MAPKi resistance in BRAFV600-mutant mela-
noma have mainly focused on components of the ERK signaling
pathway, however, little is known about the epigenetic regulators
involved in this process. We hereby present a chromatin-focused
CRISPR–Cas9 screen to identify factors that play a critical role in
BRAFV600-mutant melanoma resistance to MAPKi, and
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identified enzymes that mediate histone acetylation. We found
that SIRT6 haploinsufficiency in BRAFV600E melanoma cells
decreases sensitivity to MAPKi, independent of the ERK signaling
pathway. SIRT6 haploinsufficiency allows cells to survive via
IGFBP2 expression, which in turn activates IGF-1R and down-
stream AKT signaling in the presence of MAPKi (see model,
Fig. 6).

In mammalian cells, the SIRTUIN family is composed of seven
members (SIRT1-7), having distinct subcellular localization and
functions in key biological processes49,50. SIRT1, 2, and 6 are
considered the nuclear SIRTUINs and are chromatin-bound50.
Interestingly, an shRNA screen identified that SIRT2 depletion
conferred resistance to vemurafenib in BRAFV600E melanoma
cells. In contrast to SIRT6, however, SIRT2 loss reactivated ERK
signaling51. Recently, a genome-wide CRISPR–Cas9 screen
uncovered enrichment of sgRNAs targeting members of the
STAGA HAT complex in the presence of vemurafenib25, con-
sistent with a critical role for histone acetylation in melanoma
drug resistance.

The link between SIRTUINs and IGF signaling has been
reported in multiple systems. For example, SIRT6 acts at the
chromatin level to regulate the transcriptional status of insulin/
IGF-AKT signaling-related genes to prevent cardiac hypertrophy
and heart failure52. Previous studies have also implicated
increased activation of the AKT signaling pathway in promoting
MAPKi resistance53–55. Interestingly, Villanueva et al., reported
IGF-1R/PI3K signaling to play a role in MAPKi-resistant mela-
noma and hypothesized that additional factors (e.g., IGFBPs)
were essential to engage this process. Here, through an unbiased
screening approach, we identified SIRT6-mediated transcriptional
regulation of IGFBP2, and consequent activation of IGF-1R/AKT,
to play a role in melanoma MAPKi resistance. Therefore, we

provide a deeper mechanistic understanding of the upstream
activators of IGF1R/AKT signaling in this process.

Our study suggests that SIRT6 haploinsufficiency enhances
IGF-1R/AKT signaling via transcriptional control of IGFBP2 in
the presence of MAPKi (Fig. 6). Nevertheless, we cannot exclude
that other genes control this signaling pathway. For example, we
also uncovered AEBP1 expression to be upregulated. AEBP1 was
previously implicated in resistance to BRAFi in melanoma,
however, its expression is driven by hyperactivation of the PI3K/
AKT pathway42. Additionally, no SIRT6-binding sites were
identified around the AEBP1 TSS in our study. Thus, the increase
of AEBP1 expression we observed is most likely a consequence of
the activation of the IGF-1R/AKT survival pathway, rather than
via direct regulation by SIRT6.

In contrast to SIRT6 haploinsufficient melanoma cells, mela-
noma cells lacking SIRT6 undergo chromatin reorganization
reflected by increased open chromatin and H3K56ac at these
nucleosome-depleted sites (Supplementary Fig. 11a, b, Supple-
mentary Data 4). Such potential for genomic instability is con-
sistent with the increased DNA damage we detected (Fig. 6,
Supplementary Fig. 3c), as well as impaired xenografted tumor
growth (Supplementary Fig. 6c). Therefore, we could consider
complete SIRT6 depletion (e.g., CRISPR) as a potential novel
strategy to enhance melanoma cell sensitivity to current targeted
MAPKi therapies.

Finally, a recent study identified IGFBP2 as part of a gene
signature in response to MAPKi in a population of cells referred
to as drug-tolerant persisters28. Importantly, the burden of
acquired melanoma resistance emerges from such tumor sub-
populations. Thus, early treatment to eradicate this population is
key to delay or prevent drug resistance. While IGFBP2 is over-
expressed in various tumors, including melanoma44,45,56,57, and is
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part of a gene signature of MAPKi drug-tolerant persisters28,
there is little evidence for its use as a biomarker58. We observed
that IGFBP2 protein levels correlated with resistance to MAPKi
in several BRAFV600-mutant melanoma cell lines, and is asso-
ciated with poor prognosis in primary melanomas (Supplemen-
tary Fig. 8b, Fig. 5f and Supplementary Fig. 10a, b). Interestingly,
IGFBP2 has been implicated as a candidate diagnostic for heart
failure with a high sensitivity and specificity by urine proteomic
analyses59, clearly highlighting its use as a potential biomarker for
melanoma MAPKi resistance. In sum, our data strongly suggest
that co-targeting of MAPK and IGF-1R pathways can prevent/
delay resistance to targeted MAPKi therapies, particularly for
patients with high levels of IGFBP2.

Methods
Generation of sgRNA library. We used guide sequences provided by George
Church lab60 (Bioinformatically computed genome-wide resource of candidate
unique gRNA targets in human exons is available here: http://arep.med.harvard.
edu/human_crispr/). The custom oligonucleotide library was reconstituted in water
to a final concentration of 0.01 pmol/µL and PCR-amplified using Q5 Hot Start
Polymerase (New England Biolabs). The PCR-amplified library was then purified
(Qiagen), digested with BbsI (New England Biolabs) at 37 °C overnight, and pur-
ified by electrophoresis on a 2% agarose gel and recovered using gel extraction kit
(Qiagen). The library oligonucleotides were then cloned downstream of the human
U6 promoter in a lentiviral vector containing EGFP downstream of the human
PGK promoter (pLKO.1-EGFP). The vector backbone was digested with AgeI and
EcoRI, treated with FastAP Thermosensitive Alkaline Phosphatase (Thermo Sci-
entific), purified on a 1% agarose gel followed by gel extraction (Qiagen). Ligation
was performed using Quick Ligase kit (New England Biolabs). To ensure library
diversity, colonies were collected from 15 bacterial plates after transformation of
10-beta electrocompetent cells (New England Biolabs). The pool of plasmids was
prepared for infection using an endotoxin-free Maxi prep kit (Qiagen). The library
targeting chromatin-related factors contains (see Supplementary Data 1 for details).

CRISPR–Cas9 screen. SKMel-239 were first infected with the lentiCas9-Blast (L-
C-B) (Addgene #52962) and selected with blasticidin (10 µg/mL). Lentiviral vectors
were produced as previously described61,62. Viral titer was estimated on 293T cells
by limiting dilution. Cells were then infected with the sgRNA library at a low MOI
(<1) to ensure a single sgRNA vector per cell. After 4 days of infection, cells were
analyzed by flow cytometry and <20% of cells were EGFP-positive, corresponding
to single vector copy. EGFP-positive cells were expanded for 10 days, plated at low
density and cultured in the presence of DMSO, 2 µM of dabrafenib or 100 nM+ 1
nM of dabrafenib+ trametinib (3 or 4 plates per condition) for 42 days. A fraction
of cells were collected at day 0 to ensure a proper coverage of sgRNAs. Medium was
changed every 3 days. At day 42, cells from all conditions were collected and
genomic DNA was extracted. Since melanin pigment may interfere with DNA-and/
or RNA-based molecular profiling63, we purified the samples using the OneStepTM

PCR inhibitor Removal Kit (Zymo Research). The integrated sgRNAs were then
amplified by PCR with primers containing multiplexing barcodes and adaptors and
sequenced on the Illumina NextSeq500. Hits were selected based on the log2 fold
change of sgRNA reads at day 42 in presence of the indicated drug(s) vs. DMSO-
treated cells at day 42, and their presence in both screens. Analyses and plots of the
sequencing data were conducted using Prism 6 software (GraphPad Software) and
Rank Products Analysis to determine P values.

Cell culture. SKMel-239 (MSKCC) cells were cultured in RPMI; 501Mel (Yale
University), Mel888 (Stuart Aaronson), SKMel-147 (MSKCC), and SKMel-28
(ATCC) were cultured in DMEM. Human melanoma STCs (CM150 (patient 1),
CM145 (patient 2), and CM143 (patient 3)) isolated pre- and post-treatment with
vemurafenib were cultured as described38. 293T cells used for virus production
were maintained in DMEM. All medium were supplemented with 10% FBS, 100 IU
of penicillin and 100 µg/mL of streptomycin. Media for melanoma resistant cells
contained 1 µM of vemurafenib (STCs) or as indicated. Dabrafenib and dabrafenib
+ trametinib resistant SKMel-239 cell lines were generated by seeding cells at low
density and continuously exposed to 2 µM of dabrafenib or 100 nM of dabrafenib
+ 1 nM of trametinib for the combination. After ~6 weeks, resistant cell clones
were derived and maintained in dabrafenib or on dabrafenib+ trametinib.

Plasmids and infections. pLKO.1 vectors encoding shRNAs were purchased from
Sigma (shSIRT6#1: TRCN0000050475, shSIRT6#2: TRCN0000050476, and
shSIRT6#3: TRCN0000050477). The lentiCas9-Blast plasmid (#52962) was pur-
chased from Addgene to generate an SKMel-239 cell line stably expressing Cas9
used for the CRISPR screen. Infections were performed using standard proce-
dures8. The sgRNAs of interest were cloned in a lentiviral vector containing EGFP
downstream of the human PGK promoter (pLKO.1-EGFP) used for the library

generation. HA-fused complementary DNA (cDNAs) encoding IGFBP2 was
cloned into the lentiviral vector VIRSP (gift of Aaronson lab).

Whole-cell protein extractions, chromatin fractionation, and immunoblotting.
Cells were washed with PBS and lysed on ice for 5 min in NP40 buffer (50 mM Tris
pH 7.5, 1% NP40, 150 mM NaCl, 10% Glycerol, 1 mM EDTA) supplemented with
protease and phosphatase inhibitors (Roche). Lysates were centrifuged at 15,000
rpm for 15 min and the protein concentration was quantified using BCA (Pierce).
Chromatin fractionation performed as described8. All lysates were freshly prepared
and supplemented with Laemmli loading buffer with subsequent boiling for
immunoblotting. The primary antibodies used for immunoblotting were anti-
SIRT6 (1:1000, CST, #12486), anti-IGFBP2 (1:1000, Abcam, ab109284), anti-
H3K4me3 (1:2500, Abcam, ab1012), anti-H3K9ac (1:1000, Abcam, Ab10812), anti-
H3K27ac (1:1000, Abcam, ab4729), anti-H3K56ac (1:1000, Abcam, ab76307), anti-
p-IGF-1R (1:200, Cell Signaling, #3918), anti-IGF-1R (1:1000, Cell Signaling,
#3027), anti-p-AKT (1:1000, Cell Signaling, #4060), anti-AKT (1:1000, Cell Sig-
naling, #9272), anti-p-MEK (1:1000, Cell Signaling, #9121), anti-MEK (1:1000, Cell
Signaling, #2352), anti-p-ERK (1:1000, Cell Signaling, #4370), anti-ERK (1:1000,
Cell Signaling, #9107), anti-KAT1 (1:1000, Santa-Cruz, sc-390562), anti-KAT2B
(1:1000, Santa-Cruz, sc-13124), anti-GAPDH (1:1000, Santa-Cruz, sc-32233), anti-
b-Actin (1:1000, Sigma, A5441), and anti-Vinculin (1:1000, Sigma, V9131).
Uncropped western blots can be found in Supplementary Fig. 12.

Compounds. Dabrafenib (#S2807), Vemurafenib (#S1267), Trametinib (#S2673),
and Linsitinib (OSI-906) (#S1091) were purchased from Selleck Chemicals.

Cell proliferation, apoptosis, and DNA damage assays. For short-term assays,
cells were seeded in 24-well plates (2 × 104 cells per well), allowed to adhere
overnight and then incubated with media containing dabrafenib or dabrafenib+
trametinib. After 72 h, the number of cells or the percentage of confluency were
determined using the Countess II FL from Life technologies or the IncuCyte
ZOOM from Essen BioScience respectively. For long-term assays, cells were seeded
in 6-well plates at low density, allowed to adhere overnight, and cultured in the
absence and/or presence of drugs as indicated. For Annexin V analysis, cells were
stained with annexin-APC (BD Biosciences) and propidium iodide. Samples were
subsequently analyzed on LSR Fortessa apparatus. The alkaline comet assay was
performed as described with modifications64. Cells were treated with DMSO, 2 µM
of BRAFi or 100 nM BRAFi+ 1 nM MEKi for 4 days. 1 × 105 cells were trypsinized
and diluted in 100 µL of 0.5% low melting point agarose and placed over pre-coated
agarose slide. Cells were then lysed (2.5 M NaCl, 100 mM EDTA, 10 mM Tris, pH
10, 1% Triton, and 10% DMSO) for 24 h at 4 °C, incubated in electrophoresis
buffer (300 mM NaOH, pH 13, 1 mM EDTA) for 30 min and subjected to elec-
trophoresis in the dark for 25 min at 25 V. Slides were neutralized three times with
Tris buffer (0.4 M Tris, pH 7.5) for 5 min each, dried with 100% ethanol and
stained with ethidium bromide (20 µg/mL). Cells were analyzed in Nikon Eclipse ®
microscope and ≥100 random cells per slide were analyzed using CellProfiler
software. Cell images were segmented using a pixel intensity of 0.5 as threshold to
generate masks matching the nucleoid. The comet tail was calculated subtracting
the nucleoid-integrated intensity from the comet-integrated intensity. For each
sample, a positive control with cells treated with Hydrogen peroxide (H2O2) (100
µM for 30 min at 25 °C) was analyzed concurrently. Experimental analysis was
performed in a blinded fashion.

Xenograft model. All studies and procedures involving mice were performed
following Massachusetts General Hospital IACUC guidelines. Six-week-old female
athymic mice (NCrnu/nu) were purchased from Taconic farms. Animals were
allowed for a 1 week adaptation period upon arrival. For the vemurafenib sensi-
tivity experiment, L-C-B, S6.2–7, and S4.1-1 cells (2 × 106 in 0.2 mL of basal culture
medium) were injected subcutaneously in the right lateral flank. Tumor dimen-
sions were measured with calipers and volumes were calculated using the following
formula:(D × d2)/2, in which D represents the large diameter of the tumor, and d
represents the small diameter of the tumor. When tumor volumes reached 80–120
mm3, animals were randomly assigned to two groups, which were administered
vemurafenib diet or control diet by the Research Randomizer at http://www.
randomizer.org. Vemurafenib diet (5.67 g/kg body weight to achieve a 100 mg/kg
body weight daily dose) and control diet were prepared at Harlan Laboratories
(Madison, WI). For the vemurafenib and linsitinib combination experiment,
S6.2–7 cells (2 × 106 in 0.2 mL of basal culture medium) were injected sub-
cutaneously in the right lateral flank. When tumor volume reached 80–120 mm3,
animals was randomly assigned to four groups, which were administered control
diet, vemurafenib diet, control diet plus linsitinib, and vemurafenib diet plus lin-
sitinib. Linsitinib (purchased from Selleck Chemicals) was prepared as 10 mg/mL
in a 25 mM tartaric acid solution and administered (50 mg/kg for the first 2 days,
and 25 mg/kg for the rest) by oral gavage once daily. Animals were monitored over
a 14-day period and were killed when the tumor size reached 1.5 cm in any
dimension. For the tumor growth experiment in Supplementary Fig. 6c, S6.2–7 and
S6.1-1 cells (2 × 106 in 0.2 mL of basal culture medium) were injected sub-
cutaneously in the right lateral flank. Tumor dimensions were measured for
27 days.
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RNA extraction, RNA-seq, and qRT-PCR. Total RNA was extracted using RNeasy
Mini Kit (Qiagen). RNA for sequencing was processed into Poly A libraries
(Illumina). Reverse transcription was performed with First-strand cDNA Synthesis
(OriGene). qPCR reactions were performed in triplicate on CFX384 TouchTM
(BioRad) using FastStart Universal SYBR Green Master (Roche). cDNA expression
was normalized to GAPDH or B-actin levels. Each qPCR was performed on three
independent biological replicates. Primer sequences can be found in Supplemen-
tary Data 6.

RNA-sequencing analysis. Libraries were sequenced on Illumina HiSeq2500 (~50
M reads, 100nt single end). Reads were aligned to the GRCh37/hg19 using STAR
(version v2.4.1c)65. Transcriptome assemblies and differential expression ratios
were performed using featureCount: subread 1.4.6-p2 and voom-limma: 3.26.966,67.
Genes were selected as following in all conditions: log2 Fold Change ≤−1 or ≥1;
and nominal P-value of P value ≤ 0.05. Box plots and Volcano plots were generated
using Prism 6 software (GraphPad Software).

GO analysis. GO terms were obtained using Enrichr68. Combined score of top
categories is shown for all plots.

ChIP-sequencing analysis. Chromatin for native ChIP of histone modifications
was digested with Micrococcal nuclease (MNase) and immunoprecipitated as
described69. For SIRT6, 40 × 106cells (L-C-B and SIRT6.2–7) were crosslinked with
0.4% PFA for 10 min at RT. ChIP was performed as described70. Immunopreci-
pitations were performed with 10 µg of specific antibodies anti-SIRT6 (Abcam,
Ab62739), anti-H3K4me1 (Abcam, ab8895), anti-H3K4me3 (Abcam, ab1012),
anti-H3K9ac (Abcam, Ab10812), anti-H3K27ac (Abcam, ab4729), and anti-
H3K56ac (Abcam, ab76307). Sequencing libraries were generated and barcoded for
multiplexing as described69. Libraries were sequenced on NextSeq500 (50–75 bp
single-end reads). Reads were trimmed for Illumina adapter sequences using in-
house scripts and aligned to the GRCh37/hg19 using Bowtie (version 0.12.7) with
parameters -l 65 -n 2 -S -best -k 1 -m 20. SIRT6 significant peaks were identified
using MACS2 (version 2.1.1.2) and matching Input control was used to call peaks.
Coverage tracks were generated from BAM files using deepTools (version 2.4.1)
bamCoverage with parameters -normalizeUsingRPKM -binsize 10. Differential
ChIP-seq-binding profiles for the histone marks H3K9ac and H3K56ac between L-
C-B and SIRT6.2–7 cells were found by using MACS2 bdgdiff (parameters: -l 100
–g 100 or –l 250 –g 250 for H3K9ac and H3K56ac, respectively).

ATAC sequencing. All ATAC-seq libraries were prepared essentially as previously
described with modifications71. Briefly, 50 K cells were resuspended in 1 mL of cold
ATAC-seq resuspension buffer (RSB; 10 mM Tris-HCl pH 7.4, 10 mM NaCl, and
3 mM MgCl2 in water). After centrifugation, cell pellets were resuspended in 50 µL
of ATAC-seq RSB containing 0.1% NP40, 0.1% Tween-20, and 0.01% digitonin.
This cell lysis reaction was incubated on ice for 3 min. Nuclei were isolated using 1
mL of ATAC-seq RSB containing 0.1% Tween-20 (without NP40 or digitonin) and
centrifugation. Nuclei were resuspended in 50 μL of transposition mix (25 μL 2 ×
TD buffer71, 2.5 μL transposase72 (100 nM final), 16.5 μL PBS, 0.5 μL 1% digitonin,
0.5 μL 10% Tween-20, and 5 μL water). Transposition reactions were incubated at
37 °C for 30 min in a thermomixer with shaking. Reactions were cleaned up with
Qiagen miniElute PCR Purification columns. ATAC-seq libraries were PCR-
amplified with 5 to 7 cycles, size selected (100–800 bp), and purified using XPure
magnetic beads17. Libraries were sequenced on NextSeq500 (75 bp paired-end
reads).

ATAC sequencing analysis. Reads were aligned to the GRCh37/hg19 using
Bowtie2 (version 2.1.0) with parameters –X 200073. Bam files were processed
(samtools version 1.6) by removing reads that: (1) aligned to the mitochondrial
genome, (2) did not aligned to the nuclear genome, (3) with quality value Q < 30,
and (4) were PCR duplicates (picard-tools-1.107). Significant peaks were called on
merged bam files from all samples, using MACS2 call peaks (version 2.1.1.2) with
parameters –nomodel –nolambda –keepdup all –slocal 10000. Peaks intersecting
blacklisted regions were removed. Top 100 K peaks based on –LOG10qValue
(MACS2) were considered for downstream analyses. Data was normalized by the
total reads in peaks in TSS of coding genes (Gencode V19) (bedtools v2.17.0).
Normalized coverage tracks were generated using deepTools bamCoverage (version
2.4.1) with parameters –scaleFactor (as determined by normalization) –skipNon-
CoveredRegions –binsize 10. Peaks with FC > 2 and FC < 0.5 in read counts were
considered differential74.

Reverse phase protein array. Cellular proteins were denatured by 1% SDS (with
Beta-mercaptoethanol) and diluted in five twofold serial dilutions in dilution lysis
buffer. Serial diluted lysates were arrayed on nitrocellulose-coated slides (Grace Bio
Lab) by Aushon 2470 Arrayer (Aushon BioSystems). Total 5808 array spots were
arranged on each slide including the spots corresponding to serial diluted: (1)
Standard Lysates; (2) positive and negative controls prepared from mixed cell
lysates or dilution buffer, respectively. Each slide was probed with a validated
primary antibody plus a biotin-conjugated secondary antibody. Only antibodies

with a Pearson correlation coefficient between RPPA and western blotting of >0.7
were used for RPPA. Antibodies with a single or dominant band on western
blotting were further assessed by direct comparison to RPPA using cell lines with
differential protein expression or modulated with ligands/inhibitors or siRNA for
phospho- or structural proteins, respectively. The signal obtained was amplified
using a Dako Cytomation–Catalyzed system (Dako) and visualized by DAB col-
orimetric reaction. The slides were scanned, analyzed, and quantified using a
customized-software to generate spot intensity. Each dilution curve was fitted with
a logistic model; Supercurve Fitting developed by the Department of Bioinfor-
matics and Computational Biology in MD Anderson Cancer Center, http://
bioinformatics.mdanderson.org/OOMPA. This fits a single curve using all the
samples (i.e., dilution series) on a slide with the signal intensity as the response
variable and the dilution steps are independent variable. The fitted curve is plotted
with the signal intensities—both observed and fitted—on the y-axis and the log2-
concentration of proteins on the x-axis for diagnostic purposes. The protein
concentrations of each set of slides were then normalized for protein loading.
Correction factor was calculated by: (1) median-centering across samples of all
antibody experiments; and (2) median-centering across antibodies for each sample.
The heatmap was generated using Cluster 3.0 and visualized in Treeview.

Patient samples and IHC. Formalin-fixed paraffin-embedded (FFPE) tissue sec-
tions of non-BRAF or BRAFV600E/K mutant primary tumors and metastatic
resections were obtained from Mount Sinai Hospital Department of Pathology,
Dermatopathology Division. The Institutional Review Board at the Icahn School of
Medicine at Mount Sinai approved this study (project number HSD08-00565).
Formalin-fixed paraffin-embedded (FFPE) tissue sections collected to evaluate
IGFBP2, as well as clinical information from patients 1–5 were obtained under the
auspices of the Treat Excise Analyze for Melanoma (TEAM) study at the Mela-
noma Institute Australia (Royal Prince Alfred Hospital Research Ethics Committee
Protocol No. X15-0418/X10-0305 and HREC/10/RPAH/539). Written consent was
obtained from all patients under approved Human Research ethics committee
protocols (above). Slides containing FFPE tissue sections were manually depar-
affinized through xylene and graded ethanol washes. After heat-induced epitope
retrieval with citrate buffer (pH 6.0), the samples were incubated with anti-IGFBP2
antibody (1:100, Abcam, Ab109284) or anti-SIRT6 antibody (1:200, Cell Signaling,
#12486) overnight followed by incubation with a universal secondary antibody
(ImmPRESSTM HRP REAGENT KIT Vector #MP-7500) for 20 min. Detection was
performed using nova red for 8 min and the slides were counterstained with
hematoxylin. All tissues were analyzed in a blinded fashion by two pathologists
(R.S. and M.S.G).

Data availability. The raw and processed sequencing data reported in this paper
has been deposited in the GEO with the following accession number: GSE102813
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102813). All other
remaining data are available within the Article and Supplementary Files, or
available from the authors upon request.
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