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Introduction

Sirtuins (SIRT1–SIRT7) belong to the family of histone 

deacetylases. These enzymes modulate the properties and 

functions of proteins (e.g. histones, kinases, and transcrip-

tion factors-TFs) [1, 2] by removing acetyl groups post-

translationally attached to their lysine residues by acetyl-

transferases. Sirtuins are class III HDACs and differ from 

other classes in that they require NAD+ for their activity. 

This feature couples sirtuin activity to the cellular meta-

bolic status [3], in turn allowing these enzymes to modulate 

the crucial proteins of the electron transport chain (ETC), 

stress response, and life/death signaling. Some sirtuins also 

possess additional enzymatic activities such as mono(ADP-

ribosyl)ation (SIRT3, SIRT4, SIRT6), the ability to remove 

a wide array of other lysine modifications (e.g. desucci-

nylation and demalonylation—SIRT5; decrotonylation—

SIRT1–3), and/or lack detectable deacetylation capability 

(SIRT4) [1, 2]. Sirtuins are engaged in cross-talk with a 

wide spectrum of transcription factors, including forkhead 

box subgroup O (FOXOs), p53, and NF-κB, and with pro-

teins engaged in DNA repair such as DNA-dependent pro-

tein kinase (DNA-PK) [1, 4]. The versatile and ubiquitous 

family of poly(ADP-ribose) polymerases (PARPs) shares 

the feature of NAD+-dependence with sirtuins; the two 

classes of enzymes compete for the substrate and interact in 

numerous ways, influencing a very broad range of cellular 

functions [1, 4]. Sirtuins display complex cellular locali-

zation in the cytoplasm, nucleus, and mitochondria [2]. 

All sirtuins are present in the brain in a highly regulated, 
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spatiotemporal pattern and may influence the course of 

aging and pathological changes [4, 5].

Sirtuins and Their Roles in Mitochondria: 
Biogenesis, Energy Production, and Survival/
Death Signaling

The presence of sirtuins (SIRT3, 4, 5) in mitochondria 

appears to undergo precise regulation. The exact localiza-

tion of SIRT3 seems to be species-specific; human SIRT3 

is a mitochondrial matrix protein, but its mouse ortholog 

resides in the inner membrane [6, 7]. SIRT4 and SIRT-5 

are also present in the mitochondrial matrix. Human SIRT5 

has an additional membrane insertion sequence; its mito-

chondrial presence depends on the isoform [8]. Mitochon-

drial localization of sirtuins is mutually interdependent. 

It is proposed that SIRT3 is present in mitochondria only 

when the expression of SIRT5 is low [9]. This scattered 

evidence suggests the possibility of a complex network of 

regulation for the level and localization of various sirtuins. 

The results published thus far point to the involvement of 

sirtuins in the regulation of mitochondrial turnover, fusion 

and fission, and of mitochondrial cell death signaling. Sir-

tuins also influence mitochondrial respiratory machinery 

and ROS production in multiple tissues (Fig.  1). Impor-

tantly, the significance of mitochondrial regulation for CNS 

homeostasis extends well beyond brain neurons, as they are 

extremely sensitive to the effects of metabolic deregulation 

in the periphery (with the arginine/urea metabolism being 

an example of a sirtuin-dependent pathway strongly linked 

to neurodegenerative conditions). SIRT3 can also enhance 

via FOXO3 the expression of antioxidant enzymes includ-

ing the mitochondrial manganese superoxide dismutase 

(Mn-SOD), peroxiredoxins, or thioredoxin 2 [10, 11].

SIRT1, mainly a nuclear enzyme, can be also present 

in mitochondria [12]. Moreover, it has been shown to be 

engaged in mitochondrial biogenesis [13–15]; reviewed 

in [12, 16]. Exercise training increases SIRT1 mRNA 

level and the amount of mtDNA indicating intensified 

mitogenesis in most brain regions, with potential cogni-

tive significance [15]. SIRT1 seems to exert this beneficial 

influence via peroxisome proliferator-activated receptor γ 

co-activator-1α (PGC-1α) [17]. PGC-1α is a crucial regula-

tor of mitochondrial biogenesis and energy metabolism [18, 

19]. PGC-1α is also engaged in antioxidant defense, for 

example via regulation of Mn-SOD and glutathione peroxi-

dase [20]. Impaired PGC-1α function may contribute to the 

pathogenesis of neurodegenerative diseases such as Alzhei-

mer’s and Parkinson’s (AD and PD, respectively), Hunting-

ton’s disease, or ischemic damage [21–24]. SIRT3 is also 

involved in the regulation of mitochondrial biogenesis in a 

manner mediated by its target FOXO3 and Parkin. SIRT3 

activates FOXO3a and its target PTEN-induced kinase-1 

(PINK-1), a protein known to modulate the cellular redox 

status and mitochondrial function. PINK-1 in turn enhances 

Parkin activity, potentiating the fusion of mitochondria and 

mitophagy [25]. SIRT3 overexpression has led to a sig-

nificant increase in cellular mtDNA content, while shRNA 

against SIRT3 has reduced the PGC-1α-mediated rise of 

mtDNA [26].

The influence of sirtuins on the energy metabolism 

may also come from their direct interactions with the 

respiratory machinery (Fig.  1). SIRT3 regulates pyru-

vate dehydrogenase that is acetylated by the acetyl-CoA 

acetyltransferase 1 (ACAT1); acetylation/deacetylation 

status of the dehydrogenase is important for the regula-

tion of glycolysis in cancer cells [27]. Moreover, SIRT3 

Fig. 1  Mitochondrial targets of sirtuin signalling. Depending on the 

organ and cell type, sirtuins may affect multiple stages of glucose-

based energy metabolism, the production of ketone bodies, glutamate 

usage, or arginine, citrulline, and polyamine biosynthesis. While 

numerous metabolites have direct roles in the CNS, others not pro-

duced locally, may dramatically impact brain health (as in the case of 

e.g. urea cycle, which is typically incomplete in the central neurons, 

but its deregulation in peripheral tissues leads to neurodegeneration 

in the CNS). According to [40], modified
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deacetylates and stimulates isocitrate dehydrogenase 2, 

an enzyme of the tricarboxylic acid cycle [28]. Complex I 

constituent, NADH dehydrogenase 1α subcomplex subu-

nit 9 is deacetylated and activated by SIRT3 [29]. SIRT1 

has been shown to enhance the function of complex I in 

insulin-resistant cells, possibly via SIRT3. Overexpres-

sion of SIRT1 attenuated high-fat diet-induced insulin 

resistance in the skeletal muscle, and restored the levels 

of SIRT3, mitochondrial antioxidant enzymes and DNA 

[30]. The part of complex II, succinate dehydrogenase 

subunit A is also suggested as a SIRT3 substrate [31]. 

Thus, sirtuins appear to influence several stages of energy 

metabolism. SIRT4 generally falls in the same scenario. 

Loss of its expression in several cell types (hepatocytes, 

muscle) leads to lower ATP production. SIRT4 has been 

implicated in the regulation of mitochondrial uncoupling. 

It is also involved in signaling to the nucleus via AMPK, 

PGC1α and acetyl-CoA carboxylase, which adjusts mito-

chondrial ATP production to the energetic demands of 

the cell [32]. SIRT5, too, has been found to be linked to 

AMPK, PGC1α and mitochondrial ATP generation [33].

Mitochondrial sirtuins are involved in the usage of alter-

native energy sources. The change of energetic substrates 

is accomplished in hepatocytes by SIRT3 through deacety-

lation of acyl-CoA dehydrogenases, glutamate dehydroge-

nase, and the mitochondrial acetyl-CoA synthetase [34–

36]. These activities allow sustained energy production in 

the conditions of disturbed supply of the basal substrates. 

SIRT4 has been found to shift the balance in lipid usage 

from fatty acid oxidation towards lipid anabolism, by inhib-

iting malonyl-CoA decarboxylase [37]. Mitochondrial lipid 

metabolism can be also affected by SIRT5 via its desuccin-

ylase activity directed towards liver mitochondrial proteins 

engaged in β-oxidation and ketogenesis [38]. SIRT5 might 

also influence other aspects of mitochondrial energy pro-

duction such as the tricarboxylic acid cycle [39].

Besides the ATP generation, SIRT5 regulates the detoxi-

cation of ammonia. Through deacetylation, SIRT5 acti-

vates the carbamoyl phosphate synthase 1, intensifying the 

conversion of ammonia into carbamyl phosphate and then 

citrulline, which is metabolized in the urea cycle (Fig.  1; 

[40]).

Sirtuins exert their influence on the antioxidative 

defenses in mitochondria. While PGC-1α is induced by 

SIRT1 in rat hippocampus [41], Kong et  al. [26] have 

shown that SIRT3 is an important mediator of the PGC-1α-

dependent induction of SOD2 and glutathione peroxidase-1 

(in skeletal muscle cells). A number of articles confirmed 

the role of SIRT3 in the positive regulation of the level and 

activity of MnSOD in various tissues [42–44]. SIRT3 also 

plays a role in the mitochondrial unfolded protein response, 

which is activated to cope with oxidatively damaged pro-

teins [45].

Sirtuins have been shown to be involved in the regula-

tion of mitochondrial membrane permeability. In cardiac 

muscle, SIRT3 deacetylates mitochondrial protein cyclo-

philin D, which is a regulatory component of the perme-

ability transition pore (mPTP) [46]. SIRT5 deacetylates 

cytochrome c in vitro [47]. However, the outcome of these 

phenomena is unclear.

Sirtuins in Aging

The emerging involvement of sirtuins and their targets in 

the longevity effects of caloric restriction (CR) may be 

an excellent recapitulation of their roles in the organism’s 

struggle to control and counter stress and macromolecular 

damage [48]. Sirtuins are bi-directionally linked to the sign-

aling pathways of insulin and insulin-like growth factor-I 

(IGF-I), collectively termed IIS (insulin/IGF signaling). 

IGF-I increases SIRT1 expression via JNK1 (c-Jun N-ter-

minal kinase 1 [49]). In turn, SIRT1 and SIRT2 restore the 

activity of the IGF/insulin receptor target Akt, and SIRT1 

supports the IIS signal by deacetylation of insulin recep-

tor substrate 2 (IRS-2). However, SIRT1 and SIRT6 could 

also suppress the expression of IGF, its receptor, and IIS-

dependent genes in some circumstances [49]. IIS plays 

highly regulated, important roles in the CNS. IGF-I syn-

thesis declines in old organisms, weakening IGF’s trophic 

action and most probably causing a significant proportion 

of observed age-related disturbances in brain function 

[50–52].

Despite the generally trophic role of IGF-I the IIS path-

way turns out to be a crucial element of longevity-inhib-

iting signaling [53]. In invertebrate models of aging, IIS-

dependent suppression of FOXO ortholog (DAF-16) is 

relieved in conditions of stress such as oxidative damage, 

starvation, or CR. This de-repression leads to the activation 

of DAF-16/FOXO-responsive genes, enhancing the resist-

ance to broad range of stress conditions [54–57].

Data obtained in vertebrates also suggest the involve-

ment of IIS in the modulation of stress resistance and, pos-

sibly, longevity [53, 58–60]. The effect was dependent on 

neuronal action of IIS [61, 62]. However, the matter is still 

not fully settled suggesting that the much higher complex-

ity and redundancy of IIS in mammals requires far more in-

depth analysis [63, 64].Significant side-effects of reduced 

IIS also complicate the matters [65–67].

Sirtuins appear to be involved in the longevity-modulat-

ing role of IIS; the impact of SIRT1 on long-term survival 

occurs again through signaling events in specific regions of 

the CNS [68]. SIRT1 also appears to be involved in the role 

of IIS in the CR, but sirtuins might also affect the calorie 

intake itself—again, through the influence on FOXO [54, 

69]. A drop in hippocampal SIRT1 level or activity (Fig. 2) 
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has been noted in the aged rat brain, although the results 

are inconsistent with some works showing reduced activity 

despite elevated protein [70, 71].

The expression of SIRT3-SIRT7 undergoes changes in 

the aging brain in a region-specific manner (Fig.  2; [71, 

72]). Single-nucleotide polymorphisms in SIRT3, SIRT5 

and SIRT6 genes have been noted to correlate with human 

lifespan [73].

The potential role for SIRT2 in aging is suggested by the 

association found between human longevity and a polymor-

phism in the probable regulatory elements of its gene [74]. 

Isoform-/region-specific increase of brain SIRT2 content 

has been observed during aging in mice and rats [71, 75]. 

Deacetylation by SIRT2 of the life-span modulating cell 

cycle checkpoint kinase BubR1 has been shown to preserve 

its cellular levels while loss of BubR1 is observed in aging 

muscle due to NAD+ decline [76, 77]. This makes SIRT2 a 

good candidate for another longevity modulator although it 

does not seem to be the sole BubR1 regulating factor [78].

SIRT3 single nucleotide polymorphism also seems to 

associate with human longevity [79, 80], although the 

data still needs further elaboration [81]. SIRT3 reacts to 

nutritional status and has been shown to mediate some of 

the beneficial effects of CR, including many of the CR-

induced transcriptional changes in numerous tissues [28, 

82, 83]. SIRT3 is increasingly viewed as a modulator of 

metabolic adaptation to caloric restriction, making it a 

promising target [84]. Its protein expression changes in a 

number of mouse peripheral organs during aging, includ-

ing mouse hematopoietic stem cells where its decrease lim-

its their regenerative potential [85, 86]. Intense oxidative 

stress reduces SIRT3 in human mesenchymal stromal/stem 

cells, which renders them more vulnerable as SIRT3 sup-

ports the activity of the catalase-SOD ensemble [87, 88]. 

Disturbances in the SIRT3 role as an important free radi-

cal defense supporter also appear to contribute to aging of 

the central auditory system [89]. Moreover, the repertoire 

of SIRT3 interacting partners suggest further aspects of 

its role in longevity. Deacetylation by SIRT3 supports the 

stability and activity of 8-oxoguanine-DNA glycosylase-1 

(OGG1), a base excision DNA repair enzyme. This protects 

mtDNA against accumulation of the mutagenic damage 

product 8-oxoguanine [90]. SIRT3 also deacetylates DNA 

repair regulator Ku70 [91]. In addition, SIRT3 binds the 

heat shock protein HSP70 and causes its increased nuclear 

presence [92]. These interactions are potentially linked to 

the mechanisms of age-related neurodegeneration.

Corresponding with SIRT6 role in glucose metabolism 

and IGF-I homeostasis, results have been obtained sug-

gesting its involvement in CR [93, 94]. Animal models 

provide somewhat conflicting results on SIRT6 levels dur-

ing aging [95–97]; some of the age dependency may be 

explained by the regulatory loop that links SIRT6 with the 

age-modulated microRNA miR-766 [98]. The potential 

engagement of SIRT6 disturbances in the aging process 

is otherwise among the best documented. Suppression of 

SIRT6 protein levels mediates premature senescence-like 

phenotype in cells under H2O2-induced oxidative stress 

[99]. Premature cell senescence in Hutchinson–Gilford 

progeria syndrome (HGPS) and chronic obstructive pul-

monary disease is linked with lower SIRT6 expression; its 

restoration remedies a number of senescence-linked traits, 

in the latter case through modulation of IIS–mTor signal-

ing [100, 101]. The restoration of falling SIRT6 levels 

also rescues the diminished efficiency of DNA base exci-

sion repair in human foreskin fibroblasts from aged donors 

[102]. Likewise, in the aged brain diminished SIRT6 bind-

ing could lead to genomic instability [103]. In turn, some 
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Fig. 2  Changes in the protein levels of various sirtuins in the aged rat 

brain. The influence of physiological brain aging on the protein levels 

of various sirtuins in the rodent model. 24 months old rats are com-

pared to adults (3 months old). Predominant cellular localizations of 

sirtuin proteins are marked in hippocampus and cerebral cortex. ±No 

change. *Increased protein but lower activity [71]. 1Change observed 

only in the occipital but not frontal or temporal lobes of the cerebral 

cortex. 2Only in frontal but not occipital or temporal lobe
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peripheral tissues display an age-related rise of SIRT6; its 

inhibition by physical exercise improved oxidative damage 

resistance in muscle [96]. SIRT6−/− mice develop (possi-

bly IGF-I-linked) progeroid-like phenotype, while SIRT6 

overexpression supports male longevity in mice which 

is accompanied by a reduction in serum IGF-I, dramatic 

increase in the expression of IGF-binding protein-1 mRNA, 

and changed phosphorylation levels of Akt and FOXO1 

[104, 105]. Moreover, SIRT6 binds c-Jun and inhibits its 

IGF-dependent transcriptional activity [106]. Analysis of 

SIRT6 interactions (PARP-1, DNA-PK catalytic subunit, 

other DNA repair proteins, histones) also supports its role 

in aging, probably through the regulation of chromatin 

assembly state to facilitate DNA repair in a way somewhat 

reminiscent of the role of its partner PARP-1 [107]. SIRT6 

localizes early to double-strand DNA breaks and is needed 

for their efficient removal via both pathways: homologous 

recombination (HR) and non-homologous end-joining 

(NHEJ) [108, 109]. The mentioned drop in SIRT6 expres-

sion during cellular senescence is accompanied by HR 

deficiency and SIRT6 overexpression largely rescued this 

phenotype [110]. Cells deficient in SIRT6 enzymatic activ-

ity display defects in base excision DNA repair, increased 

sensitivity to ionizing radiation (but not UV) and multi-

ple chromosomal aberrations though the results clearly 

need further elucidation [104]. The links between SIRT6, 

DNA repair, and aging also extend to telomere mainte-

nance. SIRT6 localizes to telomeric chromatin and facili-

tates the binding of Werner syndrome (WS) protein (WRN) 

there. WRN is a DNA helicase crucial for genome stabil-

ity, mutated in the WS. SIRT6 deficiency leads to replica-

tive senescence and telomere dysfunction resembling the 

pathology seen in WS [111].

The engagement of SIRT6 in the mitigation of aging 

and oxidative stress also occurs through its interactions 

with several crucial pathways of transcriptional regula-

tion. SIRT6 has been found to support the transactivation 

of anti-oxidant genes by nuclear factor erythroid 2-related 

factor 2 (NRF-2). SIRT-6 deficiency has led to oxidative 

stress and accelerated decay of human mesenchymal stem 

cells [112]. NF-κB, another SIRT6 partner, potentially 

belongs to the crucial modulators of age-related pheno-

types [113]. The interaction of SIRT6 with NF-κB subunit 

RelA recruits SIRT6 to NF-κB target sequences and allows 

it to repress promoter activities; many of these belong to 

a group of genes that show increased expression with age 

[113, 114]. Experimental SIRT6 deficiency led to hypera-

cetylation of histones bound to NF-κB target promoters. 

This increased the activity of these promoters, augmenting 

NF-κB-dependent cellular senescence. This role of NF-κB 

has been confirmed in vivo [114]. Hypoxia-inducible fac-

tor (HIF) transcription factors are another family of SIRT6 

(and SIRT1) interaction partners. The vast significance of 

HIFs for the regulation of oxygen + glucose/lactate metabo-

lism suggests their engagement of in the course of aging. 

In invertebrates HIF-related modulation of the lifespan has 

been shown, though conflicting views exist whether the 

pathway is separate from CR- and IGF-dependent longev-

ity modulation [115, 116]. The above mentioned data and 

the shortened lifespan of SIRT6-deficient rodents (accom-

panied by disturbed glucose metabolism) [117] suggest 

that SIRT-HIF cross-talk might potentially be also engaged 

in vertebrate longevity. It is known that SIRT1 can inhibit 

HIF1 and activate HIF2, and that SIRT6 may be a co-

repressor for HIF-1α [117–119]. HIF transactivation tar-

gets include genes with known neuroprotective influence, 

although their role in neurodegeneration is still ambiguous 

[120, 121].

Sirt7 has been recently noted to support the regenerative 

potential hematopoietic stem cells via regulation of mito-

chondrial stress signaling [122]. Its numerous interactions 

with enzymes of nucleic acid metabolism strengthen the 

possible association with life-long maintenance, necessitat-

ing further research in the topic [107].

The signaling targets of sirtuin-regulated FOXOs with 

potential anti-aging significance are still rather unclear; 

candidates include thioredoxin-interacting protein (Txnip), 

which is repressed by FOXO1a [123]. Txnip1 suppresses 

the stress response, correlates negatively with longevity 

and is viewed as a SIRT1 antagonist [124, 125]. FOXOs 

also target microRNAs that might modulate stress resist-

ance and long-lived dormant invertebrate developmen-

tal states [126]. Several other TFs have been suggested as 

mediators of the pro-longevity SIRT1 action, but their sig-

nificance needs further elucidation [127].

Sirtuins in Neurodegeneration 
and Neuroprotection

Sirtuins in AD

A number of works have shown the potential role of sir-

tuins in AD (Fig. 3) and other neurodegenerative disorders. 

The reduction of SIRT1 and SIRT3 mRNA/protein levels 

observed in AD brain correlates with the stage/duration of 

the disease [128, 129], and can be mimcked in vitro by the 

influence of Aβ25-35 on SIRT1 [130]. In turn, up-regulation 

of SIRT3 mRNA that followed the spatial and temporal 

profiles of Aβ accumulation has been shown in mice, and 

higher SIRT3 mRNA was observed in the temporal cor-

tex of AD cases (Braak tangle stage III–VI, average age 

82.5 ± 2.3) [131]. SIRT5 is induced in activated microglia 

of AD brains [129]. In  vitro Aβ1-42 treatment also led to 

increased SIRT-3, -4, and -5 [132]. However, overexpres-

sion of APP and presenilin 1 has led to reduction in SIRT3 
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mRNA and protein in a mouse model, suggesting more 

complex relations [133].

It has been reported that SIRT1 shifts the balance 

between amyloidogenic and non-amyloidogenic process-

ing of APP in vitro and in transgenic mouse models [134]. 

SIRT1 up-regulates the α-secretase ADAM10, and through 

inhibition of NF-κB down-regulates the expression of the 

β-secretase β-site AβPP-cleaving enzyme 1 (BACE1) 

(Fig.  4; [135–141]). Moreover, Aβ degradation via 

autophagy may also be dependent on SIRT1 [142]. Thus, 

SIRT1 appears to reduce the levels of Aβ, oxidative stress 

and the resulting neuronal loss [139]. Activation or over-

expression of SIRT1 is also reported to interfere with Aβ 

toxicity mediated by microglia through its ability to inhibit 

NF-κB signaling [143, 144, 148]. SIRT1 might also protect 

against synapse loss, a more subtle and earlier effect of Aβ 

pathology [139]. In turn, small-molecule SIRT2 inhibitors 

3-(1-azepanylsulfonyl)-N-(3-bromphenyl) benzamide (AK-

7) and 2-cyano-3-[5-(2,5-dichlorophenyl)-2-furanyl]-N-5-

quinolinyl-2-propenamide (AGK2) have shifted the balance 

between α- and β-secretase reducing the Aβ load and led 

to cognitive improvement in two transgenic mouse models 

[145]. AGK-2 also reduced glial activation by Aβ1-42 [144]. 

Thus, SIRT1 and SIRT2 seem to influence the APP cleav-

age in approximately opposing ways.

Less data is available for other sirtuins. It has been found 

that short-term treatment with extracellular Aβ1-42 oligom-

ers enhanced the expression of SIRT4 gene but prolonged 

treatment affected all three mitochondrial isoforms (SIRT3 

to SIRT5), suggesting that links between APP/Aβ and 

SIRTs might be more complex, possibly reciprocal [132].

Intracellular accumulation of pathologically modified 

microtubule associated protein tau may be another highly 

promising target in AD research and therapy [146]. Sirtuins 

mediate the leptin-dependent inhibition of tau phospho-

rylation [147]. SIRT1also removes acetyl groups from tau, 

thus relieving the p300-mediated inhibition of phospho-tau 

degradation [148]. Manipulations of sirtuin activity could 

therefore influence tau, potentially changing the number of 

neurofibrillary tangles (NFT) [149, 150]. Moreover, SIRT1 

and tau share common upstream regulation mechanism, as 

both are targets of microRNA-132 [151] and of ademosine 

monophosphate-activated kinase (AMPK, which leads to 

the inhibition of the crucial tau kinase GSK-3β, and mod-

ulates SIRT1 signaling in a complex manner) [152–154]. 

These might contribute to the observed inverse correlation 

between abnormal tau deposition and SIRT1 mRNA and 

protein levels in AD [128].

Besides Aβ and tau, the two crucial elements of molecu-

lar AD pathology, sirtuin signaling is able to influence path-

ways engaged in neuroprotection and brain tissue renewal. 

The SIRT1/retinoic acid receptor β target ADAM10 not 

only cleaves APP but also induces Notch receptor cleavage 

[155]. The release of Notch intracellular domain activates 

the transcription of neurogenesis-related genes, and Notch 

pathway has been shown to be a necessary element of neu-

rogenesis and differentiation of the newly created cells in 

response to pathological insults [156, 157]. Moreover, 

Notch targets include genes crucial for synaptic plasticity, 

learning and memory, and generation of neurites and syn-

apses [155]. Thus, the protection offered by SIRT1 appears 

to be multi-tiered and stem both from Notch activation and 

influences on APP and tau metabolism.
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Fig. 3  Changes in the levels of various sirtuins in the course of AD. 

The influence of AD pathology on the expression levels of various 

sirtuins in the human brain. Predominant cellular localizations of sir-

tuin proteins are marked. ±No change. 1Increased mRNA expression 

observed in the temporal cortex [131]. 2Negative (SIRT1, SIRT3) and 
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with Braak neuropathology staging [129]
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Fig. 4  The significance of SIRT1 in Alzheimer’s disease. SIRT1 

modulates multiple pathways that adjust the metabolism of Aβ to 

keep its levels within physiological limits. The sequence of events 

occurring in AD reduces SIRT1-dependent effects: tau deacetylation, 

inhibition of the NF-κB pathway, and the α-cleavage of APP, leading 

to elevaed Aβ and to intensified pro-inflammatory signaling
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A neuroprotective role of SIRT1 has been also observed 

in prion diseases [158]. Somewhat surprisingly, numerous 

results point to detrimental roles played by SIRT2 in neu-

rodegenerative disorders, and in other pathological condi-

tions. SIRT2 is increased in AD; its knock-out or inhibition 

reduces the cytoskeletal pathology and improves autophagy 

[159]. A meta-analysis has found an association between a 

polymorphism in an intron of SIRT2 gene and AD suscep-

tibility [160].

Sirtuin partners FOXOs and the IIS have vast potential 

significance for AD and other diseases linked to disturbed 

somatic maintenance. The significance of brain IGF-I sign-

aling and its targets for neuronal survival and death is still 

poorly known and appears to be fundamentally different 

from their peripheral roles [161].

IIS has recently become a focus in the research decipher-

ing metabolic disturbances that co-occur with (and possibly 

precede) AD, raising some hopes for the search of early, 

measurable symptoms of developing pathology [162]. IIS 

can suppress Aβ production [163] and resulting tissue dam-

age [164] although its full role in AD is still unclear [165, 

166]. Deeper understanding is necessary as it may become 

an attractive target in the future treatment of AD and PD 

[167]. However, despite the discrepancies IGF-I replace-

ment therapies have been proposed and tested [161, 168].

FOXOs themselves are capable of extensively modulat-

ing protein turnover and oxidative stress, both crucial for 

Aβ/ASN accumulation and toxicity [169]. FOXOs might 

also mediate the inhibition of neuroprotective PI3K/Akt 

signaling by Aβ [170]. These TFs have been thus suggested 

as potential integrating factors in AD metabolic deregu-

lation [171]. The expression of FOXO1 is altered with 

increased AD severity [172]. FOXO3a might also mediate 

the toxic effect of Aβ-dependent inhibition of neuropro-

tective PI3K/Akt signaling [170], and the impact of age 

on FOXO3 has been suggested as a crucial step changing 

relatively benign protein aggregates into neurotoxic Aβ 

deposits [169]. FOXO3a also modulates toxic aggregation 

of ASN [173] and is found in Lewy bodies/Lewy neurites 

[174].

Sirtuins in PD

The course of PD, another neurodegenerative disorder that 

impacts the dopaminergic system also is affected by SIRT 

signaling. SIRT1 displays neuroprotective properties in 

experimental PD models [175, 176]. It was reported that 

oxyresveratrol protected dopaminergic SH-SY5Y cells 

against the toxicity of the Parkinsonian mimetic 6-hydroxy-

dopamine through countering the-down regulation of 

SIRT1. Resveratrol whose functions include activation of 

SIRT1 also offered protection in this model, as well as in 

MPTP-induced mouse Parkinsonism [177, 178]. Moreover, 

genetic variants that result in reduced SIRT1 expression co-

occurred with sporadic PD [179].

SIRT1 might exert its protective effects in PD through 

several pathways linked to general stress resistance and 

more specifically to α-synuclein (ASN) metabolism. The 

activation of PGC-1α, a protein considered a central ele-

ment of oxidative stress resistance, by SIRT1 in response 

to resveratrol may render MPTP-treated mice less prone 

to neurodegeneration [180]. The protective effect of res-

veratrol in a rotenone-induced human neuroblastoma cell 

model of PD has been largely attributed to its ability to 

induce autophagic degradation of ASN via SIRT1 [181]. 

Molecular chaperones may also be valuable targets in pro-

tein misfolding-related diseases; Hsp70 has been found to 

protect against ASN aggregation and toxicity [182, 183]. 

SIRT1 deacetylated the heat shock factor 1 (HSF1) facili-

tating prolonged binding to its target sequence in the gene 

coding for Hsp70. This led to elevated expression of Hsp70 

in stress conditions [184] raising the possibility that HSF1 

and Hsp70 might indeed mediate the protective effect of 

SIRT1 as it does for example in an amyotrophic lateral 

sclerosis model [185].

On the contrary, inhibition of SIRT2 with AK-7 reduces 

MPTP-induced loss of dopaminergic neurons in a mouse 

model [186]. SIRT2 inhibition improves neurological and 

behavioral deficits in a PD model induced by MPTP in old 

mice [187]. siRNA against SIRT2 or its inhibitor AGK2 

block the toxic effect of α-synuclein in a Parkinsonian pri-

mary midbrain culture model (mutant ASN transfection) 

and modifies the pattern of α-synuclein inclusions in cells 

transfected with ASN and its interaction partner synphilin 1 

[188]. SIRT2 inhibition improves neurological and behav-

ioral deficits in a PD model induced by MPTP in old mice 

[187].

SIRT2 inhibition also blocked the apoptosis of an oli-

godendroglial cell line in a model of another ASN-linked 

disorder, multiple system atrophy [189]. Results in cer-

ebral ischemia are less clear [186, 190]. However, SIRT2 

has also been shown to contribute to the pathology of the 

vascular system and to the effects of oxidative stress in the 

endothelium, which have immediate impact on brain oxy-

gen supply [191, 192].

Sirtuins in HD

Huntington’s disease (HD) is an autosomal trinucleotide 

repeat disorder characterized by striatal and cortical neu-

rodegeneration leading to motor and cognitive dysfunc-

tion. The CAG (polyglutamine) expansion affects the open 

reading frame of the HTT gene coding for huntingtin. This 

leads to pathological deposition of huntingtin protein, and 

disruption of gene regulation, metabolic, and signaling 

pathways [193]. Weakened trophic support of neurons and 
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the resulting nuclear accumulation of FOXO3a transcrip-

tion factor might be an important aspect [194]. The role 

of sirtuins in neuronal survival and the known interac-

tions with huntingtin [195] and FOXOs [1] made them a 

plausible research target. However, sirtuins’ role in HD is 

somewhat controversial, likely stemming from their wide, 

pleiotropic spectrum of signaling interactions [193]. Till 

recently, SIRT1 appeared to protect most species from glu-

tamine repeat toxicity, with the notable exception of the 

Drosophila model [193]. Mutant huntingtin reduces SIRT1 

activity, weakening its positive role in neuronal survival. 

It is possible that the structural similarity between mutant 

huntingtin and sirtuin-interacting transcription factors 

might play a role [193]. SIRT1 binds and activates the pro-

moter of brain-derived neurotrophic factor (BDNF); it can 

also augment the expression of crucial genes such as super-

oxide dismutase 2, or mitochondrial biogenesis modulators, 

and can impact Bax signaling via modulation of its bind-

ing to Ku70 [196]. However, evidence for neuroprotective 

influence of selective SIRT1 inhibition in several HD mod-

els including mice has been published in recent years; it has 

been suggested that this approach might augment the clear-

ance of mutant huntingtin [196, 197]. The neuroprotection 

achieved by SIRT2 inhibition is much more consistent with 

the current views on its role [193]. The question of possible 

therapeutic application of sirtuin modulators appears to be 

tough and highly selective approaches seem necessary.

Pharmacological Manipulation of Sirtuin 
Activities for Research and Therapeutic Purposes

A number of pharmacological agents are used to influ-

ence the activity of sirtuins for research purposes [198]. 

HDAC inhibitors display significant level of class specific-

ity: sirtuin inhibitors usually do not affect class I, II or IV 

enzymes, although the selectivity between sirtuins is a fre-

quent issue [199, 200]. Novel indole compounds seems to 

offer good specificity and potency while also offering good 

bioavailability and cell permeability [196]. A new inhibitor 

6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide 

(EX-527) has been shown to be potent and selective towards 

SIRT1 [201]. The inhibitor has been used to investigate the 

role of this isoform in cell physiology and pathology, for 

example in the regulation of inflammatory responses [202, 

203]. In a work on oxidative mitochondrial damage evoked 

by hyperglycemia the SIRT1 inhibitor has been compared 

to the effects of siRNA-mediated SIRT1 knock-down 

[204]. EX-527 has been entered into clinical trials [196]. 

AGK2, an inhibitor selective towards SIRT2 has been used 

in a study to assess the role of this sirtuin in the toxicity 

of α-synuclein, mutant huntingtin, and of SIRT2 in cel-

lular energy metabolism [188, 205, 206]. SIRT2 inhibitor 

AK-7 was also able to offer neuroprotection in a mouse 

HD model [193]. 1,2-dihydro-3H-naphtho[2,1-b]pyran-3-

one (splitomicin) [200]; reviewed in [207] has been used 

as a basis for an array of derivatives with preferential action 

against SIRT2 versus SIRT1 [208]. The specificity of the 

widely employed polyphenolic inhibitor 2-[(2-hydrox-

ynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benza-

mide (sirtinol) [207] has been recently questioned [209]. 

3,4′,5-trihydroxy-trans-stilbene, 5-[(1E)-2-(4-hydroxy-

phenyl)ethenyl]-1,3-benzenediol (resveratrol), a polyphe-

nol with still unclear mechanism of action has been used 

to activate sirtuins, with beneficial effects on metabolic 

regulation, energy metabolism, and organism survival [17, 

210]. However, its lack of specificity makes it highly prob-

lematic as a research tool [211]. It influences the expression 

and activity of nitric oxide synthases, catalase, superoxide 

dismutase, glutathione metabolism, and apoptotic signal-

ing to name a few; only some of these effects are mediated 

by sirtuins [212]. Despite its shortcomings resveratrol has 

entered into clinical trials aimed at sirtuins’ role in healthy 

aging and gender-specific longevity mechanisms, in AD-

related cognitive decline, in muscle function in old age, and 

in the status of a cytoprotective enzyme heme oxygenase-1 

[213–216]. Polyphenolic activators of sirtuins also include 

the powerful and pleiotropic curcumin. The clear need for 

more specific and selective compounds has led to the iden-

tification of a number of new activators such as N-(2-(3-

(piperazin-1-ylmethyl)imidazo[2,1-b]thiazol-6-yl)phenyl)

quinoxaline-2-carboxamide (SRT1720), 4-methyl-N-[2-[3-

(morpholinomethyl)imidazo[2,1-b]thiazol-6-yl]phenyl]-2-

(pyridin-3-yl)thiazole-5-carboxamide (SRT2104), which 

has already been shown to protect against neurodegenera-

tion and motor impairment in a mouse HD model [217]. 

However, despite their therapeutic potential revealed in ani-

mal studies and despite some clinical trials on the improve-

ment of the peripheral metabolic health, clinical CNS data 

are currently lacking [10, 218, 219].

Conclusion

During the past decade, there has been significant progress 

in understanding the role of sirtuins in brain aging and in 

neurodegenerative disorders such as AD [1, 16]. Till now 

relatively little is known about the role of SIRTs in PD or 

Huntighton’s disease [5, 196]. The role of SIRT1 in the 

regulation of APP metabolism and tau deacetylation/phos-

phorylation should be stressed [147, 148]. SIRT1 expres-

sion and activity may significantly affect the course of 

AD pathology and may be a promising therapeutic target. 

Recently, studies focused on mitochondrial SIRTs and their 

roles in antioxidative defense [2]. In oxidative stress and in 

brain aging/neurodegeration down-regulation of the nuclear 
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SIRT6 may influence DNA repair machinery and probably 

also telomere maintenance. SIRT6 participates in homo-

logus recombinationation, in non-homologus end-joining, 

and in base excision DNA repair pathways. It interacts 

with the transcription factor NF-κB, with PARP and with 

other proteins engaged in DNA repair; this suggests SIRT6 

as another promising target in the regulation of longevity 

[73, 105]. Till now controversial findings are published on 

the role of SIRT2 which might be important for longevity 

but also seems to take part in Aβ production, α-synuclein 

toxicity, and neuronal cell death [74, 145, 188]. Insufficient 

data are available on SIRT4 and SIRT5 in mitochondria; 

the knowledge on sirtuin interactions in the regulation of 

cell survival and death in physiology and pathology is also 

leaving something to be desired. Hopefully, further stud-

ies will expand our knowledge about application of sirtuin 

modulators in the therapy of neurodegenerative diseases.
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