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ABSTRACT

Sirtuins belong to an evolutionarily conserved family of NAD1-dependent deacety-

lases that share multiple cellular functions related to proliferation, DNA repair, mi-

tochondrial energy homeostasis, and antioxidant activity. Mammalians express

seven sirtuins (SIRT1–7) that are localized in different subcellular compartments.

Changes in sirtuin expression are critical in several diseases, including metabolic

syndrome, diabetes, cancer, and aging. In the kidney, themostwidely studied sirtuin

is SIRT1, which exerts cytoprotective effects by inhibiting cell apoptosis, inflamma-

tion, and fibrosis together with SIRT3, a crucial metabolic sensor that regulates ATP

generation and mitochondrial adaptive response to stress. Here, we provide an

overview of the biologic effects of sirtuins and the molecular targets thereof regu-

lating renal physiology. This review also details progress made in understanding the

effect of sirtuins in the pathophysiology of chronic and acute kidney diseases, high-

lighting the key role of SIRT1, SIRT3, and nowSIRT6 as potential therapeutic targets.

In this context, the current pharmacologic approaches to enhancing the activity of

SIRT1 and SIRT3 will be discussed.
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Two decades ago, studies on Saccharo-

myces cerevisiae indicated that among

the family of silent information regula-

tor (Sir) genes, Sir2 was essential for

transcription silencing and DNA repair.

The corresponding protein product Sir2

was identified as a NAD1-dependent

histone deacetylase responsible for chro-

matin silencing and the regulation of

yeast lifespan.1 Sir2 inactivation trans-

lated into a proaging phenotype, whereas

its overexpression promoted increased

yeast lifespan, which was attributed to the

ability of Sir2 to suppress the progressive

accumulation of self-replicating extrachro-

mosomal recombinant DNA circles, a ma-

jor contributor to accelerated aging in

yeast.2 Four and five sirtuins, showing the

highest homology with yeast Sir2, were

subsequently identified as longevity factors

in nematodes3 and flies,4 respectively4;

although controversial results, possibly

because of technical disparities between

laboratories, have cast doubts on the as-

sumptionof the role of sirtuins in longevity

in these species.2

In mammals, seven sirtuins (SIRT1–

SIRT7) constitute an evolutionarily con-

served family of enzymes involved in

diverse yet interrelated physiologic

processes with much broader enzymatic

activity than deacetylases, such as ADP-

ribosyl-transferases, demalonylase, and

desuccinylase, which all require coupling

with NAD1 (Figure 1). Unlike in worms

and flies, studies performed in mice to

deal with sirtuin’s lifespan extension

effect have shown promising progress.

Sirtuins have emerged as critical modu-

lators of metabolic adaptive responses to

stress and their activities have been asso-

ciated with multiple diseases, including

metabolic abnormalities, neurodegener-

ative disorders, cardiovascular diseases,

and cancer, all of which are age-associated

conditions.5,6 The kidney, along with the

heart and brain, is one of the main organs

susceptible to age-related diseases, translat-

ing into increased vulnerability to CKD in

the elderly population.7 In this review, we

will focus on the biologic function of var-

ious sirtuins and address their role in renal

physiology and pathophysiology.

SIRTUIN LOCALIZATION AND

MOLECULAR TARGETS

Sirtuins 1–7 are NAD1-dependent de-

acetylases (Figure 1) that regulate his-

tone proteins at specific lysine residues,

promoting post-translational modifi-

cation that results in chromatin silenc-

ing and transcriptional repression.5,6

Nonhistone proteins are also targets

for deacetylation that leads to the mod-

ulation of their activity.5,6 The depen-

dence of sirtuins on the cellular levels of

the coenzyme NAD1 links sirtuin ac-

tivity to energy metabolism.8 NAD1 is

produced by two biologically distinct

pathways. The de novo synthesis uses

the essential amino acid tryptophan,

supplied by dietary intake, which is me-

tabolized to form biosynthetic precur-

sors generating NAD1. This cofactor

is also recycled by the salvage path-

way, where NAD1 is resynthesized
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from nicotinamide by nicotinamide

phosphoribosyltransferase (NAMPT).8

NAD1 is a hydride acceptor that forms

the reduced dinucleotide NADH, and

their ratio regulates redox balance in en-

ergy production.8 Furthermore, NAD1

is the precursor forNADP1 andNADPH,

which preserve cells from reactive oxy-

gen species (ROS).8 As described ele-

gantly in a recent review,8 after persistent

oxidative stress, overactivation of ADP-

ribosyltransferases (also named PARPs)

consumes NAD1 to promote the repair

of ROS-induced DNA lesions,9 ulti-

mately reducing sirtuin activity.10,11

Likewise, the bioavailability of NAD1

can also be affected by other enzymes,

such as ADP-ribosyl cyclases, which

hydrolyze NAD1 to ADP-ribose and

nicotinamide.12

Despite sharing a commoncofactor to

boost deacetylase activity, the functional

differences between sirtuins are greater

than their similarities, as highlighted by

their localization in distinct intracellular

compartments and their broad range of

target proteins.

Nuclear Sirtuins

SIRT1 is the most studied sirtuin, and

resides in the nucleus and regulates

both nucleosome histone acetylation

and the activity of several transcriptional

factors.13 Actually, SIRT1 inhibits

TNFa-dependent transactivation of

NF-kB, limiting the expression of several

proinflammatory genes.14 After DNA

damage and oxidative stress, SIRT1-de-

pendent deacetylation of p53,15,16 as well

as forkhead box type O transcription

factors (FoxO),17 results in reduced cell

apoptosis and senescence.15,16 SIRT1

also regulates the activity and expression

of hypoxia-inducible factor-2a, which is

responsible for the hypoxic induction of

erythropoietin by renal cells.18 From a

metabolic point of view, SIRT1 binds

to and represses genes regulated by

PPAR-g after food withdrawal19 and

also controls gluconeogenesis20 and mi-

tochondria biogenesis by deacetylating/

activating PGC-1a.21

As for other nuclear sirtuins, SIRT6

deacetylates lysines 9 and 56 of histone

H3 to maintain genome stability and

telomere function.22 Recently, it has

been shown that SIRT6, in response to

oxidative stress, is recruited to the sites of

DNA double-strand breaks, promoting

its repair via ADP-ribosylation.23 Thus,

Figure 1. Sirtuins have broad enzymatic activities. (A) SIRT1, 2, 3, 5, 6, and 7 exhibit a lysine deacetylation activity of target proteins, in
which the coenzyme NAD1 is consumed to generate nicotinamide (NAM) and 29-O-acetyl-ADP-ribose (29-OAADPr). (B) SIRT4 exclusively
carries out ADP-ribosyl transferase activity, using NAD1 as the donor of the ADP-ribose group to the target proteins. ADP-ribosyl
transferase activity is shared with SIRT6. (C) SIRT5 uses NAD1 as a cofactor to demalonylate and desuccinylate target proteins, generating
NAM and 29-O-malonyl-ADP-ribose (29-OMADPr) and 29-O-succinyl-ADP-ribose (29-OSADPr), respectively.
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the evidence that acetylation of histone

H3K56 is increased in multiple types of

cancer24 suggests that SIRT6 plays a role

in the process of tumor suppression.

SIRT7 is the only sirtuin located in

nucleoli, where its deacetylase activity

is required for ribosomal DNA tran-

scription. A recent report proposes

there is direct interaction between

SIRT7 and chromatin remodeling com-

plexes to regulate RNA polymerase

I transcriptional activity.25 It has been

also reported that SIRT7 deacetylates

several modulators of nuclear-encoded

mitochondrial genes, such as GABPb1,

which favors mitochondrial oxidative

phosphorylation,26 and the nuclear re-

ceptors TR4/TAK1, which are involved

in lipid metabolism.27

Cytoplasmic Sirtuins

SIRT2 is the unique cytoplasmic sirtuin

that colocalizes and deacetylates a-tubu-

lin,28 taking part in the microtubule-

related mitotic exit from the cell cycle.29,30

Moreover, SIRT2, by inhibiting caspase-3

and ROS generation, affects apoptosis and

oxidative stress.31 The involvement of

SIRT2 in cell metabolism has been suppor-

ted by data that SIRT2 is instrumental in

AKT activation by insulin,32 as well as in

regulating FOXO1 and PCG-1a deacety-

lation in adipocytes.33,34

Mitochondrial Sirtuins

SIRT3localizes inthemitochondrialmatrix

and is the major regulator of the whole

organelle acetylome, unlike other mito-

chondrial sirtuins such as SIRT4 and

SIRT5.35 Within the mitochondrial elec-

tron transport chain, SIRT3 directly binds

to and regulates complex I, succinate

dehydrogenase A of complex II, and ATP

synthase (complex V), thus powerfully

boosting ATP levels.36–38 During mem-

brane depolarization, SIRT3 dissociates

from complex V and induces rapid deace-

tylation of specific clusters of matrix pro-

teins to optimize energy production.39

SIRT3 controls energy production inman-

ifoldways, as it alsomanages themolecular

machinery that governs mitochondrial dy-

namics40,41 and permeability.42 Concomi-

tantly, SIRT3 plays a major-role in the

regulation of mitochondrial antioxidant

pathways and detoxification through de-

acetylation and activation of SOD2, favor-

ing superoxide discharge.43,44 In addition,

SIRT3 activates isocitrate dehydrogenase 2,

an enzyme that promotes the restorationof

antioxidants and catalyzes a key step of the

tricarboxylic acid cycle.45,46 Other meta-

bolic processes directly and indirectly

related to the tricarboxylic acid cycle are

controlled by SIRT3 via the deacetylation

of acetyl-CoA synthase 247 and glutamate

dehydrogenase,35 involved in glutamate/

glutamine metabolism,48 which fuels the

urea cycle. Moreover, SIRT3 promotes

b-oxidation by driving long-chain acyl

CoA dehydrogenase activity,49 and ketone

body generation by promoting the deacety-

lation of 3-hydroxy-3-methylglutaryl CoA

synthase 2.50

Mitochondrial SIRT4 is predomi-

nantly an ADP-ribosylase and has the

opposite effects to SIRT3, in that it inac-

tivates the enzymes involved in the urea

cycle48 and b-oxidation,51 but induces

lipogenesis through malonyl CoA decar-

boxylase deacetylation.51 Notably, that

SIRT4 governs the cellular metabolic re-

sponse to DNA damage via glutamine

metabolism inhibition would suggest it

has a role as a tumor suppressor.52 More

recently, SIRT4 has been shown to play a

crucial role in insulin secretion and glu-

cose homeostasis, as demonstrated by

the development of glucose intolerance

and insulin resistance in SIRT4-deficient

mice.53

SIRT5 was initially described as a mi-

tochondrial deacetylase that regulates the

urea cycle through thedirect activationof

carbamoyl phosphate synthetase 1.54

Subsequent studies have revealed that

SIRT5 also exhibits demalonylase and

desuccinylase activities, through which

it controls ketogenesis.55,56 An impor-

tant effect of SIRT5 as an inducer of

the energetic flux via glycolysis has also

been shown.57

SIRTUINS IN RENAL PHYSIOLOGY

The kidney is one of the main energy-

demanding organs in the human

body,58 primarily because of its role in

incessantly filtering blood, regulating

the balance of electrolytes and acid–base

homeostasis, reabsorbing nutrients, and

BP control. Given their role as privileged

sensors of the metabolic state of the cell,

renal sirtuins are involved in the above

physiologic processes, supporting the pro-

duction of sufficient energy throughout

the different tubular and glomerular com-

partments. In terms of activity, proximal

tubules reabsorb.80% of the glomerular

filtrate, which is supported by active trans-

port mechanisms, and therefore contain

more mitochondria than distal tubules

and collecting ducts.59 At the glomerular

level, podocytes require energy to adapt

their highly interconnected cytoskeletal

proteins to environmental changes, thus

maintaining an intact glomerular filtra-

tion barrier.60 Below, we discuss the avail-

able data on the functional activity of

SIRTs 1, 3, 6, and 7 and their specific tar-

gets in the different compartments of the

kidney (Figure 2).

In the kidney, SIRT1 is widely ex-

pressed in tubular cells and podocytes.

The abundance of SIRT1 expression,

also in aquaporin 2-positive cells in the

rat distal nephron, has been taken to sug-

gest that it is possibly involved in sodium

and water handling.61 SIRT1 decreases

epithelial sodium reabsorption by in-

teracting with methyl transferase, the

disruptor of telomeric silencing-1, ulti-

mately repressing the transcription of

the a-subunit of the epithelial sodium

channel (ENaC) in cultured inner med-

ullary collecting duct cells.61 The inhib-

itory effect of SIRT1 on the promoter of

ENaC is independent of its deacetylase

activity.61 The capacity of SIRT1 to reg-

ulate sodium and water handling in the

kidney might ultimately affect BP. In this

context, data are also available to

indicate a counterregulatory role of

SIRT1 on renin-angiotensin system acti-

vation. Overexpression of SIRT1 down-

regulates angiotensin II type 1 receptor

(AT1R) in vascular smooth muscle

cells,62 whereas the reduced expression

of SIRT1 is associated with the increased

transcription of AT1R in podocytes.63

These findings, together with the evi-

dence that SIRT1 upregulates endothelial

nitric oxide synthase, points to SIRT1 as a

potential player in BP control.64

J Am Soc Nephrol 29: 1799–1809, 2018 Role of Sirtuins in the Kidney 1801

www.jasn.org REVIEWS



SIRT3 is likely to have a major role in

the kidney. Compelling evidence corre-

lates SIRT3activitywith themaintenance

of mitochondrial energy homeostasis

and antioxidant defense in proximal

and distal tubule compartments. De-

pending on the renal-specific energy de-

mand, mitochondria are able to modify

their size, number, and location.65,66Mi-

tochondria are highly mobile organelles

that exist in a dynamic network whose

function relies on complex molecular

machinery, finely tuned and balanced

between fission and fusion.40 Fission

creates smaller mitochondria that are

more susceptible to membrane depolar-

ization and oxidative damage and can

easily be removed by mitophagic ma-

chinery.40 Conversely, fusion elicits the

generation of a more interconnected

mitochondrial network to dilute oxi-

dized proteins and ROS, favoring sus-

tained energy production.40 In this

context, SIRT3 has been described as a

crucial regulator of the mitochondrial

dynamics in renal cells (Figure 3), tip-

ping the balance toward fusion.41 More

recently, a novel role of SIRT3 in the reg-

ulation of proximal tubular cell homeo-

stasis has been documented. SIRT3 has

been described as controlling microtu-

bule network-dependent trafficking of

functional mitochondria between renal

tubular epithelial cells (Figure 3), a pro-

cess that preserves the proper cellular

bioenergetic profile and antioxidant

defense.67

The contribution of SIRT6 to govern-

ing renal homeostasis has recently been

demonstrated in Sirt6-deficient mice

that experience remarkable glomerular

injury, specifically in podocytes, consist-

ing of decreased slit diaphragm protein

expression and foot process efface-

ment.68 That SIRT6 is a key enzyme in

the maintenance of glomerular permse-

lectivity to plasmatic proteins and podo-

cyte function is also supported by data

showing that Sirt6 deletion accelerates re-

nal hypertrophy and the progression of

proteinuria.68 Finally, it has been reported

that SIRT7, through its ability to deacety-

late the K1/Cl2 cotransporter KCC4, ex-

pressed at the basolateral membrane of

the a-intercalated cells, restores pH bal-

ance in the collecting duct compartments

during metabolic acidosis.69 The positive

effect of SIRT7 on KCC4 suggests this sir-

tuin has a role in acid–base and renal elec-

trolyte handling.69

Figure 2. Sirtuins contribute to maintain renal homeostasis and thei downregulation leads to chronic and acute kidney diseases. (A)
Sirtuins are expressed throughout the different renal compartments. In the glomerulus (inset), SIRT1, SIRT3, and SIRT6 maintain the
structural and functional integrity of podocytes. In close proximity to podocytes, glomerular endothelial cells express SIRT1, which
controls systemic BP by regulating endothelial nitric oxide synthase (eNOS). SIRT1 is also ubiquitously expressed throughout all of the
nephron segments andparticipates in sodiumbalance control andwater reabsorptionby regulating thea-subunit of theepithelial sodium
channel (ENaC) in aquaporin 2-positive cells of the distal nephron. SIRT1 and SIRT3 are highly expressed in the proximal tubule, where
they preserve mitochondrial functional integrity. In the collecting duct, SIRT7 controls acid–base and renal electrolyte handling through
its ability to deacetylate the K1/Cl2 cotransporter KCC4. (B) SIRT1, SIRT3, and SIRT6 exerts protective functions by modulating several
renal targets (light blue). Downregulation of SIRT1, SIRT3, and SIRT6 favors the development of renal disorders (blue). BCL2, B cell
lymphoma 2; DRP1, Dynamin related protein 1; FOXO4, Forkhead box protein O4; GSK3b, glycogen synthase kinase 3b; KIF5c, kinesin
family member 5C; MMP-14, matrix metalloproteinase 14; OPA1, Optic atrophy 1; p53, tumor protein 53; PGC1-a, peroxisome pro-
liferative activated receptor g coactivator 1-a; Smad 3/4, Small mothers against decapentaplegic 3/4; STAT3, signal transducer and
activator of transcription 3.
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SIRTUINS IN RENAL DISEASES

Given the growing knowledge of the role

of sirtuins in renal physiology, several

attempts have been made to elucidate

the effect they have on the development

of renal disorders. Of the seven sirtuins,

we will focus mainly on SIRT1 and

SIRT3, for which data on both chronic

and acute kidney diseases are available.

As for SIRT1, which has been described

extensively,70 we will only address the

mostly recent discoveries.

AKI

AKI is a public health concern associated

with high mortality, the development of

long-term CKD and other types of organ

dysfunction in a considerable percentage

of patients.71,72 Tubular epithelial cells

play a crucial role in AKI after an ische-

mic or toxic challenge.71,73 Central to

tubular damage is the dysregulation of

mitochondria, which shift their dy-

namic equilibrium toward fission and

fragmentation coupled with membrane

depolarization and the consequent

leakage of proapoptotic factors.40,74

The impairment of mitochondrial

structural integrity ultimately results

in ATP breakdown and ROS generation,

leading to cytoskeletal changes, the dis-

ruption of cell-matrix and cell-cell in-

teractions, and tubular epithelial cell

apoptosis and loss.40,74

A large bodyof literature describes the

renal protective effects of SIRT1 in AKI,

mainly because of its activity on mito-

chondrial function.75,76 Tubular cell–

targeted SIRT1 overexpression protects

mice from cisplatin-induced AKI by en-

hancing medium chain acyl-CoA dehy-

drogenase, the rate-limiting enzyme of

mitochondrial b-oxidation.77 Con-

versely, one-allele genetic depletion of

Sirt1 significantly aggravates renal func-

tion decline as well as tubular damage

and apoptosis in a model of AKI induced

by ischemia–reperfusion injury.78 Fur-

ther studies show that SIRT1 activates

PGC-1a, an important driver of reno-

protection in AKI,79 which leads to

proximal tubule repair by activating mi-

tochondrial biogenesis and respiration

via oxidative phosphorylation.80

In addition to SIRT1, recent studies

have also highlighted the renoprotective

activity of SIRT3 in counteracting mito-

chondrial dysfunction in AKI.41 Mice

with cisplatin-induced AKI have severe

Figure 3. SIRT3 preserves the integrity of mitochondria and their intercellular shuttling between renal cells. Graphic representation
depicting the functional activities of SIRT3 in the maintenance of proximal tubular epithelial cell homeostasis. In physiologic conditions (left),
SIRT3controls theglobal functional and structural integrity ofmitochondriaby sustainingATPproduction and theactivity of theantioxidant
enzyme SOD2. This enables the constitutive trafficking of healthy organelles along the intact tubulin network via the anterograde motor
protein Kif5c (left inset). After tubular cell injury (right), SIRT3 downregulation resulted in a remarkable ATP depletion, as well as im-
pairment of SOD2 antioxidant activity. The downregulation of SIRT3 expression and activity also translates into unbalancedmitochondrial
dynamics toward fission and fragmentation (right inset) by priming Drp1 recruitment on the mitochondrial outer membrane by binding to
its receptor MFF, as well as reducing OPA1 expression. In association with fragmentation, loss of mitochondrial membrane permeability
drives the disposal of dysfunctional organelles through PINK1-dependent mitophagy. The upregulation of SIRT3 expression and activity
through pharmacologic manipulation with AICAR or ALCAR, as well as cell-based therapy with MSCs, counteracts mitochondrial dys-
function and restores the cell-cell exchange of healthy organelles between injured tubular cells. AICAR, 5-aminoimidazole-4-carboxamide
ribonucleotide; ALCAR, acetyl-L-carnitine; Drp1, Dynamin related protein 1; Kif5c, kinesin family member 5C; DCm, mitochondrial
membrane potential; MMF, mitochondrial fission factor; OPA1, Optic atrophy 1; PINK1, PTEN-induced putative kinase 1.
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mitochondrial damage associated with

oxidative stress and decreased levels of

SIRT3 in the proximal tubular compart-

ment.41 Moreover, silencing Sirt3 in

mice administered cisplatin results in

more severe AKI and premature death,

compared with their wild-type litter-

mates.41 The preservation of tubular

SIRT3 expression and activity by AICAR,

an AMPK agonist, or the antioxidant

agent acetyl-l-carnitine, protects SIRT3-

competent mice from renal function

impairment induced by cisplatin, but

has no effect in SIRT3-knockout

mice.41 Mechanistically, proximal tubu-

lar cell dysfunction induced by cisplatin

is conceivably the result of remarkable

SIRT3 reduction that primes the recruit-

ment of the fission protein Drp1 on mi-

tochondrial membranes, as well as the

downregulation of the pro-fusion dyna-

min-related protein OPA1, ultimately

tipping mitochondrial dynamics toward

fission and fragmentation (Figure 3).41

This process results in mitochondrial

membrane permeability loss and the

elimination of the organelles through

PINK-dependent mitophagy.41 Further

supporting the hypothesis regarding the

renoprotective activity of SIRT3, a recent

study shows that curcumin, a natural

compound that modulates SIRT3 levels,

prevents alterations in mitochondrial ul-

trastructure, energy production, redox

balance, and dynamics in mice with

AKI.81 The SIRT3 biologic relevance

in AKI has been further proved by

the renoprotective effect of potential

SIRT3-activator compounds such as

honokiol, silybin, resveratrol, and stan-

niocalcin.82–85

The compelling evidence that mesen-

chymal stromal cells (MSCs) accelerate

renal regeneration in mice with AKI has

created further interest in investigating

whether this effect was mediated

by boosting SIRT3-dependent biologic

pathways.67 Treatment with human um-

bilical cord-derived MSCs in mice with

AKI regulates mitochondrial biogenesis

in proximal tubules by enhancing PGC-

1a expression, NAD1 biosynthesis,

and SIRT3 activity fostering antioxidant

defense and ATP production.67 The

mechanism underlying the favorable

effect of SIRT3 induced by umbilical

cord-derived MSCs rests on the sirtuin’s

ability to promote the transfer of mito-

chondria between adjacent tubular cells

via tubulin-rich protrusions, so as to in-

duce global metabolic reprogramming

of damaged cells to sustain the energy

supply (Figure 3).67

Diabetic Nephropathy

Diabetic nephropathy (DN) is recog-

nized as a leading cause of ESRD world-

wide, as well as being an independent

risk factor for cardiovascular diseases

that contributes to morbidity and mor-

tality in patients with diabeties.86,87 In

search of new therapeutic targets to pre-

vent DN, the attention of the scientific

community has turned to the role of sir-

tuins in diabetic complications.88 The

protective effects of SIRT1 agonists on

somemetabolic parameters, such as glu-

cose tolerance, fasting blood glucose lev-

els, and insulin resistance resulting in a

prolongation of animal lifespan, have

been described in several experimental

models of diabetes.89–91 Beside its ben-

eficial effect on the metabolism, SIRT1

has a protective role in limiting podo-

cyte injury in DN. There are data that

confirm that the conditional deletion of

Sirt1 in the podocytes of diabetic db/db

mice results in acetylation of the p65

subunit of NF-kB and STAT3, which

likely translates into increased levels of

urinary protein excretion and more se-

vere renal damage compared with db/db

mice without the genetic deletion.92

Consistently, the downregulation of

SIRT1 expression is functionally linked

to FOXO4 hyperacetylation and the in-

duction of the proapoptotic factor

Bcl2L11 in both injured podocytes in

culture and glomeruli of db/db mice

with DN.93 It has been suggested that

complex functional interplay between

proximal tubules and glomeruli coordi-

nated by SIRT1 primes DN.94 The tar-

geted disruption of SIRT1 in proximal

tubules of DN mice results in ectopic

expression of the tight junction protein

claudin-1 in podocytes, an event that

leads to albuminuria and renal function

impairment.94 In search of a potential

explanation for such results, the authors

provide in vitro data showing that prox-

imal tubular cells exposed to high glu-

cose concentration secrete less of the

nicotinamide mononucleotide that low-

ers SIRT1 in podocytes and upregulates

claudin-1 expression.94 The evidence of

reduced SIRT1 expression in both tubu-

lar cells and glomeruli from patients

with DN provides additional clues re-

garding the potential involvement of

SIRT1 in human DN.95,96

Concerning SIRT3, there is little data

to support the hypothesis that it has a role

in DN. Increased expression of SIRT3

antagonizes high glucose–induced cellu-

lar senescence via the FOXO1 signaling

pathway97 and enhances cellular resis-

tance to oxidative stress damage.98 Con-

sistently, in mice with DN, the activation

of SIRT3 through the G protein–coupled

bile acid receptor prevents oxidative

stress and lipid accumulation.99 The

restoration of renal SIRT3 protein ex-

pression and ketogenesis via green tea

polyphenols in rats with high fat diet–

induced DN have recently been de-

scribed as limiting early renal oxidative

damage.100

Fibrosis and Aging

Regardless of the etiology, renal fibrosis

is the hallmark of the final outcome

of almost all progressive CKDs.101 The

role of SIRT1 in counteracting renal fi-

brosis has been demonstrated in Sirt1-

deficient mice with unilateral ureteral

obstruction (UUO), which display in-

creased susceptibility to oxidative stress

and exuberant renal apoptosis and fi-

brosis compared with their wild-type

littermates.102 In this model, the use of

SIRT1 activators, such as SRT1720103

and SRT2183,102 substantially attenu-

ates renal fibrotic processes. Conversely,

the sirtuin inhibitor sirtinol, given to

mice with UUO-induced renal fibrosis,

abolishes the renoprotective effect of

losartan, suggesting SIRT1 has a role

in mediating the antifibrotic effect of

angiotensin II blockers.104

Several studies show the inverse rela-

tionship between SIRT1 and the TGFb

signaling pathway in renal fibrosis.105–107

Theprofibrotic activity of TGFb is exerted

through the acetylation of Smad3 and 4,
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in turn promoting the transcription of

extracellular matrix proteins and metal-

loproteinases. In the UUO and 5/6 ne-

phrectomy models, both characterized

by robust expression of TGFb, boosting

SIRT1 via both resveratrol or its agonist

SRT3025 reduced renal inflammation,

as well as collagen IV and fibronectin

accumulation through the deacetylation

of Smad3.105,106 Furthermore, SIRT1

overexpression in tubular cells halts the

progression of AKI to tubulointerstitial

fibrosis and the consequent renal accu-

mulation of matrix metalloproteinase-7

via deacetylation of Smad4.107

AnadditionalmechanismlinkingSIRT1

to fibrosis is provided by data showing that

endothelial Sirt1 deficiency enhances peri-

tubular capillary rarefaction108 and perpe-

trates nephrosclerosis, attributable to the

downregulation of matrix metalloprotei-

nase-14.109 These results, together with

the evidence that SIRT1 also exerts its anti-

fibrotic function through PGC-1a,110 in-

dicate that SIRT1 is a possible therapeutic

target in the progression of fibrotic kidney

diseases. The finding that SIRT1 mRNA

levels are lower in kidney biopsies obtained

frompatients with focal glomerulosclerosis

adds translational relevance of the above

data to human fibrosis.106

So far, the available evidence points

to a protective role of SIRT3 against fi-

brosis mainly in the heart,111,112 and

there is little data for the kidney.112

SIRT3-deficient mice develop more

heart and renal fibrosis than their aged-

matched wild-type littermates as they

age.112 Heart fibrosis in Sirt3-deficient

animals is the result of the induction of

TGFb expression and the activation of its

signaling.112 Whether this mechanism

could also operate in the kidney is cur-

rently unknown. A recent study has

shown that lack of SIRT3 aggravates hy-

pertension-induced renal fibrosis pro-

moted by angiotensin II infusion, whereas

the overexpression of SIRT3 attenuates

angiotensin II–induced hypertensive ne-

phropathy.113 In addition, honokiol, a

major bioactive compound isolated from

Magnolia officinalis that increases SIRT3,

suppresses angiotensin-induced renal fi-

brosis in mice.113 The mechanism under-

lying renoprotection has been ascribed to

SIRT3’s ability to deacetylate KLF15, a

negative regulator of extracellular matrix

protein synthesis, in cultured podo-

cytes.113

Interstitial fibrosis is a unifying path-

ologic feature of aging across several tis-

sues, contributing to the progressive

deterioration of organ functions. The

kidney is one of the typical targets

affected by age-related diseases, translat-

ing to greater susceptibility toCKD in the

elderly population.7 Experimental evi-

dence points to sirtuins as key players

in counteracting age-related kidney

damage. In this context, decreased

SIRT1 activity observed in the kidneys

of aged rodents114,115 is associated with

loss of intracellular NAD1 pool and in-

creased mitochondrial dysfunction.116

Moreover, mice with podocyte-specific

Sirt1 knockdown exhibit accelerated

age-related albuminuria and glomerulo-

sclerosis.117 Also, SIRT3 expression de-

creases in kidney specimens of aged

mice.118 Conversely, renal upregulation

of SIRT3 and NAMPT, the rate-limiting

enzyme in the biosynthesis of NAD1, as

well as the increased number of mito-

chondria are essential to the longevity

phenotype observed in mice lacking

At1r.119 More recently, the involvement

of SIRT6 has been described as attenuat-

ing age-associated renal injury through

the inhibition of proinflammatory NF-

kB signaling.120 The activation of sirtuins

through caloric restriction,121 supple-

mentation with the NAD1 precursor115

or by a SIRT1 activator122 are successful

strategies for limiting susceptibility to kid-

ney injury.

CONCLUSIONS AND FUTURE

PERSPECTIVES

Mammalian sirtuins have emerged as a

class ofmetabolic regulators that link pro-

tein acetylation to energy metabolism, ex-

erting renoprotective effects, as discussed

in this brief review. Although our under-

standing of different sirtuin functions at

the renal level is still in its early stages,

several advances have been made in

identifying a broad spectrum of sirtuin

targets involved in cell cytoprotective

andregenerativemechanisms.Thenatural

extension of these discoveries has been to

look for sirtuin-activating compounds

(STACs; Table 1). Most STACs belong to

the polyphenol familyof natural products,

of which resveratrol was the first discov-

ered compound capable to increase SIRT1

almost ten-fold.123,124 Resveratrol is

found in red wine and acts as allosteric

modulator, causing a conformational

change of the substrates, which increases

their binding affinity for sirtuins.124 Al-

though resveratrol’s mechanism of activa-

tion was quickly disputed,125 the interest

in this compound has not subsided be-

cause of its caloric restriction mimetic ef-

fect. This has generated several phase one

and two clinical trials with encouraging

results in diabetes, cardiovascular disease,

and neuropathy.126 Many of these studies

are the driving force behind the search for

natural compounds that could modulate

sirtuins, such as flavonoids, stilbenes, an-

thocyanidins, and chalcones. These mol-

ecules served as templates to guide the

computational search and chemical de-

sign of more potent and specific synthetic

STACs, able to selectively enhance sirtuin

deacetylase activity. Such a drug discovery

approach has already been undertaken for

SIRT1, leading to the synthesis of different

agents such as SRT1720,103 SRT2183,102

and SRT3025,106 which have been dem-

onstrated to limit kidney injury. As for

SIRT3, honokiol has been shown to exert

anti-inflammatory and antioxidant activ-

ity in experimental chronic and acute kid-

ney diesases82,113 by selectively activating

SIRT3.127

Compounds that boost NAD1 as nico-

tinamide riboside andnicotinamidemono-

nucleotide, or exogenous NAD1 constitute

a newer class of STACs that have been

found to be beneficial in cardiac and renal

diseases because of their ability to restore

the redox balance in the setting of disrupted

bioenergetics.8,126 Of great interest for the

future would be the development of phar-

macologic strategies to target enzymes that

regulate NAD1 biosynthesis, such as

NAMPT, as has recently been shown in

AKI.41 In a similar vein, compounds that

inhibit NAD1-depleting enzymes, as

shown for the ADP-ribosyl cyclases in

multiple aged organs,128 could be another
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potential therapeutic approach. Given that

sirtuins can be considered good candidate

targets for preventing and treating age-as-

sociated disorders, including renal diseases,

and possibly for improving the human life-

span, efforts to prove that sirtuin activators

are of benefit for patientswouldhave a large

impact on clinical and public health.
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