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Abstract:  1 

Characterising the temporal uncertainty in palaeoclimate records is crucial for analysing past climate 2 

change, for correlating climate events between records, for assessing climate periodicities, identifying 3 

potential triggers, and to evaluate climate model simulations. The first global compilation of speleothem 4 

isotope records by the SISAL (Speleothem Isotope Synthesis and Analysis) Working Group showed that 5 

age-model uncertainties are not systematically reported in the published literature and these are only 6 

available for a limited number of records (ca. 15%, n = 107/691). To improve the usefulness of the SISAL 7 

database, we have (i) improved the database’s spatio-temporal coverage and (ii) created new 8 

chronologies using seven different approaches for age-depth modelling. We have applied these 9 

alternative chronologies to the records from the first version of the SISAL database (SISALv1) and to new 10 

records compiled since the release of SISALv1. This paper documents the necessary changes in the 11 

structure of the SISAL database to accommodate the inclusion of the new age-models and their 12 

uncertainties as well as the expansion of the database to include new records and the quality-control 13 

measures applied. This paper also documents the age-depth model approaches used to calculate the new 14 

chronologies. The updated version of the SISAL database (SISALv2) contains isotopic data from 691 15 

speleothem records from 294 cave sites and new age-depth models, including age-depth temporal 16 

uncertainties for 512 speleothems. SISALv2 is available at http://dx.doi.org/10.17864/1947.242 (Comas-17 

Bru et al., 2020). 18 

Copyright statement: This dataset is licensed by the rights-holder(s) under a Creative Commons Attribution 4.0 19 

International Licence: https://creativecommons.org/licenses/by/4.0/ 20 

1. Introduction 21 

Speleothems (secondary cave carbonates form from infiltrating rainwater after it percolates through the 22 

soil, epikarst, and carbonate bedrock) are a rich terrestrial palaeoclimate archive. In particular, stable 23 

oxygen and carbon isotopes (δ18O, δ13C) have been widely used to reconstruct regional and local 24 

hydroclimate changes. The Speleothem Isotope Synthesis and Analyses (SISAL) Working Group is an 25 

international effort, under the auspices of Past Global Changes (PAGES), to compile speleothem isotopic 26 

records globally for the analysis of past climates (Comas-Bru and Harrison, 2019). The first version of the 27 

SISAL database (Atsawawaranunt et al., 2018a; Atsawawaranunt et al., 2018b) contained 381 speleothem 28 

records from 174 cave sites and has been used for analysing regional climate changes (Braun et al., 2019a; 29 
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Burstyn et al., 2019; Comas-Bru and Harrison, 2019; Deininger et al., 2019; Kaushal et al., 2018; Kern et 30 

al., 2019; Lechleitner et al., 2018; Oster et al., 2019; Zhang et al., 2019). The potential for using the SISAL 31 

database to evaluate climate models was explored using an updated version of the database (SISALv1b; 32 

Atsawawaranunt et al., 2019) that contains 455 speleothem records from 211 sites (Comas-Bru et al., 33 

2019).  34 

SISAL is continuing to expand the global database by including new records (Comas-Bru et al., 2020). 35 

Although most of the records in SISALv2 (79.7%: Figure 1a) have been dated using the generally very 36 

precise, absolute radiometric 230Th/U dating method, a variety of age-modelling approaches were 37 

employed (Figure 1b) in constructing the original records. The vast majority of records provide no 38 

information on the uncertainty of the age-depth relationship. However, many of the regional studies using 39 

SISAL pointed the limited statistical power of analyses of speleothem records because of the lack of 40 

temporal uncertainties. For example, these missing uncertainties prevented the extraction of underlying 41 

climate modes during the last 2k years in Europe (Lechleitner et al., 2018). To overcome this limitation, 42 

we have developed additional age-depth models for the SISALv2 records (Figure 2) in order to provide 43 

robust chronologies with temporal uncertainties. The results of the various age-depth modelling 44 

approaches differ because of differences in their underlying assumptions. We have used seven alternative 45 

methods: linear interpolation, linear regression, Bchron (Haslett and Parnell, 2008), Bacon (Blaauw, 2010; 46 

Blaauw and Christen, 2011; Blaauw et al., 2019), OxCal (Bronk Ramsey, 2008, 2009; Bronk Ramsey and 47 

Lee, 2013), COPRA (Breitenbach et al., 2012) and StalAge (Scholz and Hoffmann, 2011). Comparison of 48 

these different approaches provides a robust measure of the age uncertainty associated with any specific 49 

speleothem record. 50 

2. Data and Methods 51 

2.1 Construction of age-depth models: the SISAL chronology 52 

We attempted to construct age-depth models for 533 entities in an automated mode. For eight records, 53 

this automated construction failed for all methods. For these records we provide manually constructed 54 

chronologies, where no age model previously existed, and added a note in the database with details on 55 

the construction procedure. Age models for 21 records were successfully computed but later dropped in 56 

the screening process due to inconsistent information or incompatibility for an automated routine. In 57 

total, we provide a new chronology for 512 speleothem records in SISALv2. 58 

The SISAL chronology provides alternative age-depth models for SISAL records that are not composites 59 

(i.e., time-series based on more than one speleothem record), that have not been superseded in the 60 
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database by a newer entity and which are purely 230Th/U dated. We therefore excluded records for which 61 

the chronology is based on lamina counting, radiocarbon ages or a combination of methods. This decision 62 

was based on the low uncertainties of the age-depth models based on lamina counting and the challenge 63 

of reproducing age-depth models based on radiocarbon ages. We made an exception with the case of 64 

entity_id 163 (Talma et al., 1992), which covers two key periods, the Mid-Holocene and the Last Glacial 65 

Maximum, at high temporal resolution. In this case, we calculated a new SISAL chronology based on the 66 

provided 230Th/U dates but did not consider the uncorrected 14C ages upon which the original age-depth 67 

model is based. We also excluded records for which isotopic data is not available (i.e., entities that are 68 

part of composites) and entities that are constrained by less than three dates. Additionally, the dating 69 

information for 23 entities shows hiatuses at the top/bottom of the speleothem that are not constrained 70 

by any date. For these records, we partially masked the new chronologies to remove the unconstrained 71 

section(s). Original dates were used without modification in the age-depth modelling.  72 

To allow a comprehensive cross-examination of uncertainties, seven age-depth modelling techniques 73 

were implemented here across all selected records. Due to the high number of records (n = 533), all 74 

methods were run in batch mode. A preliminary study, using the database version v1b demonstrated the 75 

feasibility of the automated construction and evaluation of age-depth models using a subset of records 76 

and methods (Roesch and Rehfeld, 2019). Further details on the evaluation of the updated age-depth 77 

models are provided in Section 3.2. The seven different methods are briefly described below. All methods 78 

assume that growth occurred along a single growth axis. For one entity, where it was previously known 79 

that two growth axes exist, we added an explanatory statement in the database. All approaches except 80 

StalAge produce Monte Carlo (MC) iterations of the age-depth models. We provide 1,000 MC iterations 81 

for each new SISALv2 chronology (https://doi.org/10.5281/zenodo.3591197). 82 

Major challenges arise through hiatuses (growth interruptions) and age reversals. In the classification of 83 

the reversals, we distinguish between tractable reversals (with overlapping confidence intervals) and non-84 

tractable reversals (i.e., where the two-sigma-dating uncertainties do not overlap) following the definition 85 

of Breitenbach et al. (2012). We developed a workflow to treat records with hiatuses (Roesch and Rehfeld, 86 

2019; details below), which allowed the construction of age-depth models for 20% of the records with 87 

one or more hiatuses. Changes, such as the hiatus treatment and outlier age modification, are recorded 88 

in a logfile created when running the age models. We followed the original author’s choices with regard 89 

to date usage. If an age was marked as “not used” or “usage unknown”, we did not consider this in the 90 

construction of the new chronologies except in OxCal, where dates with "usage unknown" were 91 

considered.  92 
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1) Linear Interpolation (lin_interp_age) between radiometric dates. This is the classic approach for age-93 

depth model construction for palaeoclimate archives and was used in 32.1% of the original age-depth 94 

models in SISALv2. Here, we extend this approach and calculate the age uncertainty by sampling the range 95 

of uncertainty of each 230Th/U-age 2,000 times, assuming a Gaussian distribution. This is consistent with 96 

the implementation of linear interpolation in CLAM (Blaauw, 2010) and COPRA (Breitenbach et al., 2012).  97 

Linear interpolation was implemented in R (R Core Team, 2019), using the approxExtrap() function 98 

in the Hmisc package. We included an automated reversal check that increases the dating uncertainties 99 

until a monotonic age model is achieved, similar to that of StalAge (Scholz and Hoffmann, 2011). Hiatuses 100 

are modelled following the approach of Roesch and Rehfeld (2019), where rather than modelling each 101 

segment separately, synthetic ages with uncertainties spanning the entire hiatus duration are introduced 102 

for use in age-depth model construction. These synthetic ages are removed after age-depth model 103 

construction. Linear interpolation was applied to 80% (n=408/512) of the SISAL records for which new 104 

chronologies were developed.  105 

2) Linear Regression (lin_reg_age) provides a single best fit line through all available radiometric ages 106 

assuming a constant growth rate. Linear regression was used in 6.7% of the original SISALv2 age models. 107 

As with linear interpolation, age uncertainties are based on randomly sampling the U-series dates to 108 

produce 2,000 age-depth models (i.e., ensembles). Temporal uncertainties are then given by the 109 

uncertainty of the median-based fit to each ensemble member. If hiatuses are present, the segments in-110 

between were split at the depth of the hiatus without an artificial age. The method is implemented in R, 111 

using the lm() function from the base package. Linear regression was applied to 36% (n=185/512) of the 112 

SISAL records for which new chronologies were developed.  113 

3) Bchron (Bchron_age) is a Bayesian method based on a continuous Markov processes (Haslett and 114 

Parnell, 2008) and available as an R package (Parnell, 2018). This method was originally used for only one 115 

speleothem record in SISALv2. Since Bchron cannot handle hiatuses, we implemented a new workflow 116 

that adds synthetic ages with uncertainties spanning the entire hiatus duration (Roesch and Rehfeld, 117 

2019), as performed with linear interpolation, StalAge and our implementation of COPRA. Bchron provides 118 

age-depth model ensembles of which we have kept the last 2,000. Here we use the function bchron() 119 

with jitter.positions = true to mitigate problems due to rounded-off depth values. This 120 

method has been applied to 83% (n=426/512) of the SISAL records for which new chronologies were 121 

developed. 122 

4) Bacon (Bacon_age) is a semi-parametric Bayesian method based on autoregressive gamma-processes 123 

(Blaauw, 2010; Blaauw and Christen, 2011; Blaauw et al., 2019). It was used in three of the original 124 

chronologies in SISALv2. The R package rBacon can handle both outliers and hiatuses and apart from 125 
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giving the median age-depth model, it also returns the Monte Carlo realisations (i.e. ensembles), from 126 

which the median age-depth model is calculated. During the creation of the SISAL chronologies, the 127 

existing rBacon package (version 2.3.9.1) was updated to improve the handling of stalagmite growth rates 128 

and hiatuses. We use this revised version, available on CRAN (https://cran.r-129 

project.org/web/packages/rbacon/index.html), to provide a median age-depth model and an ensemble 130 

of age-model realisations for 65% (n=335/512) of the SISAL records for which new chronologies were 131 

developed. 132 

5) OxCal (Oxcal_age) is a Bayesian chronological modelling tool that uses Markov Chain Monte Carlo 133 

(Bronk Ramsey, 2009). This method was used in 4.1% of the original SISALv2 chronologies. OxCal can deal 134 

with hiatuses and outliers and accounts for the non-uniform nature of the deposition process (Poisson 135 

process using the P_Sequence command). Here we used the analysis module of OxCal version 4.3 with a 136 

default initial value of interpolation rate of 1 and an initial value of model rigidity (k) of k0=1 with a uniform 137 

distribution from 0.01 to 100 for the range of k/k0 (log10(k/k0)=(-2,2)) (C. Bronk Ramsey, personal 138 

communication). The initial value of the interpolation rate determines the number of points between any 139 

two dates, for which an age will be calculated. We subsequently linearly interpolated the age-depth model 140 

to the depths of individual isotope measurements. Were multiple dates are given for the same depth for 141 

any given entity, the date with the smallest uncertainty was used to construct the SISAL chronology. In 142 

case of asymmetric uncertainties in the dating table, the largest uncertainty value was chosen. We kept 143 

the last 2,000 realisations of the age-depth models for each entity. OxCal chronologies are available for 144 

21% (n=106/512) of the SISAL records for which new chronologies were developed. 145 

6) COPRA (copRa_age) is an approach based on interpolation-between-dates (Breitenbach et al., 2012) 146 

and was used for 9.7% of the original SISALv2 chronologies. COPRA is available as a Matlab package with 147 

a graphical user interface (GUI) that has interactive checks for reversals and hiatuses. The Matlab version 148 

can handle multiple hiatuses and (to some extent) layer-counted segments. However, age-reversals can 149 

occur near short-lived hiatuses. To overcome this, we implemented a new workflow in R that adds 150 

artificial dates at the location of the hiatuses and prevents the creation of age reversals (Roesch and 151 

Rehfeld, 2019) as done with linear interpolation, StalAge and Bchron. Additionally, we also incorporated 152 

an automated reversal check similar to that already embedded into StalAge (Scholz and Hoffmann, 2011). 153 

This R version, copRa, uses the default piecewise-cubic-hermite-interpolation (pchip) algorithm in R 154 

without consideration of layer counting. This approach was used for 76% (n= 389/512) of the SISAL records 155 

for which new chronologies were developed. 156 

7) StalAge (StalAge_age) fits straight lines through three adjacent dates using weights based on the dating 157 

measurement errors (Scholz and Hoffmann, 2011). Age uncertainties are iteratively obtained through a 158 
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Monte Carlo approach, but ensembles are not given in the output. StalAge was used to construct 13.1% 159 

of the original SISALv2 chronologies. The StalAge v1.0 R function has been updated to R version 3.4 and 160 

the default outlier and reversal checks were enabled to run automatically. Hiatuses cannot be entered in 161 

StalAge v1.0, but the updated version incorporates a treatment of hiatuses based on the creation of 162 

temporary synthetic ages following Roesch and Rehfeld (2019). In contrast to other methods, mean ages 163 

instead of median ages are reported for StalAge. StalAge was applied to 62% (n=320/512) of the SISAL 164 

records for which new chronologies were developed.  165 

2.2 Revised structure of the database 166 

The data are stored in a relational database (MySQL), which consists of 15 linked tables: site, entity, 167 

sample, dating, dating_lamina, gap, hiatus, original_chronology, d13C, d18O, entity_link_reference, 168 

references, composite_link_entity, notes and sisal_chronology. Figure 3 shows the relationships between 169 

these tables and the type of each field (e.g. numeric, text). The structure and contents of all tables except 170 

the new sisal_chronology table are described in detail in Atsawawaranunt et al. (2018a). Here, we focus 171 

on the new sisal_chronology table and on the changes that were made to other tables in order to 172 

accommodate this new table (See section 2.3). Details of the fields in this new table are listed in Table 1. 173 

Changes were also made to the dating table (dating) to accommodate information about whether a 174 

specific date was used to construct each of the age-depth models in the sisal_chronology table (Table 2). 175 

We followed the original authors’ decision regarding the exclusion of dates (i.e. because of high 176 

uncertainties, age reversals or high detrital content). However, some dates used in the original age-depth 177 

model were not used in the SISALv2 chronologies to prevent unrealistic age-depth relationships (i.e. age 178 

inversions). Information on whether a particular date was used for the construction of specific type of 179 

age-depth model is provided in the dating table, under columns labelled date_used_lin_interp, 180 

date_used_lin_reg, date_used_Bchron, date_used_Bacon, date_used_OxCal, date_used_copRa and 181 

date_used_StalAge (Table 2). 182 

The dating and the sample tables were modified to accommodate the inclusion of new entities in the 183 

database. Specifically, the pre-defined options lists were expanded, options that had never been used 184 

were removed, and some typographical errors in the field names were corrected; these changes are listed 185 

in Table 3. 186 
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3. Quality Control 187 

3.1 Quality control of individual speleothem records 188 

The quality control procedure for individual records newly incorporated in the SISALv2 database is based 189 

on the steps described in Atsawawaranunt et al. (2018a). We have updated the Python database scripts 190 

to provide a more thorough quality assessment of individual records. Additional checks of the dating table 191 

resulted in modifications in the 230Th_232Th, 230Th_238U, 234U_238U, ini230Th_232Th, 238U_content, 192 

230Th_content, 232Th_content and decay constant fields in the dating table for 60 entities. A summary 193 

of the fields that are both automatically and manually checked before uploading a record to the database 194 

is available in Appendix 1. 195 

Analyses of the data included in SISALv1 (Braun et al., 2019a; Burstyn et al., 2019; Deininger et al., 2019; 196 

Kaushal et al., 2018; Kern et al., 2019; Lechleitner et al., 2018; Oster et al., 2019; Zhang et al., 2019) and 197 

SISALv1b (Comas-Bru et al., 2019) revealed a number of errors in specific records that have now been 198 

corrected. These revisions include, for example, updates in mineralogies (sample.mineralogy), revised 199 

coordinates (site.latitude and/or site.longitude) and addition of missing information that was previously 200 

entered as “unknown”. The fields affected and the number of records with modifications are listed in 201 

Table 4. All revisions are also documented at Comas-Bru et al., 2020. 202 

3.2 Quality control of the age-depth models in the SISAL chronology 203 

The conception and the test of the R workflow, integrating all methods but OxCal, was outlined in Roesch 204 

and Rehfeld (2019) and includes automatized checks for the final chronologies except for OxCal. The 205 

quality control parameters obtained from OxCal were compared with the recommended values of 206 

Agreement Index (A) > 60% and Convergence (C) > 95%, in accordance with the guidelines in Bronk Ramsey 207 

(2008). In addition to both model agreement and P_Sequence convergence meeting these criteria, at least 208 

90% of individual dates had to have an acceptable Agreement and Convergence themselves. OxCal age-209 

depth models failing to meet these criteria were not included in the SISAL chronology table.  210 

An overview of the evaluation results for the age-depth models constructed in automated mode is given 211 

in Figure 4. Three nested criteria are used to evaluate them. Firstly, chronologies with reversals (Check 1) 212 

are automatically rejected (score -1). Secondly, the final chronology should flexibly follow clear growth 213 

rate changes (Check 2), such that 70% of the dates are encompassed in the final age-depth model within 214 

4 sigma uncertainty (score +1). Thirdly, temporal uncertainties are expected to increase between dates 215 

and near hiatuses (Check 3). This criterion is met in the automated screening (score +1) if the Interquartile 216 

range (IQR) is higher between dates or at hiatuses than at dates. Only entities that pass all three criteria 217 
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are considered successful. All age-depth models that satisfied Check 1 were also evaluated in an expert-218 

based manual screening by ten people. If more than two experts agreed that an individual age-depth 219 

model was unreliable or inconsistencies, such as large offsets between the original age model and the 220 

dates marked as 'used', occurred, the model was not included in the SISAL chronology table. This 221 

automatic and expert-based quality control screening resulted in 2,138 new age-depth models 222 

constructed for 503 SISAL entities.  223 

4. Recommendation for the use of SISAL chronologies 224 

The original age-depth models for every entity are available in SISALv2. However, given the lack of age 225 

uncertainties for most of the records, we recommend considering the SISAL chronologies with their 226 

respective 95% confidence intervals whenever possible. No single age-depth modelling approach is 227 

successful for all entities, and we therefore recommend that all the methods for a specific entity are used 228 

together in visual and/or statistical comparisons. Depending on methodological choices, age-depth 229 

models compatible with the dating evidence can result in considerable temporal differences for 230 

transitions (Figure 5). For analyses relying on the temporal alignment of records (e.g. cross-correlation), 231 

age-depth model uncertainties should be considered using the ensemble of compatible age-depth models 232 

as described, e.g., in Mudelsee et al. (2012), Rehfeld and Kurths (2014) and Hu et al. (2017). 233 

5. Overview of database contents  234 

SISALv2 contains 353.976 δ18O and 200,613 δ13C measurements from 673 individual speleothem records 235 

and 18 composite records from 293 cave systems (Table 5; Figure 2; Comas-Bru et al., 2020). There are 20 236 

records included in SISALv2 that are identified as being superseded and linked to the newer records; their 237 

original datasets are included in the database for completeness. This is an improvement of 235 records 238 

from SISALv1b (Atsawawaranunt et al., 2019; Comas-Bru et al., 2019; Table 6). SISALv2 represents 72% of 239 

the existing speleothem records identified by the SISAL Working Group and more than three times the 240 

number of speleothem records in the NCEI-NOAA repository (n = 210 as of November 2019), which is the 241 

one most commonly used by the speleothem community to make their data publicly available. SISALv2 242 

also contains nine records that have not been published or are only available in PhD theses. 243 

The published age-depth models of all speleothems are accessible in the original_chronology metadata 244 

table and our standardised age-depth models are available at the sisal_chronology table for 512 245 

speleothems. Temporal uncertainties are now provided for 79% of the records in the SISAL database.  246 

This second version of the SISAL database has an improved spatial coverage compared to SISALv1 247 

(Atsawawaranunt et al., 2018b) and SISALv1b (Figure 3; Atsawawaranunt et al., 2019). SISALv2 contains 248 

https://doi.org/10.5194/essd-2020-39

O
p
e
n
 A

c
c
e
s
s  Earth System 

 Science 

Data

D
is

c
u
s
s
io

n
s

Preprint. Discussion started: 13 March 2020

c© Author(s) 2020. CC BY 4.0 License.



10 

 

most published records from Oceania (80.2%), Africa (73.7%) and South America (77.6%), but 249 

improvements are still possible in regions like the Middle East (42.3%) and Asia (64.8%) (Table 6).  250 

The temporal distribution of records for the past 2,000 years is good, with 181 speleothems covering at 251 

least one-third of this period and 84 records covering the entire last 2k (-68 to 2,000 years BP) with an 252 

average resolution of 20 isotope measurements in every 100-year slice (Figure 6a). There are 182 records 253 

that cover at least one-third of the Holocene (last 11,700 years BP) with 37 of these covering the whole 254 

period with at least one isotope measurement in every 500-year period (Figure 6b). There are 84 entities 255 

during the deglaciation period (21,000 to 11,700 years BP) with at least one measurement in every 500-256 

year time period (Figure 6b). The Last Interglacial (130,000 to 115,000 years BP) is covered by 47 257 

speleothem records that record at least one-third of this period with, on average, 25 isotope 258 

measurements at every 1,000-year time-slice (Fig. 6c). 259 

This updated SISALv2 database now provides the basis not only for comparing a large number of 260 

speleothem-based environmental reconstructions on regional to a global scale, but also allows for 261 

comprehensive analyses of stable isotope records on various timescales from multi-decadal to orbital. 262 

6. Data and code availability:  263 

The database is available in SQL and CSV format from http://dx.doi.org/10.17864/1947.242 (Comas-Bru 264 

et al., 2020). The code used for constructing the linear interpolation, linear regression, Bchron, Bacon, 265 

copRa and StalAge age-depth models is available at https://github.com/palaeovar/SISAL.AM. rBacon 266 

package (version 2.3.9.1) is available on CRAN (https://cran.r-267 

project.org/web/packages/rbacon/index.html). The code used to construct the OxCal age-depth models 268 

and trim the ensembles output to the last 2,000 iterations is available at 269 

https://doi.org/10.5281/zenodo.3586280. The ensembles are available at 270 

https://doi.org/10.5281/zenodo.3591197. The workbook used to submit data to SISAL is available as a 271 

supplementary document of Comas-Bru and Harrison (2019); also available at 272 

https://10.5281/zenodo.3631403. The codes for the quality control assessment of the data submitted to 273 

SISAL can be obtained from https://10.5281/zenodo.3631403. The codes to assess the dating table in 274 

SISALv2 are available at  https://github.com/jensfohlmeister/QC_SISALv2_dating_metadata and 275 

https://10.5281/zenodo.3631443. Details on the Quality Control assessments are available in the 276 

Supplementary material. 277 
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List of Figures and Tables 362 

Figure 1: Summary of the dating information on which the original age-depth models are based 363 

(a) and the original age-depth model types (b) present in SISALv2. 364 

 365 

 366 
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Figure 2: Cave sites included in the version 1, 1b and 2 of the SISAL database on the Global Karst 369 

Aquifer Map (WOKAM project; Chen et al., 2017: https://www.un-igrac.org/resource/world-370 

karst-aquifer-map-wokam). 371 

 372 
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Figure 3: The structure of the SISAL database version 2. Fields and table marked with (*) refer to 374 

new information added to SISALv1b; see tables 1 and 2 for details. The colours refer to the format 375 

of that field: Enum, Int, Varchar, Double or Decimal. More information on the list of pre-defined 376 

menus can be found in Atsawawaranunt et al. (2018a). 377 

 378 

 379 
  380 
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Figure 4: Visual summary of quality control of the automated SISAL chronology construction. 381 

The evaluation of the age-depth models for each method (x-axis) is given for each entity (y-axis) 382 

that was considered for the construction (n=533). Black lines mark age-depth models that could 383 

not be computed. Age-depth models dropped in the automated or expert evaluation are 384 

marked by grey lines.  Age-depth models retained in SISALv2 are scored from 1 (only one 385 

criterion satisfied) to 3 (all criteria satisfied) in shades of blue. For 504 records alternative age-386 

depth models with uncertainties are provided (green lines) in the “success” column. 387 

 388 

https://doi.org/10.5194/essd-2020-39

O
p
e
n
 A

c
c
e
s
s  Earth System 

 Science 

Data

D
is

c
u
s
s
io

n
s

Preprint. Discussion started: 13 March 2020

c© Author(s) 2020. CC BY 4.0 License.



18 

 

Figure 5: Illustration of the impact of the age model choice on reconstructed speleothem 389 

chronology illustrated by the KNI-51-H speleothem record (entity_id 342; Denniston et al., 390 

2013b). Panel (a) shows the median and mean age estimates for each downcore sample from 391 

the different age models; (b) shows the interquartile range (IQR) of the ages. Horizontal dashed 392 

lines show the depths of the measured dates; (c) shows the isotopic record using the different 393 

age models. 394 

 395 
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Figure 6: Global and regional temporal coverage of entities in the SISALv2. (a) last 2,000 years 397 

with a bin size of 10 years; (b) last 21,000 years with a bin size of 500 years; (c) the period between 398 

115,000 and 130,000 years BP with a bin size of 1,000 yrs. BP refers to “Before Present” where 399 

present is 1950 CE. Regions defined as in Table 7.  400 

 401 

  402 
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Table 1: Details of the sisal_chronology table. All ages in SISAL are reported as years BP (Before 403 

Present) where present is 1950 CE. 404 

 405 

Field label      Description Format Constraints 

sample_id Refers to the unique identifier for 

the sample (as given in the sample 

table) 

Numeric Positive 

integer 

lin_interp_age Age of the sample in years 

calculated with linear interpolation 

between dates 

Numeric None 

lin_interp_age_uncert_pos Positive 2-sigma uncertainty of the 

age of the sample in years 

calculated with linear interpolation 

between dates 

Numeric Positive 

decimal 

lin_interp_age_uncert_neg Negative 2-sigma uncertainty of the 

age of the sample in years 

calculated with linear interpolation 

between dates 

Numeric Positive 

decimal 

lin_reg_age Age of the sample in years 

calculated with linear regression 

Numeric None 

lin_reg_age_uncert_pos Positive 2-sigma uncertainty of the 

age of the sample in years 

calculated with linear regression 

Numeric Positive 

decimal 

lin_reg_age_uncert_neg Negative 2-sigma uncertainty of the 

age of the sample in years 

calculated with linear regression 

Numeric Positive 

decimal 

Bchron_age Age of the sample in years 

calculated with Bchron 

Numeric None 

Bchron _age_uncert_pos Positive 2-sigma uncertainty of the 

age of the sample in years 

calculated with Bchron 

Numeric Positive 

decimal 

Bchron _age_uncert_neg Negative 2-sigma uncertainty of the 

age of the sample in years 

calculated with Bchron 

Numeric Positive 

decimal 

Bacon_age Age of the sample in years 

calculated with Bacon 

Numeric None 

Bacon _age_uncert_pos Positive 2-sigma uncertainty of the 

age of the sample in years 

calculated with Bacon 

Numeric Positive 

decimal 

Bacon_age_uncert_neg Negative 2-sigma uncertainty of the 

age of the sample in years 

calculated with Bacon 

Numeric Positive 

decimal 

OxCal_age Age of the sample in years 

calculated with OxCal 

Numeric None 

OxCal_age_uncert_pos Positive 2-sigma uncertainty of the 

age of the sample in years 

calculated with OxCal 

Numeric Positive 

decimal 

OxCal_age_uncert_neg Negative 2-sigma uncertainty of the 

age of the sample in years 

calculated with OxCal 

Numeric Positive 

decimal 

copRa_age Age of the sample in years 

calculated with copRa 

Numeric None 

copRa _age_uncert_pos Positive 2-sigma uncertainty of the 

age of the sample in years 

calculated with copRa 

Numeric Positive 

decimal 
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copRa _age_uncert_neg Negative 2-sigma uncertainty of the 

age of the sample in years 

calculated with copRa 

Numeric Positive 

decimal 

Stalage_age Age of the sample in years 

calculated with StalAge 

Numeric None 

Stalage_age_uncert_pos Positive 2-sigma uncertainty of the 

age of the sample in years 

calculated with StalAge 

Numeric Positive 

decimal 

Stalage_age_uncert_neg Negative 2-sigma uncertainty of the 

age of the sample in years 

calculated with StalAge 

Numeric Positive 

decimal 

 406 

Table 2: Changes made to the Dating table to accommodate the new age models. These 407 

changes are marked with (*) in Figure 2. 408 

 409 

Action Field label     Description Format Constraints 

     

Field 

added 

date_used_lin_age Indication whether that date 

was used to construct the linear 

age model 

Text Selected from 

pre-defined list: 

“yes”, “no”. 
Field 

added 

date_used_lin_reg Indication whether that date 

was used to construct the age 

model based on linear 

regression 

Text Selected from 

pre-defined list: 

“yes”, “no”. 

Field 

added 

date_used_Bchron Indication whether that date 

was used to construct the age 

model based on Bcrhon 

Text Selected from 

pre-defined list: 

“yes”, “no”. 
Field 

added 

date_used_Bacon Indication whether that date 

was used to construct the age 

model based on Bacon 

Text Selected from 

pre-defined list: 

“yes”, “no”. 
Field 

added 

date_used_OxCal Indication whether that date 

was used to construct the age 

model based on OxCal 

Text Selected from 

pre-defined list: 

“yes”, “no”. 
Field 

added  

date_used_copRa Indication whether that date 

was used to construct the 

copRa_based age model 

Text Selected from 

pre-defined list: 

“yes”, “no”. 
Field 

added 

date_used_StalAge Indication whether that date 

was used to construct the age 

model based on StalAge 

Text Selected from 

pre-defined list: 

“yes”, “no”. 

 410 

  411 

https://doi.org/10.5194/essd-2020-39

O
p
e
n
 A

c
c
e
s
s  Earth System 

 Science 

Data

D
is

c
u
s
s
io

n
s

Preprint. Discussion started: 13 March 2020

c© Author(s) 2020. CC BY 4.0 License.



22 

 

Table 3: Changes made to tables other than the sisal_chronology since the publication of SISALv1 412 

(Atsawawaranunt et al., 2018a; Atsawawaranunt et al., 2018b). 413 

Table 

name 

Action Field label Reason Format Constraints 

Dating Removed 

“sampling gap” 
option 

date_type This option was 

never used 

Text Selected from 

pre-defined list 

 “others” option 
changed to 

“other” 

decay_constant Correction of 

typo 

Text Selected from 

pre-defined list 

 Added “other” 
option 

calib_used Option added 

to 

accommodate 

new entities 

Text Selected from 

pre-defined list 

 Added “other” 
option 

date_type Option added 

to 

accommodate 

new entities 

Text Selected from 

pre-defined list 

Sample Added “other” 
option 

original_chronolog

y 

Option added 

to 

accommodate 

new entities 

Text Selected from 

pre-defined list 

 Added “other” 
option 

ann_lam_check Option added 

to 

accommodate 

new entities 

Text Selected from 

pre-defined list 

 414 

Table 4: Summary of the modifications applied to records already in version 1 (Atsawawaranunt 415 

et al., 2018b) and version 1b (Atsawawaranunt et al., 2019) of the SISAL database. Mistakes in 416 

previous versions of the database were identified as outlined in the Supplementary material and 417 

through analysing the data for the SISAL publications.  418 

 419 

Modification V1 to v1b V1b to v2 

Site table 

Number of new sites 37 82 

Sites with new entities 11 32 

Sites with altered site.site_name altered 3 15 

Sites with changes in site.latitude 4 29 

Sites with changes in site.longitude 6 32 

Sites with changes in site.elevation 13 11 

Sites with site.geology updated 7 6 

Sites with site.rock_age info updated 3 8 

Sites with site.monitoring info updated 0 13 

Entity table 

Number of new entities 74 236 

How many entities were added to pre-existing sites? 17 84 

Entities with revised entity_name 2 25 

Entities with updated entity.entity_status 1 10 

https://doi.org/10.5194/essd-2020-39

O
p
e
n
 A

c
c
e
s
s  Earth System 

 Science 

Data

D
is

c
u
s
s
io

n
s

Preprint. Discussion started: 13 March 2020

c© Author(s) 2020. CC BY 4.0 License.



23 

 

Entities with altered entity.corresponding current 0 11 

Entities with altered entity.depth_ref? 0 1 

Entities with altered entity.cover_thickness 1 3 

Entities with altered entity.distance_entrance 0 3 

Entities with revised entity. speleothem_type 14 4 

Entities with revised entity.drip_type 10 2 

Entities with altered entity.d13C 1 0 

Entities with altered entity.d18O 1 0 

Entities with altered entity.d18O_water_equilibrium 4 6 

Entities with altered entity.trace_elements 1 2 

Entities with altered entity.organics 1 2 

Entities with altered entity.fluid_inclusions 1 3 

Entities with altered entity.mineralogy_petrology_fabric 1 2 

Entities with altered entity.clumped_isotopes 1 3 

Entities with altered entity.noble_gas_temperatures 1 2 

Entities with altered entity.C14 1 2 

Entities with altered entity.ODL 1 2 

Entities with altered entity.Mg_Ca 1 2 

Entities with altered entity.contact (mostly correction of typos) 7 32 

Entities with altered entity.Data_DOI_URL (revision mostly to 

permanent links) 

134 14 

Dating table 

Entities with changes in the dating table 70 260 

Addition of “Event: hiatus” to an entity 0 3 

How many hiatuses had their depth changed? 2 7 

Entities with the depths of “Event: start/end of laminations” 
changed. 

0 5 

Entities with altered dating.date_type 11 30 

Entities with altered dating.depth_dating 14 45 

Entities with altered dating.dating_thickness 14 37 

Entities with altered dating.material_dated 5 62 

Entities with altered dating.min_weight 13 56 

Entities with altered dating.max_weight 19 36 

Entities with altered dating.uncorr_age 18 48 

Entities with altered dating.uncorr_age_uncert_pos 12 53 

Entities with altered dating.uncorr_age_uncert_neg 12 41 

Entities with altered dating.14C_correction 17 36 

Entities with altered dating.calib_used 13 32 

Entities with altered dating.date_used 4 51 

Entities with altered dating.238U_content 11 45 

Entities with altered dating.238U_uncertainty 16 28 

Entities with altered dating.232Th_content 15 46 

Entities with altered dating.232Th_uncertainty 14 50 

Entities with altered dating.230Th_content 11 40 

Entities with altered dating.230Th_uncertainty 15 38 

Entities with altered dating.230Th_232Th_ratio 5 59 

Entities with altered dating.230Th_232Th_ratio_uncertainty 14 48 

Entities with altered dating.230Th_238U_activity 19 39 
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Entities with altered dating.230Th_238U_activity_uncertainty 17 44 

Entities with altered dating.234U_238U_activity 12 51 

Entities with altered dating.234U_238U_activity_uncertainty 11 48 

Entities with altered dating.ini_230Th_232Th_ratio 15 59 

Entities with altered 

dating.ini_230Th_232Th_ratio_uncertainty 

8 60 

Entities with altered dating.decay_constant 17 55 

Entities with altered dating.corr_age 17 35 

Entities with altered dating.corr_age_uncert_pos 13 46 

Entities with altered dating.corr_age_uncert_neg 9 47 

Sample table 

Altered sample.depth_sample 0 15 

Altered sample.mineralogy 0 20 

Altered sample.arag_corr 11 20 

How many entities had their d18O time-series altered (i.e. 

changes in depth and/or isotope values as in duplicates)? 

13 95 

How many entities had their d13C time-series altered (i.e. 

changes in depth and/or isotope values as in duplicates)? 

8 64 

 

Original chronology 

Entities with altered original_chronology.interp_age 1 42 

Entities with altered 

original_chronology.interp_age_uncert_pos 

0 14 

Entities with altered 

original_chronology.interp_age_uncert_neg 

0 14 

References 

How many entities had their references changed 

(changes/additions/removals)? 

6 16 

How many citations have a different pub_DOI? 2 16 

Notes 

Sites with notes removed 7 5 

Sites with notes added 32 68 

Sites with notes modified 21 34 

 420 

Table 5: Information on new speleothem records (entities) added to the SISAL_v2 database from 421 

SISALv1b (Comas-Bru et al., 2019). There may be multiple entities from a single cave, here identified as 422 

the site. Latitude (Lat) and Longitude (Lon) are given in decimal degrees North and East respectively.  423 

 424 

Site_i

d 

Site_name Lat (N) Lon (E) Region Entity_i

d 

Entity_name Reference 

2 Kesang cave 42.87 81.75 China 620 CNKS-2 Cai et al. 

(2017) 

621 CNKS-3 Cai et al. 

(2017) 

622 CNKS-7 Cai et al. 

(2017) 

623 CNKS-9 Cai et al. 

(2017) 

6 Hulu cave 32.5 119.17 China 617 MSP Cheng et al. 

(2006) 

618 MSX Cheng et al. 

(2006) 
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619 MSH Cheng et al. 

(2006) 

12 Mawmluh 

cave 

25.262

2 

91.8817 India 476 ML.1 Kathayat et 

al. (2018) 

477 ML.2 Kathayat et 

al. (2018) 

495 KM-1 Huguet et 

al. (2018) 

13 Ball Gown 

cave 

-17.03 125 Australia 633 BGC-5 Denniston 

et al. 

(2013b); 

Denniston 

et al. 

(2017a) 

634 BGC-10 Denniston 

et al. 

(2013b); 

Denniston 

et al. 

(2017a) 

635 BGC-11_2017 Denniston 

et al. 

(2013b); 

Denniston 

et al. 

(2017a) 

636 BGC-16 Denniston 

et al. 

(2013b); 

Denniston 

et al. 

(2017a) 

14 Lehman caves 39.01 -114.22 United 

States 

641 CDR3 Steponaitis 

et al. (2015) 

642 WR11 Steponaitis 

et al. (2015) 

15 Baschg cave 47.250

1 

9.6667 Austria 643 BA-5 Moseley et 

al. (2019) 

644 BA-7 Moseley et 

al. (2019) 

23 Lapa grande 

cave 

-14.37 -44.28 Brazil 614 LG12B Stríkis et al. 

(2018) 

615 LG10 Stríkis et al. 

(2018) 

616 LG25 Stríkis et al. 

(2018) 

24 Lapa sem fim 

cave 

-

16.150

3 

-

44.6281 

Brazil 603 LSF15 Stríkis et al. 

(2018) 

604 LSF3_2018 Stríkis et al. 

(2018) 

605 LSF13 Stríkis et al. 

(2018) 

606 LSF11 Stríkis et al. 

(2018) 

607 LSF9 Stríkis et al. 

(2018) 
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27 Tamboril cave -16 -47 Brazil 594 TM6 Ward et al. 

(2019) 

39 Dongge cave 25.283

3 

108.083

3 

China 475 DA_2009 Cheng et al. 

(2009) 

54 Sahiya cave 30.6 77.8667 India 478 SAH-2 Kathayat et 

al. (2017) 

479 SAH-3 Kathayat et 

al. (2017) 

480 SAH-6 Kathayat et 

al. (2017) 

65 Whiterock 

cave 

4.15 114.86 Malaysia 

(Borneo) 

685 WR12-01 Carolin et 

al. (2016) 

686 WR12-12 Carolin et 

al. (2016) 

72 Ascunsa cave 45 22.6 Romania 582 POM1 Staubwasse

r et al. 

(2018) 

82 Hollywood 

cave 

-41.95 171.47 New 

Zealand 

673 HW-1 Williams et 

al. (2005) 

86 Modric cave 44.256

8 

15.5372 Croatia 631 MOD-27 Rudzka-

Phillips et 

al. (2013) 

632 MOD-21 Rudzka et 

al. (2012) 

105 Schneckenloc

h cave 

47.433

3 

9.8667 Austria 663 SCH-6 Moseley et 

al. (2019) 

113 Paixao cave -

12.618

2 

-

41.0184 

Brazil 611 PX5 Strikis et al. 

(2015) 

612 PX7_2018 Stríkis et al. 

(2018) 

115 Hölloch im 

Mahdtal 

47.378

1 

10.1506 Germany 664 HOL-19 Moseley et 

al. (2019) 

117 Bunker cave 51.367

5 

7.6647 Germany 596 Bu2_2018 Weber et al. 

(2018) 

128 Buckeye creek 37.98 -80.4 United 

States 

681 BCC-9 Cheng et al. 

(2019) 

682 BCC-10_2019 Cheng et al. 

(2019) 

683 BCC-30 Cheng et al. 

(2019) 

135 Grotte de 

Piste 

33.95 -4.246 Morocco 464 GP5 Ait Brahim 

et al. (2018) 

591 GP2 Ait Brahim 

et al. (2018) 

138 Moomi cave 12.55 54.2 Yemen 

(Socotra) 

481 M1-2 Mangini, 

Cheng et 

al., 

unpublished

; Burns et 

al. (2003) 

Burns et al. 

(2004) 

140 Sanbao cave 31.667 110.433

3 

China 482 SB3 Wang et al. 

(2008) 

483 SB-10_2008 Wang et al. 

(2008) 
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484 SB11 Wang et al. 

(2008) 

485 SB22 Wang et al. 

(2008) 

486 SB23 Wang et al. 

(2008) 

487 SB24 Wang et al. 

(2008) 

488 SB25-1 Wang et al. 

(2008) 

489 SB25-2 Wang et al. 

(2008) 

490 SB-26_2008 Wang et al. 

(2008) 

491 SB34 Wang et al. 

(2008) 

492 SB41 Wang et al. 

(2008) 

493 SB42 Wang et al. 

(2008) 

494 TF Wang et al. 

(2008) 

141 Sofular cave 41.416

7 

31.9333 Turkey 456 SO-2 Badertscher 

et al. (2011) 

Fleitmann 

et al. 

(2009); 

Göktürk et 

al. (2011) 

687 SO-4 Badertscher 

et al. (2011) 

688 SO-6 Badertscher 

et al. (2011) 

689 SO-14B Badertscher 

et al. (2011) 

145 Antro del 

Corchia 

43.983

3 

10.2167 Italy 665 CC-1_2018 Tzedakis et 

al. (2018) 

666 CC-5_2018 Tzedakis et 

al. (2018) 

667 CC-7_2018 Tzedakis et 

al. (2018) 

668 CC-28_2018 Tzedakis et 

al. (2018) 

669 CC_stack Tzedakis et 

al. (2018) 

670 CC27 Isola et al. 

(2019) 

155 KNI-51 -15.3 128.62 Australia 637 KNI-51-1 Denniston 

et al. 

(2017a) 

638 KNI-51-8 Denniston 

et al. 

(2017a) 

160 Soreq cave 31.755

8 

35.0226 Israel 690 Soreq-

composite185 

Bar-

Matthews 

et al. (2003) 
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165 Ruakuri cave -36.27 175.08 New 

Zealand 

674 RK-A Williams et 

al. (2010) 

165 Ruakuri cave -36.27 175.08 New 

Zealand 

675 RK-B Williams et 

al. (2010) 

165 Ruakuri cave -36.27 175.08 New 

Zealand 

676 RK05-1 Whittaker 

(2008) 

165 Ruakuri cave -36.27 175.08 New 

Zealand 

677 RK05-3 Whittaker 

(2008) 

165 Ruakuri cave -36.27 175.08 New 

Zealand 

678 RK05-4 Whittaker 

(2008) 

177 Santo Tomas 

cave 

22.55 -83.84 Cuba 608 CM_2019 Warken et 

al. (2019) 

609 CMa Warken et 

al. (2019) 

610 CMb Warken et 

al. (2019) 

179 Closani Cave 45.10 22.8 Romania 390 C09-2 Warken et 

al. (2018) 

182 Kotumsar cave 19 82 India 590 KOT-I Band et al. 

(2018) 

192 El Condor 

cave 

-5.93 -77.3 Peru 592 ELC-A Cheng et al. 

(2013) 

593 ELC-B Cheng et al. 

(2013) 

198 Lianhua cave, 

Hunan 

29.48 109.533

3 

China 496 LH-2 Zhang et al. 

(2013) 

213 Tausoare cave 47.433

3 

24.5167 Romania 457 1152 Staubwasse

r et al. 

(2018) 

214 Cave C126 -22.1 113.9 Australia 458 C126-117 Denniston 

et al. 

(2013a) 

459 C126-118 Denniston 

et al. 

(2013a) 

215 Chaara cave 33.955

8 

-4.2461 Morocco 460 Cha2_2018 Ait Brahim 

et al. (2018) 

588 Cha2_2019 Ait Brahim 

et al. (2019) 

589 Cha1 Ait Brahim 

et al. (2019) 

216 Dark cave 27.2 106.166

7 

China 461 D1 Jiang et al. 

(2013) 

462 D2 Jiang et al. 

(2013) 

217 E'mei cave 29.5 115.5 China 463 EM1 Zhang et al. 

(2018b) 

218 Nuanhe cave 41.333

3 

124.916

7 

China 465 NH6 Wu et al. 

(2012) 

466 NH33 Wu et al. 

(2012) 

219 Shennong 

cave 

28.71 117.26 China 467 SN17 Zhang et al. 

(2018a) 

220 Baeg-nyong 

cave 

37.27 128.58 South 

Korea 

468 BN-1 Jo et al. 

(2017) 

https://doi.org/10.5194/essd-2020-39

O
p
e
n
 A

c
c
e
s
s  Earth System 

 Science 

Data

D
is

c
u
s
s
io

n
s

Preprint. Discussion started: 13 March 2020

c© Author(s) 2020. CC BY 4.0 License.



29 

 

221 La Vierge cave -

19.757

2 

63.3703 Rodrigues 469 LAVI-4 Li et al. 

(2018) 

222 Patate cave -

19.758

3 

63.3864 Rodrigues 470 PATA-1 Li et al. 

(2018) 

223 Wanxiang 

cave 

33.32 105 China 471 WX42B Zhang et al. 

(2008)} 

679 WXSM-51 Johnson et 

al. (2006) 

680 WXSM-52 Johnson et 

al. (2006) 

224 Xianglong 

cave 

33 106.33 China 472 XL16 Tan et al. 

(2018a) 

473 XL2 Tan et al. 

(2018a) 

474 XL26 Tan et al. 

(2018a) 

225 Chiflonkhakha 

cave 

-

18.122

2 

-

65.7739 

Bolivia 497 Boto 1 Apaestegui 

et al. (2018) 

498 Boto 3 Apaestegui 

et al. (2018) 

499 Boto 7 Apaestegui 

et al. (2018) 

226 Cueva del 

Diamante 

-5.73 -77.5 Peru 500 NAR-C Cheng et al. 

(2013) 

501 NAR-C-D Cheng et al. 

(2013) 

502 NAR-C-F Cheng et al. 

(2013) 

503 NAR-D Cheng et al. 

(2013) 

504 NAR-F Cheng et al. 

(2013) 

227 El Capitan 

cave 

56.162 -

133.319 

United 

States 

505 EC-16-5-F Wilcox et al. 

(2019) 

228 Bat cave 32.1 -104.26 United 

States 

506 BC-11 Asmerom et 

al. (2013) 

229 Actun Tunichil 

Muknal 

17.1 -88.85 Belize 507 ATM-7 Frappier et 

al. (2002); 

Frappier et 

al. (2007); 

Jamieson et 

al. (2015) 

230 Marota cave -

12.622

7 

-

41.0216 

Brazil 508 MAG Stríkis et al. 

(2018) 

231 Pacupahuain 

cave 

-11.24 -75.82 Peru 509 P09PH2 Kanner et 

al. (2012) 

232 Rio Secreto 

cave system 

20.59 -87.13 Mexico 510 Itzamna Medina-

Elizalde et 

al., (2016); 

Medina-

Elizalde et 

al. (2017) 
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233 Robinson cave 33 -107.7 United 

States 

511 KR1 Polyak et al. 

(2017) 

234 Santana cave -

24.530

8 

-

48.7267 

Brazil 512 St8-a Cruz et al. 

(2006) 

513 St8-b Cruz et al. 

(2006) 

235 Cueva del 

Tigre Perdido 

-

5.9406 

-

77.3081 

Peru 514 NC-A van 

Breukelen 

et al. (2008) 

515 NC-B van 

Breukelen 

et al. (2008) 

236 Toca da Boa 

Vista 

-

10.160

2 

-

40.8605 

Brazil 516 TBV40 Wendt et al. 

(2019) 

 517 TBV63 Wendt et al. 

(2019) 

237 Umajalanta 

cave 

-18.12 -65.77 Bolivia 518 Boto 10 Apaestegui 

et al. (2018) 

238 Akalagavi cave 14.983

3 

74.5167 India 519 MGY Yadava et 

al. (2004) 

239 Baluk cave 42.433 84.733 China 520 BLK12B Liu et al. 

(2019) 

240 Baratang cave 12.083

3 

92.75 India 521 AN4 Laskar et al. 

(2013) 

522 AN8 Laskar et al. 

(2013) 

241 Gempa bumi 

cave 

-5 120 Indonesia 

(Sulawesi) 

523 GB09-03 Krause et al. 

(2019) 

524 GB11-09 Krause et al. 

(2019) 

242 Haozhu cave 30.683

3 

109.983

3 

China 525 HZZ-11 Zhang et al. 

(2016) 

526 HZZ-27 Zhang et al. 

(2016) 

243 Kailash cave 18.844

5 

81.9915 India 527 KG-6 Gautam et 

al. (2019) 

244 Lianhua cave, 

Shanxi 

38.166

7 

113.716

7 

China 528 LH1 Dong et al. 

(2018) 

529 LH4 Dong et al. 

(2018) 

530 LH5 Dong et al. 

(2018) 

531 LH6 Dong et al. 

(2018) 

532 LH9 Dong et al. 

(2018) 

533 LH30 Dong et al. 

(2018) 

245 Nakarallu cave 14.52 77.99 India 534 NK-1305 Sinha et al. 

(2018) 

246 Palawan cave 10.2 118.9 Malaysia 

(Northern 

Borneo) 

535 SR02 Partin et al. 

(2015) 

247 Shalaii cave 35.146

9 

45.2958 Iraq 536 SHC-01 Marsh et al. 

(2018); 

Amin Al-
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Manmi et 

al. (2019) 

537 SHC-02 Marsh et al. 

(2018); 

Amin Al-

Manmi et 

al. (2019) 

248 Shenqi cave 28.333 103.1 China 538 SQ1 Tan et al. 

(2018b) 

539 SQ7 Tan et al. 

(2018b) 

249 Shigao cave 28.183 107.167 China 540 SG1 Jiang et al. 

(2012) 

541 SG2 Jiang et al. 

(2012) 

250 Wuya cave 33.82 105.43 China 542 WY27 Tan et al. 

(2015) 

543 WY33 Tan et al. 

(2015) 

251 Zhenzhu cave 38.25 113.7 China 544 ZZ12 Yin et al. 

(2017) 

252 Andriamanilok

e 

-

24.051 

43.7569 Madagasc

ar 

545 AD4 Scroxton et 

al. (2019) 

253 Hoq cave 12.586

6 

54.3543 Yemen 

(Socotra) 

546 Hq-1 Van 

Rampelberg

h et al. 

(2013) 

547 STM1 Van 

Rampelberg

h et al. 

(2013) 

548 STM6 Van 

Rampelberg

h et al. 

(2013) 

254 PP29 -

34.207

8 

22.0876 South 

Africa 

549 46745 Braun et al. 

(2019b) 

550 46746-a Braun et al. 

(2019b) 

551 46747 Braun et al. 

(2019b) 

552 138862.1 Braun et al. 

(2019b) 

553 138862.2a Braun et al. 

(2019b) 

554 142828 Braun et al. 

(2019b) 

555 46746-b Braun et al. 

(2019b) 

556 138862.2b Braun et al. 

(2019b) 

255 Mitoho -

24.047

7 

43.7533 Madagasc

ar 

557 MT1 Scroxton et 

al. (2019) 
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256 Lithophagus 

cave 

46.828 22.6 Romania 558 LFG-2 Lauritzen 

and Onac 

(1999) 

257 Akcakale cave 40.449

8 

39.5365 Turkey 559 2p Jex et al. 

(2010); Jex 

et al. 

(2011); Jex 

et al. (2013) 

258 B7 cave 49 7 Germany 560 STAL-B7-7 Niggemann 

et al. 

(2003b) 

259 Cobre cave 42.98 -4.37 Spain 561 PA-8 Osete et al. 

(2012); 

Rossi et al. 

(2014) 

260 Crovassa 

Azzurra 

39.28 8.48 Italy 562 CA Columbu et 

al. (2019) 

261 El Soplao cave 43.296

2 

-4.3937 Spain 563 SIR-1 Rossi et al. 

(2018) 

262 Bleßberg cave 50.424

4 

11.0203 Germany 564 BB-1 Breitenbach 

et al. (2019) 

565 BB-3 Breitenbach 

et al. (2019) 

263 Orlova Chuka 

cave 

43.593

7 

25.9597 Bulgaria 566 ocz-6 Pawlak et 

al. (2019) 

264 Strašna peć 
cave 

44.004

9 

15.0388 Croatia 567 SPD-1 Lončar et al. 
(2019) 

568 SPD-2 Lončar et al. 
(2019) 

265 Coves de 

Campanet 

39.793

7 

2.9683 Spain 569 CAM-1 Dumitru et 

al. (2018) 

266 Cueva Victoria 37.632

2 

-0.8215 Spain 570 Vic-III-4 Budsky et 

al. (2019) 

267 Gruta do Casal 

da Lebre 

39.3 -9.2667 Portugal 571 GCL6 Denniston 

et al. 

(2017b) 

268 Pere Noel 

cave 

50 5.2 Belgium 572 PN-95-5 Verheyden 

et al. 

(2000); 

Verheyden 

et al. (2014) 

269 Gejkar cave 35.8 45.1645 Iraq 573 Gej-1 Flohr et al. 

(2017) 

270 Gol-E-Zard 

cave 

35.84 52 Iran 574 GZ14-1 Carolin et 

al. (2019) 

271 Jersey cave -35.72 148.49 Australia 575 YB-F1 Webb et al. 

(2014) 

272 Metro cave -41.93 171.47 New 

Zealand 

576 M-1 Logan 

(2011) 

273 Crystal cave 36.59 -118.82 United 

States 

577 CRC-3 McCabe-

Glynn et al. 

(2013) 

274 Terciopelo 

cave 

10.17 -85.33 Costa Rica 578 CT-1 Lachniet et 

al. (2009) 

579 CT-5 Lachniet et 

al. (2009) 
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580 CT-6 Lachniet et 

al. (2009) 

581 CT-7 Lachniet et 

al. (2009) 

275 Buraca 

Gloriosa 

39.533

3 

-8.7833 Portugal 583 BG41 Denniston 

et al. 

(2017b) 

584 BG66 Denniston 

et al. 

(2017b) 

585 BG67 Denniston 

et al. 

(2017b) 

586 BG611 Denniston 

et al. 

(2017b) 

587 BG6LR Denniston 

et al. 

(2017b) 

276 Béke cave 48.483

3 

20.5167 Hungary 595 BNT-2 Demény et 

al. (2019) 

  Czuppon et 

al. (2018) 

277 Huagapo cave -11.27 -75.79 Peru 597 P00-H2 Kanner et 

al. (2013) 

598 P00-H1 Kanner et 

al. (2013) 

599 P09-H1b Burns et al. 

(2019) 

600 P10-H5 Burns et al. 

(2019) 

601 P10-H2 Burns et al. 

(2019) 

602 PeruMIS6Composi

te 

Burns et al. 

(2019) 

278 Pink Panther 

cave 

32 -105.2 United 

States 

613 PP1 Asmerom et 

al. (2007) 

279 Staircase cave -

34.207

1 

22.0899 South 

Africa 

624 46322 Braun et al. 

(2019b) 

625 46330-a Braun et al. 

(2019b) 

626 46861 Braun et al. 

(2019b) 

627 50100 Braun et al. 

(2019b) 

628 142819 Braun et al. 

(2019b) 

629 142820 Braun et al. 

(2019b) 

630 46330-b Braun et al. 

(2019b) 

280 Atta cave 51.1 7.9 Germany 639 AH-1 Niggemann 

et al. 

(2003a) 

281 Venado cave 10.55 -84.77 Costa Rica 640 V1 Lachniet et 

al. (2004) 

https://doi.org/10.5194/essd-2020-39

O
p
e
n
 A

c
c
e
s
s  Earth System 

 Science 

Data

D
is

c
u
s
s
io

n
s

Preprint. Discussion started: 13 March 2020

c© Author(s) 2020. CC BY 4.0 License.



34 

 

282 Wadi Sannur 

cave 

28.616

7 

31.2833 Eqypt 691 WS-5d El-Shenawy 

et al. (2018) 

283 Babylon cave -41.95 171.47 New 

Zealand 

645 BN-1 Williams et 

al. (2005) 

646 BN-2 Williams et 

al. (2005) 

647 BN-3 P. Williams 

et al., 

unpublished 

284 Creighton`s 

cave 

-40.63 172.47 New 

Zealand 

648 CN-1 Williams et 

al. (2005) 

285 Disbelief cave -38.82 177.52 New 

Zealand 

649 Disbelief Lorrey et al. 

(2008) 

286 La Garma cave 43.430

6 

-3.6658 Spain 650 GAR-01_drill Baldini et al. 

(2015); 

Baldini et al. 

(2019) 

651 GAR-

01_laser_d18O 

Baldini et al. 

(2015) 

652 GAR-

01_laser_d13C 

Baldini et al. 

(2015) 

287 Twin Forks 

cave 

-40.63 172.48 New 

Zealand 

653 TF-2 Williams et 

al. (2005) 

288 Wet Neck 

cave 

-40.7 172.48 New 

Zealand 

654 WN-4 Williams et 

al. (2005) 

655 WN-11 Williams et 

al. (2005) 

289 Gassel 

Tropfsteinhöhl

e 

47.822

8 

13.8428 Austria 656 GAS-12 Moseley et 

al. (2019) 

657 GAS-13 Moseley et 

al. (2019) 

658 GAS-22 Moseley et 

al. (2019) 

659 GAS-25 Moseley et 

al. (2019) 

660 GAS-27 Moseley et 

al. (2019) 

661 GAS-29 Moseley et 

al. (2019) 

290 Grete-Ruth 

Shaft 

47.542

9 

12.0272 Austria 662 HUN-14 Moseley et 

al. (2019) 

292 Limnon cave 37.960

5 

22.1403 Greece 671 KTR-2 Peckover et 

al. (2019) 

293 Tham Doun 

Mai 

20.75 102.65 Laos 672 TM-17 Wang et al. 

(2019) 

294 Palco cave 18.35 -66.5 Puerto 

Rico 

684 PA-2b Rivera-

Collazo et 

al. (2015) 

179 Closani Cave 45.10 22.8 Romania 390 C09-2 Warken et 

al. (2018) 
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Table 6: Percentage of entities uploaded to the different versions of the SISAL database with 426 

respect to the number of records identified by the SISAL working group as of November 2019. 427 

The number of identified records includes potentially superseded speleothem records. Regions 428 

are defined as: Oceania (-60° < Lat < 0°; 90° < Lon < 180°); Asia (0° < Lat < 60°; 60° < Lon < 130°);  429 

Middle East (7.6° < Lat < 50°; 26° < Lon < 59°); Africa (-45° < Lat < 36.1°; -30° < Lon < 60°; with 430 

records in the Middle East region removed); Europe (36.7° < Lat < 75°; -30° < Lon < 30°; plus 431 

Gibraltar and Siberian sites); South America (S. Am; -60° < Lat < 8°; -150° < Lon < -30°); North and 432 

Central America (N./C. Am; 8.1° < Lat < 60°; -150° < Lon < -50°)  433 

 434 

Region Version 1 Version 1b Version 2 

Entiti

es 

Sites Entities Sites Entities Sites 

Oceania 47.7 36.7 56.8 51.0 80.2 69.4 

Asia 36.2 28.8 41.1 33.3 64.8 48.5 

Middle East 21.2 31.1 28.8 35.6 42.3 48.9 

Africa 63.2 62.5 63.2 62.5 73.7 87.5 

Europe 48.0 51.9 54.6 58.7 75.3 77.9 

S. Am 30.6 39.5 40.8 50.0 77.6 73.7 

N./C. Am 35.7 36.7 51.8 56.7 70.5 73.3 
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