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Abstract. This paper is devoted to an exhaustive presentation of a fast 

computation numerical tool, dedicated to the simulation of transient currents 

induced by stochastic events in microelectronic devices. This is a part of a 

numerical platform, SITARe, combining a spice simulator with the semi-

analytical model presented here. The paper describes the theoretical model, 

the calibration. An instance of application illustrates the ability of the tool. 

1 Introduction  

With dimensions continuously shrinking, some disruptive effects, as those due to alpha 

intrinsic impurities, become critical for circuit performances. By testing a circuit in a 

sheltered underground environment as the LSBB (Laboratoire Souterrain à Bas-Bruit) of 

Rustrel (France), the alpha contamination level induced by radioactive impurities can be 

quantified easily. This is a considerable gain of time and precision for the evaluation of an 

alpha contamination. However, the simulation can provide an interesting complement to this 

experimental approach. Then the reliability of a circuit can be estimated by simulating a 

physical disturbance at the scale of an elementary device and by evaluating its consequences 

at the scale of several interconnected elementary devices.  

The simultaneous simulation of the disruptive phenomenon on the elementary device and 

the electrical behavior of the whole system is hard to perform with the same numerical tool. 

Then two types of numerical tools are used to simulate the crossing of an ionizing particle in 

a device, each of them corresponding to a scale of the circuit 

The first one, the TCAD simulation (as Sentaurus [1]), relies on a quantitative multi physics 

approach, at the scale of the lowest length in the electronic device. The particle is generated 

as an electron-hole distribution in the device simulated at a physical level and the transient 

current is generated at the electrodes by solving the transport equation in the semi-conductor 

volume [2, 3, 4]. If well calibrated, TCAD simulation is a realistic method for single events 

studies but it is time consuming, and generally needs high CPU resources because based on 

a multi-physics finite elements approach. Finally, TCAD simulation allows a better 
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understanding of the physics at the scale of the elementary device, but is not suitable for an 

extensive study at the cell scale.  

The second type of tools relies on the electrical behavior of the entire system or circuit. This 

approach is based on very classical Kirchhoff’s method [5]. Each elementary device is 

modeled by its electrical biased current characteristic. The impact of the collected currents in 

one or several nodes is simulated by adding some current sources in the system simulated at 

circuit level [6, 7]. In order to explore all the possibilities in term of time duration or intensity, 

the currents are randomly generated. The range of value of transient characteristics (duration 

and level of intensity) of the current can be based on numerical experiments (given by the 

TCAD simulation for instance) or by the experimental knowledge. The currents can be 

generated by a simple analytical formulation (a double exponential is often used) and so the 

physics of disruptive ionizing effect responsible for the current is lost. The results of such 

simulations allow discussions about the stability or instability of the device under current 

stresses, giving generally criteria for stability in terms of order of magnitude of the currents 

and their life time. However, they cannot help in the understanding of the physical links 

between the nature and the configuration of the disruptive effect and the stability of the cell.  

In this context, this paper is devoted to an exhaustive presentation of a fast computation 

numerical tool allowing the simulation of disruptive effects on electronic devices, from the 

particle (i.e. alpha) to the loss of functionality. SITARe (Simulation Tool with semi-

Analytical method for Transient Effects) connects the simulation of the transient disruptive 

effect induced by stochastic events, at the scale of a single junction (semi-analytical model), 

to the simulation at the scale of the electronic device (spice simulator). The disruptive 

parasitic currents are caused, by an arbitrary localized (in time and in space) generation of 

electrons-holes pairs near the functional junctions of the device. A semi-analytical model, 

allowing the fast random generation of statistical data (Monte-Carlo), without losing the 

physics of the ionizing phenomenon is proposed. The paper describes the theoretical model 

(section 2), the calibration (section 3) and an instance of application (section 4). 

2 The modeling of disruptive currents   

2.1 Geometrical set up 

The general geometry that can be taken into 

account by the model is depicted in figure 1. 

Electron-hole pairs are generated in a 

volume (called Γ in figure 1) of the silicon 

bulk.  These electric charges move through 

the volume of the substrate and can be 

collected at the sensitive surfaces.  These 

surfaces are the junctions of the device 

(drains or sources for a transistor). Only 

three are represented in figure 1 (denoted by 

Σ1, Σ2, Σ3) as an instance. The number as the 

shape of collecting surfaces is arbitrary. The 

tool makes it possible the addition of as 

collecting surfaces as necessary. Our tool 

simulates the disruptive currents induced by 

the creation of electron-hole pairs but not simulate the physical phenomenon at the origin of 

this generation (e.g. nuclear interaction). The value of νS is derived from the LET (Linear 

 

Figure 1. Schematic representation of a volume (Γ) of 

apparition of electron-hole pair (white in the drawing) 

in a silicon substrate (light grey). The three collecting 

surfaces represented here (Σ1, Σ2, Σ3) are arbitrarily 

shaped and as numerous as wanted 

x

yz

Γ

Si

+

E3S Web of Conferences 88, 06002 (2019)  https://doi.org/10.1051/e3sconf/20198806002

i-DUST 2018

2



Energy Transfer) value. This is the energy lost by the particle, by unit of length, when 

interacting with the bulk. It varies along the track and is linked to the initial energy of the 

particle [8]. The values have been extracted from the SRIM tables (Stopping in Range of Ions 

in Matter) [9]. Interacting with the semi-conductor, this particle deposits electron-holes pairs 

all along its trajectory with a linear density of νS per unit of time (S denotes the current point 

of the track). 

2.2 Volume charge transport modeling 

The volume concentration of the species s (s=h for holes and s=e for electrons) is denoted by 

nS. nS(M,t) and its associated charge current density vector ȷ"(M,t) respects the conservation 

law at any point M in the semi-conductor volume at any instant t. It leads to the local classical 

general conservation equation: 

∇𝚥% + 𝑞%
()*

(+
= 𝜎       (1) 

where σ (M,t) denotes the "source term".  

2.2.1 Generation and recombination modeling 

The σ term of the equation (1) can be considered as a distribution. This approach is classic 

in electrodynamics, for instance [5]. It contains the possible recombination of holes and 

electrons at M, at the time t as the geometry (volume Γ) and the duration of the initial 

generation of the charges. The elementary distribution, modeling an instantaneous generation 

at a point S, is modeled as a product between the Dirac distribution peak δ(t=0) centered at 

the origin of time t=0 and the 3D spatial Dirac peak  δ(S)= δ(x=xs).δ(y=ys).δ(z=zs) at the point 

S with coordinates (xs, ys, zs). The general solution of an arbitrary shape generation in time 

and space is then obtained by the double convolution between  the solution obtained for the 

double Dirac distribution (called Green function) and the temporal shape of the source and 

the spatial shape of the volume Γ. We choose to model the local recombination of electron-

hole pairs by two distinct local laws of different time range. The first one is a local classical 

exponential recombination law. It models a recombination rate proportional to the density nS. 

The second one allows to model the tail of the current (at long time range) as a power law. It 

is assumed to be proportional to nS/t. The origin and the validity of this term is discussed 

after, in a dedicated section. 𝜁%	is a parameter for numerical adjustment. Its sign is a priori 

unknown, reason we choose to write “+𝜁%”. Finally, the σ term is supposed to be as: 

𝜎 = 𝑞%𝛿 𝑆 𝛿 𝑡 − 𝜈%𝑞%𝑛% 𝑀, 𝑡 + 𝜁%𝑞%
)* 8,+

+
        (2) 

where νS is a frequency and ζS is a dimensionless coefficient.  

The relation (1) becomes  

∇𝚥% + 𝑞%
()*

(+
= 𝑞%𝛿 𝑆 𝛿 𝑡 − 𝜈%𝑞%𝑛% 𝑀, 𝑡 + 𝜁%𝑞%

)* 8,+

+
       (3) 

2.2.2 Drift diffusion model: link between current and concentration 

𝚥% 𝑀, 𝑡  is assumed to be linked to nS by a linear relation combining two process of diffusion 

in one hand and electrical drift in other hand, at any point M and any time t as:  

𝚥% 𝑀, 𝑡 = −𝐷%𝑞%∇𝑛% 𝑀, 𝑡 − 𝑞%𝜇%𝑛% 𝑀, 𝑡 𝜉(𝑀, 𝑡)       (4) 
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where qS is the electric charge of the species s, DS is the diffusivity of the species s, µS is the 

conductivity of the species s, and ξ(M,t) the local electrical field.  

2.2.3 Local complete transport equation 

Finally introducing relation (3) in  (2), it comes a Fokker-Planck equation type [10] as:  

−𝐷%∇
>𝑛% 𝑀, 𝑡 ∇. (𝜇%𝑛% 𝑀, 𝑡 𝜉 𝑀, 𝑡 ) +

()*

(+
 = 𝑞%𝛿 𝑆 𝛿 𝑡 − 𝜈%𝑛% 𝑀, 𝑡 + 𝜁%

)* 8,+

+
     (5) 

In the general case, and a priori, µS as νS and ζS could be local and depend on ξ(M,t), M and 

t. Solving completely the equation (5) in such a context, needs to introduce the conduction 

bands and then to solve a set of local and non-stationary equations using a spatial mesh of all 

the structure. The 3D TCAD computation uses this approach. Because our model is based on 

the will of avoiding such a complexity, some hypothesizes are made to derive an equation 

with an analytical solution. 

2.2.4 Simplifying assumption 

1. µS as νS and ζS are supposed to be constant and uniform in the substrate. 

2. The local global electric charge is supposed to be null, that is to say that everywhere, 

the Maxwell-Gauss law writes 

∇. 𝜉 𝑀, 𝑡 = 0                (6) 

3. The electric field is not continuous. It is supposed to be null everywhere in the 

volume of the bulk. At the collecting surface, it is considered as non null, but 

assumed to be constant in intensity and oriented as the normal of the collecting 

surface. That is to say, the effect of the space charge zone of the implant is taken 

into account as if it took place at the implant surface.   

With the first hypothesis, the second term of relation (5) writes: 

∇. 𝜇%𝑛% 𝑀, 𝑡 𝜉 𝑀, 𝑡 = 𝜇%𝜉 𝑀, 𝑡 	∇𝑛% 𝑀, 𝑡 + 𝜇%𝑛% 𝑀, 𝑡 ∇. 𝜉(𝑀, 𝑡)     (7) 

The second hypothesis, included in relation (7), leads that in every point M in the volume of 

the bulk: 

∇. 𝜇%𝑛% 𝑀, 𝑡 𝜉 𝑀, 𝑡 = 𝜇%𝜉 𝑀, 𝑡 	∇𝑛% 𝑀, 𝑡          (8) 

The third hypothesis, leads that (8), writes, for every point M in the volume of the bulk : 

∇. 𝜇%𝑛% 𝑀, 𝑡 𝜉 𝑀, 𝑡 = 0          (9) 

Finally these three hypotheses allow to assume that nS(M,t) is driven by the following  

transport: 

−𝐷%∇
>𝑛% 𝑀, 𝑡 +

()*

(+
 = 𝑞%𝛿 𝑆 𝛿 𝑡 − 𝜈%𝑛% 𝑀, 𝑡 + 𝜁%

)* 8,+

+
       (10) 

where DS is the diffusivity of the species s,  δ(S), δ(t) are the Dirac distributions centered at 

the point S and at time t=0, νS is the density of charges disappearing per unit of time by 

recombination, supposed constant, the latest term is a recombination term allowing to 

simulate the tail of the current pulse as a power law (ζS dimensionless). 
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2.2.5 Resolution by simplified convolution 

The classical solution, of the equation (10), for free space boundaries conditions is called the 

Green function in free space. It is denoted by g3d(MS, t) and is given by: 

𝑔BC 𝑀𝑆, 𝑡 =
(D*+)

E*

(FGC*)
H
I
exp	 −

8%I

FC*+
exp	(−𝜐%𝑡)          (11) 

where ηS is necessarily dimensioned as a frequency. 

In the general case, to take into account the spatial shape of the volume Γ, g3d is convolved 

with a function describing the spatio-temporal distribution of the generation of electron-hole 

pairs in the volume Γ. We assume here a last simplifying hypothesis: the process of charges 

generation is very short compared to the transport time range through the bulk. Then the 

process is considered as instantaneous and there is no need to operate a convolution on the 

time variable. νS0(M) is the number of element of species s generated per unit of volume 

around the source point S in the volume Γ. It is dimensioned as the inverse of a volume. Then 

finally, the solution for ns(M,t) is given by the spatial convolution all along the volume Γ.   

𝑛% 𝑀, 𝑡 = 𝜐N 𝑆 𝑔BC 𝑀𝑆, 𝑡 𝑑B𝑆
%∈Q

      (12) 

2.2.6 Discussion about the recombination modeling 

In relation (11), the factor (𝜂%𝑡)
S* 	modulates the classic extinction factor modeled as exp(-

νS.t). The global effect of this "law-power" factor is to produce a particular tail (at long time 

after the maximum of the current is reached) in the transient current shape. It allows to model 

- with only one coefficient - a part of the complexity of the transport reduced by the 

simplifying assumptions.  Then, the collective transport of charges in a biased medium could 

be considered as analogous as an anomalous diffusion observed in heterogeneous and 

complex media. In the diffusion studies, it is usual to consider ns(M,t) as a density of 

probability of presence and to link the  stochastic microscopic rules of displacement (as 

mobile-Immobile model for instance) to a partial differential equation. More generally, in the 

stochastic approaches of diffusion problems, the tail (at long time range) is an important 

characteristic of the associated stochastic process. For instance, this tail is associated to the 

memory properties of the process.  It has been theoretically well explored from many years 

[11]. It defines the property of stability of the stochastic distribution involved in the transport 

phenomenon.  Stable distributions of stochastic processes have a lot of applications in 

complex physics problems [12] and signal processing [13]. With the will of avoiding the 

mathematical complexity of the complete description of stochastic process with memory, we 

assume the macroscopic factor of modulation in a "law-power" form.  The parameter ηS is 

the key of this modulation. 

2.3 Charge collection 

On any surface Σ, described by its local normal vector 𝑑>Σ, in full generality, the collected 

current, 𝐼%
V, of the s species, is obtained by integrating the vector 𝚥%	over the surface. 

𝐼% Σ, t = 𝚥% 𝑀, 𝑡 . 𝑑
>Σ(8)V

        (13) 

Σ corresponds to all the considered collecting surfaces. In the configuration depicted in figure 

1, for instance, it would correspond to the union of Σ1 and Σ2. Because of the relation (4) and 

the three hypothesis concerning the diffusion current 𝐼%
X (Σ) : 
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𝐼% Σ, t = −𝐷%𝑞% ∇>𝑛% 𝑀, 𝑡 . 𝑑
>Σ(8) + 𝑞%𝛺% 𝑛% 𝑀, 𝑡 . 𝑑

>Σ(8)VV
     (14) 

 

																																																											𝐼%
X Σ, t 																																											𝐼%

Z[)X Σ, t 										 

where Ωs = μs.ξΣ and ξΣ denotes the scalar amplitude of the electrical field on the collecting 

surface and normal to the surface.  

In Cartesian coordinates, the gradient of ns is easily obtained from relations (11) and (12), 

that allows estimating the collected current on the surface Σ. One originality of our approach 

lies in taking into account the two terms in the collected current formulation: diffusion and 

conduction. The relative modulation of the two terms is ensured by macroscopic independent 

numerical parameters (Ωs and Ds). For instance, if the collecting surface (the junction) is non-

biased, the diffusion term could ensure alone a non-null current, while Ωs would be chosen 

as null. Finally, the collected current needs five independent macroscopic parameters to be 

modelled: Ds, Ωs, νs, ηs, ζs. Their numerical values are fixed at the end of a numerical 

calibration process. One instance is given in section 3. 

 The quantity of charge 𝑄%(Σ, 𝑡N), passing through the collecting surface from the 

beginning of the collection ti to the time t0 is evaluated as:  

𝑄% Σ, 𝑡N = 𝐼%
+]

+^
Σ, 𝑡N 𝑑𝑡		       (15) 

Finally, the modeling of the junction is numerically calculated in a classical way by 

discretizing the surface in rectangular blocks. The only originality comes from an adaptive 

time step, based on a a priori and not a posteriori calculation. It is optimized to get a 

discretization around the current peak and release the time step in the relaxation part. The 

time Tb corresponding to the maximum of current depends on the minimal distance between 

the track and the junction, rmin. Its obtained from 𝜁% = 0 as: 

 𝑇 =
B

Fa*
1 +

Fa*cd^e
I

fC
− 1      (16) 

3 Calibrating the computation   

The calibration of our code 

consists in adjusting the 

parameters of our model to fit as 

well as possible the intensity 

given by a reference computation, 

here provided by a TCAD 

simulator (Sentaurus Device). It 

is a 3D Finite Elements Method 

commercial code taking into 

account the physics of the 

semiconductor in a non-

stationary mode. All the 

quantities (ns, etc..) are locally 

and temporally computed, point 

by point and time after time.  

TCAD simulation needs the 

entire knowledge of the physical 

parameters in the bulk (doping 

profiles, junction dimensions,  

 

Figure 2. Collected currents versus time for non biased junction 

(left, configuration C1) and biased junction (right, configuration 

C2), for a horizontal track. Dashed curve is obtained by TCAD, full 

curve is provided by SITARe. The parameters for the semi-

analytical model are: De = 2.5×10
−4

 m2/s, νe = 0.67×10
10

 Hz, Ωe(C1) 

= 2.3×10
4
 Hz and Ω e(C2) = 8.4×10

4
 Hz, η e(C1) = 0.29×10

10
 Hz, 

ζe(C1) = −0.21, ηe(C2) = 1.1×10
10

 Hz, ζe(C1) = −1.05. The shape of 

the collecting surface is Gaussian. 
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gate oxide thickness…), usually 

given by the manufacturer of the 

simulated device [14]. Then the 

layout allows to define roughly the 

geometrical function z = f (x, y) for 

the collecting surfaces. The fitting 

parameters are then the physical 

quantities of the substrate (Ds, νs, ηs, 

ζs), and the global parameter, Ωs 

(relation 14). Because the collecting 

surface (junction) can be externally 

biased or not, at least two TCAD 

configurations (biased or not) are 

needed to determine the fitting 

parameters. Then few (one, two or 

three) reference-configurations for Γ 

are used to refine the fitting process. 

The most convenient cases, for the 

calibration of diffusion process 

(track generated out of the junction), 

are the vertical impact (less 

favorable diffusion case) and a horizontal impact (most favorable diffusion case). One 

instance of calibration is presented in figure 2. The volume Γ is a  0.5 μm horizontal line, 

located at 0.5 μm underneath the collecting surface, centered on the center of the junction, 

and oriented in the same direction than the smallest dimension of the implant (x axis). It 

corresponds to an α particle impact, ionizing the bulk, with a constant LET corresponding to 

an initial energy of 1.5 MeV. The collecting surface is a N doped junction (0.32 μm by 1.1 

μm). This junction can be biased (configuration C1) or not (configuration C2). The collected 

charges are electrons (e for the subscripts). In this example, the two configurations are 

differentiated only with the conduction parameter (Ωe). It means that the calibration process 

is enforced to have same charges transport physics in the volume for the two configurations 

(νe and De are the same). Thus, between the two configurations, there are three degrees of 

freedom (ηe, ζe, Ωe). Note that the TCAD calculation time is around 48 hours, in a standard 

workstation computer while it is less than 1 second for the semi-analytical computation. 

4 One instance of application 

The figure 3 presents one instance of application for alpha tracking [15]. 9 junctions 

(figure 3(a)) are simulated by using SITARe. The 9 corresponding currents extracted from 

SITARe (figure 3(b)) are injected in 9 voltage controlled oscillators used for particle 

detection. By treating the 9 signals at the output of the 9 detectors, the crossing of the alpha 

particle through the 9 by 9 matrix of detectors can be reconstructed. This example illustrates 

the ability of SITARe to study the physical behavior linked to a a given device. Another 

example published in [14], illustrates the capacity of the tool to treat a huge number of data 

in order to extract simplified metrics. 

5 Discussion and conclusion 

In this paper, an intermediate numerical tool able to simulate the collection of charges, 

generated by a radiative particle, on several biased junctions is exposed. Similar approaches 

 

Figure 3. a) Configuration of the particle strike,  b) Corresponding 

currents generated by SITARe, c) Evolution of the delay parameter 

within the 3x3 matrix. 
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have been developed since many years for the study of radiation effects in electronic devices. 

Usually, these tools are dedicated to Single Event Rates prediction in a given radiative 

environment [7, 8]. In comparison, our tool does not aim at prediction but at the analysis of 

a huge number of data to extract significant metrics for reliability prediction and the analysis 

of the physical behavior of any device.  

The main limitation of our tool lies in the calibration process. We have to launch TCAD 

3D complete and transient simulations. This multi physics simulation needs a lot of 

information directly provided by the manufacturer of the technology. These information is 

often confidential and not easy to obtain. At this time, this point is difficult to overpass 

because whatever the involved model, or its numerical implementation, the calibration 

process needs to have electric characteristics used as reference such as described in the 

previous section. 

Another limitation lies in the huge quantity of data generated for a statistical study. In 

SITARe, this quantity is reduced before the electrical simulation. A post treatment is 

necessary after the electrical simulation to keep results easy to exploit. For a single collecting 

junction, one post-treatment has been successfully proposed in [16]. However, when several 

collection surfaces are involved, the solution proposed becomes ineffective because there are 

as many diagrams as collecting surface. We are working on a systematic reduction of the 

representation of the experiences, before and after electrical simulations, by considering 

some pertinent physical quantities such as energy or action at the device scale, and not only 

at the junction scale. 
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