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Abstract: As the dominant height of the stand at the baseline age, the site index is an important
index to evaluate site quality. However, due to the variability of environmental factors, the growth
process of the dominant height of the same tree species was variable in different regions which
influenced the estimation results of the site index. In this study, a methodology that established
site index modeling of larch plantations with site types as a random effect in northern China was
proposed. Based on 394 sample plots, nine common base models were developed, and the best
model (M8) was selected (R2 = 0.5773) as the base model. Moreover, elevation, aspect, and slope
position were the main site factors influencing stand dominant height through the random forest
method. Then, the three site factors and their combinations (site types) were selected as random
effects and simulated by the nonlinear mixed-effects model based on the model M8. The R2 values
had raised from 0.5773 to 0.8678, and the model with combinations (94 kinds) of three site factors had
the best performance (R2 = 0.8678). Considering the model accuracy and practical application, the
94 combinations were divided into three groups of site types (3, 5, and 8) by hierarchical clustering.
Furthermore, a mixed-effects model considering the random effects of these three groups was
established. All the three groups of site types got a better fitting effect (groups 3 R2 = 0.8333, groups 5
R2 = 0.8616, groups 8 R2 = 0.8683), and a better predictive performance (groups 3 R2 = 0.8157, groups 5
R2 = 0.8464, groups 8 R2 = 0.8479 for 20 percent of plots randomly selected per group in the calibration
procedure) using the leave-one-out cross-validation approach. Therefore, groups 5 of site types
had better applicability and estimation of forest productivity at the regional level and management
plan design.

Keywords: Larix principis-rupprechtii; site effect; site type; random forest; nonlinear mixed model

1. Introduction

Site quality evaluation is a fundamental component of forest management and is vitally
important for an improved understanding of forest growth processes and optimization
of silviculture practices [1,2]. The dominant height growth model (i.e., the site index) has
been considered the most suitable approach for assessing site productivity for management
purposes in even-aged forest stands [3,4]. However, due to different environmental factors,
the growth process of dominant height was variable in different regions, the simulation
accuracy of the dominant height growth model is often low, and the estimation results of
the site index of the same tree species vary significantly in different regions due to site
quality [5,6]. The relationship between the site index and environmental factors has been
investigated from the mesoscale to the regional scale [6,7]. In addition, due to increased
global climate change research, climatic factors have been recognized as vital influences
on the growth process, driving the site index. Thus, many studies on the relationship
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between the climate, productivity, and the site index have been conducted in the past few
years [8,9]. The influence of environmental factors (climate, soil, and topography) should be
considered in site index modeling [10]. Moreover, the influences of environmental factors
on the site index are often scale-dependent. Therefore, scale is crucial in establishing a
site productivity model. Aertsen et al. [11] observed that a small-scale site index model
requires high-resolution information to capture the variability of the variables, whereas
low-resolution information is sufficient to characterize the variability in large-scale site
index models.

Many early site index modeling studies relating the site index to environmental
variables used basic statistical methods such as linear regression. Most ecological variables
are characterized by nonlinearity and non-constant variance, therefore, a large fraction
of the variance remains unexplained by linear models. Aertsen et al. [12] compared
and evaluated five modeling techniques (multiple linear regression, classification and
regression trees, boosted regression trees, generalized additive models, and artificial neural
networks) for site index modeling and found that boosted regression trees provided good
ecological interpretability. Pietrzykowski et al. [13] studied the relationship between the
site index of Scots pine and the physical, chemical, and biological characteristics of the
soil. A logarithmic or square root transformation of several environmental variables was
performed, and linear regression analysis was conducted. Nonparametric and machine
learning methods are often used to model nonlinear relationships [14,15]. Moreover, there
are complex interactions between different environmental factors, which influence the site
quality, and simple linear regression is not suitable to explain the relationship between
environmental variables and the site index [16].

Some scholars used dummy variables for tree height-age modeling and evaluated
site quality using the average height of trees in sample plots instead of site factors [17].
Although this method provides high accuracy for site index modeling, the expression form
of the environmental factors in the model requires further study. Site index models can be
divided into models with curves of the same shape (simplex method) and polymorphic
models. The latter is based on the average dominant height and considers site condition
factors [18,19]. The polymorphic site index model describes different growth patterns for
different sites and provides better estimates of tree growth than the simplex method. A
mixed-effects model is a common modeling approach to process local variability [20–22].
The mixed model reflects the overall average tree growth trend for different site types and
provides the variance and covariance to reflect differences between individuals.

Larix principis-rupprechtii is a typical zonal tree species. It grows fast and has excellent
timber quality, its plasticity to climate is strong and it has the efficiency of soil conservation
and wind protection. It is widely used in forest regeneration and afforestation in North
China [23]. As the third-largest area of conifer species in China, larch has a wide geographi-
cal distribution, and the latitude and longitude affect the height at the middle and large
scales [2,24,25]. Meanwhile, site factors (such as altitude, soil layer thickness, aspect, etc.)
have significant impacts on the site productivity at the stand-level [26]. For a stand, the
site type is a combination of multiple site factors, and this combination may change the
independent influence of the site factor on forest productivity. Various site factors and their
combinations increase the randomness of forest productivity evaluation. This study aims to
establish a polymorphic site index modeling of larch using a mixed-effects model with site
factors and their interactions as random effects, and evaluate the site quality at different
site factor levels. Moreover, the research results can provide a theoretical and practical
foundation for developing a dominant height growth model and site index equation for
larch plantations.

2. Materials and Methods
2.1. Site and Data Description

The study was conducted in northern China, including Shanxi province, Hebei
province, Beijing, and the Inner Mongolia Autonomous Region (latitude: 34◦54′~53◦34′ N,
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longitude: 97◦175′~126◦075′ E). The study area covers provinces where L. principis-rupprechtii
is grown extensively in plantations. These regions have a temperate monsoon climate, with
hot and rainy summers and cold and dry winters. The annual rainfall ranges from 400 to
800 mm and the altitude ranges from 690 to 2383 m. Site conditions are predominantly
slightly acidic or neutral on shady, semi-shady, or semi-sunny slopes. Soil types include
brown mountain soil, dark brown soil, loess, and cinnamon soil.

We established 394 temporary plots with a plot size of 20 m× 30 m in larch plantations
in Hebei, Shanxi, Inner Mongolia, and Beijing. The recorded site characteristics of the plots
included elevation, slope, aspect, soil layer thickness, and soil type. The stand indexes
included diameter at breast height (DBH) (for trees with a DBH ≥ 5 cm) and height. All
plots were plantations with accurate age information. The average value of the tallest
3 to 5 trees in each plot was used as the dominant height of the stand (H). The information
on stand and site factors are listed in Table 1.

Table 1. The information on stand and site factors for the 394 plots.

Province Number
of Plot Index DBH

(cm)
H

(m)
Age

(Years)
Stand Basal
Area (m2/ha)

Stand Density
(n/ha)

Elevation
(m)

Slope
(°)

Soil Depth
(cm)

Total 394

Mean 11.2 9.1 24.7 10.5 1009.7 1467.5 15.4 52.2
STD 3.9 2.9 8.5 8.0 598.0 395.2 8.6 13.4
Min 5.5 5.0 9.0 0.3 90.0 690.0 0.0 20.0
Max 24.2 19.3 60.0 38.5 2970.0 2383.0 39.0 100.0

Beijing 30

Mean 12.9 10.7 29.2 11.1 703.0 1075.0 18.0 40.4
STD 3.7 3.8 9.9 11.4 453.7 334.8 7.5 12.7
Min 7.5 6.0 13.0 0.9 150.0 740.0 8.0 20.0
Max 21.5 19.3 53.0 37.6 1710.0 1890.0 30.0 61.0

Hebei 225

Mean 11.2 8.9 24.3 10.3 1005.0 1350.0 13.9 50.4
STD 4.1 2.9 8.1 7.6 580.1 312.6 8.9 15.7
Min 5.5 5.0 9.0 0.3 90.0 690.0 0.0 20.0
Max 24.2 18.4 46.0 32.2 2970.0 2120.0 35.0 100.0

Inner
Mongolia 44

Mean 11.5 9.0 24.0 9.2 811.4 1398.0 10.8 58.0
STD 4.4 3.3 7.8 7.0 572.0 326.5 5.7 8.3
Min 5.6 5.0 10.0 0.3 120.0 970.0 3.0 30.0
Max 23.7 18.0 43.0 25.5 1980.0 1890.0 25.0 65.0

Shanxi 95

Mean 10.7 8.9 24.6 11.5 1209.5 1901.9 20.4 57.3
STD 2.8 2.3 8.9 8.0 625.4 248.0 6.8 19.3
Min 5.9 5.4 10.0 1.6 315.0 1480.0 2.0 20.0
Max 19.4 15.4 60.0 38.5 2940.0 2383.0 39.0 100.0

H: stand dominant height, STD: standard deviation, Min: minimum, and Max: maximum.

2.2. Influencing Factors of Stand Dominant Height

Elevation, slope gradient, aspect, soil type, and soil thickness were selected as the
variables affecting the growth of larch plantation and were classified into different classes
according to the technical regulations for the inventory for forest management planning and
design [27]. Attention was provided to ensure that any agents (fertilizer, herbicides, or insec-
ticides) were not applied to the larch plantations according to the technical regulations [28].

The random forest method was used to determine the correlation between the dom-
inant height and the site factors [29]. The importance of the six discretized site factors
(see Table 2) was ranked by including and excluding age to evaluate the effect of age on the
relationship between dominant height and the site factors.

Table 2. Information on site factors and their different classes.

Site
Factors Class

EL 9 classes by 200 m
SL <5◦ 5◦–14◦ 15◦–24◦ 25◦–34◦ ≥35◦

AS sunny slope semi-sunny slope shady slope semi-shady slope
SP ridge upper slope middle slope lower slope valley flat
ST red earth yellow earth yellow-brown earth
SD <40 cm 40–79 cm ≥80 cm

Note: EL: elevation, SL: slope, AS: aspect, SP: slope position, ST: soil type, and SD: soil depth.
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2.3. Clustering of Site Types and Base Model Selection

Many site types were formed by the combination of different class site factors, there-
fore, it became very complicated to draw the site index curve of larch with the random
effects of the site type, and further reduced the usability of the site index model. Moreover,
tree growth differed for different groupings of site types, leading to the necessity of cluster-
ing the site types. Here, the K-means method and hierarchical clustering [30,31] were used
to classify the site types to enable the practical use of the model for complex site types.

The base model was determined before establishing the mixed-effects site index
model. Nine frequently used site index equations were fitted and their performances were
compared (Table 3). It should be noted that Richard’s formula did not converge and was
not used in the basic model.

Table 3. Information on site index base models.

Model Equation Form Expression

M1 Hyperbolic model H = a− b/Age
M2 Logarithm model H = a + b· ln Age
M3 Schumacher model H = a·e−b/Age

M4 Mitscherlich model H = a·(1− e−b·Age)
M5 Parabola model H = a + b·Age + c·Age2

M6 Hybrid model H = (a + b·Age)c

M7 Roляcp model H = a·Ageb·e−c·Age

M8 Logistic model H = a/(1 + b·e−c·Age)

M9 Gompertz model H = a·e−b·e−c·Age

2.4. Nonlinear Mixed-Effects Model

The site index model of nonlinear mixed-effects for the larch plantation was established
by considering the random effects of the forest site types, which consisted of the site
variables and their interaction terms. The model was expressed as follows:

Hij = f (ϕij, Ageij) + εij
ϕij = Aijβ + Bijui

ui ∼ N(0, Ψ)
εij ∼ N(0, σ2)

i = 1, · · · , M, j = 1, · · · , ni

(1)

where Hij represents the dominant height of the jth plot in the ith forest site type. f (•) is
a unary and differentiable function of the average age of each plot, which is denoted as
variable Ageij, with the formal parameter vector ϕij. Aij and Bij are design matrices of the
parameter vectors of the fixed effects β and random effects ui, respectively. Ψ and σ2 are
the variance of the normal distribution of the random effects variable ui and random error
εij, which are assumed to be mutually independent random variables. M is the number of
forest site types, and ni is the number of plots in the ith forest site type.

2.5. Predicition with Nonlinear Mixed-Effects Model

The site index model of nonlinear mixed-effects for the larch plantation can be applied
for predicting stand dominant height with or without random effects. The model setting
the random effects as zero is a mean response (M response) or population-specific response,
while the model with the adjusted random effects is a localized response or subject-specific
response (S response) [32,33]. In this study, the three-step iterative algorithm for estimating
random effects based on the empirical best linear unbiased prediction (EBLUP) theory was
used [34,35]. The estimated random effect can be obtained by:

ûi = Ψ̂ZT
i (R̂i + ZiΨ̂ZT

i )
−1

ei= Ψ̂ZT
i (R̂i + ZiΨ̂ZT

i )
−1[

yi − f (β̂, u∗i , Agei) + Ziu∗i
]

(2)
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where ûi is a q dimensional vector of random effects for the ith forest site type; u∗i is a vector
of EBLUP for the random effects ui;β̂ is the estimation vector of the fixed effect parameters
β; Ψ̂, and R̂i are the estimated variance-covariance matrix of the random effects ui and the
error term ei respectively; Zi is a ni × q dimensional design matrix of the partial derivatives
of the function f (·) with respect to the random effects ui. The other signs are the same as
in Formula (1).

The localizing process of the mixed-effects model depending on the selected plot in
forest site types is usually known as calibration [36]. To account for verifying the predictive
performance of the mixed-effects model, the following three alternatives were applied to
select 20% of the plot in each forest site type.

(i) 20 percent of plots whose dominant heights are the highest per forest site type (highest);
(ii) 20 percent of plots whose dominant heights are the lowest per forest site type (lowest);
(iii) 20 percent of plots randomly selected per forest site type (random).

The use of random selection methods meant alternative (iii) was repeated 100 times
for the sub-sample of plots in each forest site type used for evaluating the predictive perfor-
mance of the mixed-effects model. However, alternatives (i) and (ii) were implemented just
once in each forest site type due to the non-random selection methods.

2.6. Model Evaluation

The evaluation criterion of the base model was better for higher R2 value and lower
mean absolute error (MAE), root mean square error (RMSE), and total relative error (TRE).
When these indicators were inconsistent, the optimum model was the base model with the
highest R2 value.

MAE =
1
n

n

∑
i=1

(Hi − Ĥi) (3)

RMSE =

√
1
n

n

∑
i=1

(Hi − Ĥi)
2 (4)

R2 = 1−
n

∑
i=1

(Hi − Ĥi)
2/

n

∑
i=1

(Hi − H)
2 (5)

TRE =
n

∑
i=1

(Hi − Ĥi)/
n

∑
i=1

Ĥi × 100 (6)

where Hi is the ith observed value, H is the mean value, Ĥi is the ith estimated value, and
n is the number of samples.

After selecting the optimum base model, all possible combinations of the random
effects were fitted. Then, the optimum combination was judged by Akaike’s information
criterion (AIC), Bayesian information criterion (BIC), and the log-likelihood (LL) [21,37].

Due to limited data, the validity of the mixed-effects models was evaluated using the
leave-one-out cross-validation approach, i.e., one forest site type was left out from the full
data set in each step and the remaining forest site types were fitted to the mixed-effects
models. Then the obtained models were used to predict values of all plots within the
deleted forest site type through three alternatives in the calibration procedure. This was
conducted for all the 8 forest site types in the full data set. The predictive performance was
evaluated by RMSE and R2. All models were implemented in ForStat software 2.0 [38] and
R version 4.1.2 [39].

3. Results
3.1. Importance Ranking of the Site Factors

The relative importance based on an increase in node purity is shown in Figure 1.
Altitude was the most important site factor influencing stand dominant height, followed
by aspect and slope position. The slope, soil depth, and soil type had less influence than
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the first three variables (Figure 1a). The ranking results of the importance of the site factors
were the same with as without the age variable (Figure 1b).

Figure 1. The relative importance of the influence of the site indices and age on stand dominant
height ((a) represents variables without age; (b) represents variables with age).

3.2. Base Model Selection and Simulation

According to the evaluation indices of nine basic models (M1–M9), the fitting accuracy
was relatively low (Table 4), indicating that the accuracy of the site index model was not
high at the regional scale. The R2 of M8 (R2 = 0.5773) was the highest, and the root mean
square error (RMSE) and the total relative error (TRE) were the lowest (RMSE = 1.9076
and TRE = 4.1678%), followed by M9, M6, M5, M7, M4, M2, M3, and M1. The parameter
estimation of most candidate models was significant (p < 0.05), except for models 5, 6, and 7
(parameter c in M5, b in M6, and c in M7).

Table 4. Information on parameter estimates and model evaluation of 9 alternative base models.

Model a SE b SE c SE MAE RMSE R2 TRE

M1 14.5604 * 0.3315 120.6185 * 6.8689 0.0000 2.1950 0.4403 5.5940
M2 −10.6986 * 0.9405 6.2788 * 0.2969 0.0000 2.0052 0.5329 4.6258
M3 19.2622 * 0.6963 17.4203 * 0.8932 0.0336 2.0398 0.5166 4.7943
M4 23.7941 * 2.575 0.0199 * 0.00289 0.0358 1.9474 0.5594 4.3514
M5 2.9270 * 0.7223 0.2357 * 0.0535 0.0005 0.0009 0.0000 1.9149 0.5740 4.2012
M6 2.5575 * 0.3204 0.1498 0.1405 1.2003 * 0.3868 0.0002 1.9144 0.5743 4.1987
M7 1.5986 * 0.5343 0.4704 * 0.1432 −0.0092 0.0050 0.0011 1.9191 0.5721 4.2205
M8 22.2896 * 3.5595 5.1001 * 0.6161 0.0503 * 0.0074 0.0021 1.9076 0.5773 4.1678
M9 31.3098 * 10.3487 2.2316 * 0.2275 0.0237 * 0.0071 0.0015 1.9109 0.5758 4.1828

Note: * means that the parameter is significant at the level of 0.05 (otherwise not).

3.3. Site Index Models for Different Site Type Combinations

The nonlinear mixed-effects site index model was established by taking the main
site factors such as altitude, aspect, slope, soil type, and their interactions as random
effects. When the random effects were related to the asymptotic parameter (a), all potential
candidate models were convergent and all parameters were significant at a level of 0.05
(Table 5). The mixed-effects site index model in this study can be expressed as follows:

H =
a + µi

(1 + b·e−c·Age)
+ εij (7)

where a, b, and c are the fixed-effects parameters of the model; µi is the random-effects
parameter of the site type.
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Table 5. Parameter estimates and model evaluation of the mixed-effects model with different com-
bined site effects.

Model Random
Effect RP Levels a b c AIC BIC Log-Likelihood R2

M8 None 22.2896 5.1001 0.0503 1635.0423 1650.9477 −813.5212 0.5773
M8.1 EL a 9 19.6303 4.3670 0.0521 1585.2894 1605.1712 −787.6447 0.6542
M8.2 AS a 9 21.6037 4.8867 0.0514 1628.4907 1648.3725 −809.2454 0.6005
M8.3 SL a 6 20.1798 4.3664 0.0516 1617.8581 1637.7399 −803.9291 0.6132
M8.4 EL × AS a 56 15.8473 3.8550 0.0676 1554.6373 1574.5191 −772.3187 0.7517
M8.5 EL × SL a 33 15.9739 3.8222 0.0652 1538.0907 1557.9725 −764.0454 0.7356
M8.6 SL × AS a 31 17.4115 4.2344 0.0609 1607.7826 1627.6644 −798.8913 0.6520
M8.7 EL × AS × SL a 94 14.1784 3.6668 0.0760 1438.9924 1458.8742 −714.4962 0.8678

Note: RP: random-effects parameters, LL: log-likelihood.

Compared with the basic model (M8), all the models including random effects showed
noticeable improvement in the R2 value. Among all the possible interactions, elevation,
aspect, and slope position showed the best performance (the AIC and BIC were the lowest,
and the log-likelihood and R2 were the highest). Therefore, the mixed-effects site index
model with the interaction of the three site factors as random effects (M8.7) was the optimal
model. In addition, the mixed-effects model (M8.7) performed better than the base model
(M8) regarding the homogeneity of the residual plot (Figure 2).

Figure 2. The residual diagram of the optimum site index base model (M8) and its corresponding
mixed-effects model (M8.7) ((a) represents M8; (b) represents M8.7).

3.4. Clustering of the Site Types and Model Simulation

According to all combinations of the three main site factors, i.e., elevation, aspect, and
slope position, the larch forests in the four provinces were divided into 94 forest site types
by model M8.7. For the reason the K-means clustering method is sensitive to the starting
point, we chose hierarchical clustering and divided the site types into 3, 5, and 8 groups
(Table 6). The clustering results for 3 and 5 site types were the most convenient quantitative
unit for site classification. The 8 site types were used to test the precision when increasing
the classification levels.
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Table 6. Classification of site type combinations.

Groups Site Type Group Sample Size (# of Plots) Number of Site Types

3
STG1 79 17
STG2 181 42
STG3 134 35

5

STG1 65 13
STG2 85 17
STG3 108 28
STG4 86 21
STG5 50 15

8

STG1 33 6
STG2 46 11
STG3 74 14
STG4 76 20
STG5 42 11
STG6 65 15
STG7 30 10
STG8 28 7

The model performance was noticeably improved by using the mixed effects. The
R2 increased from 0.5773 to 0.8683 (Tables 5 and 7). The R2 of the mixed-effects model for
3 site types (0.8333) was lower than that of the other 2 types with the site factors in the
mixed-effects model. The R2 of the model for the 5 site types (0.8616) was close to the value
of M8.7 (R2 = 0.8678), and the R2 of the model for the 8 site types (R2 = 0.8683) was the
highest and slightly higher than that of M8.7.

Table 7. Model evaluation statistics of three models.

Random Effect a b c AIC BIC Log-Likelihood R2

M8.7-with 3 groups 15.5084 3.5906 0.0698 1290.0387 1309.9212 −640.0194 0.8333
M8.7-with 5 groups 16.4753 3.7311 0.0610 1228.1468 1248.0288 −609.0737 0.8616
M8.7-with 8 groups 15.3467 3.4925 0.0649 1223.2336 1243.1153 −606.6168 0.8683

Considering the model’s accuracy and practical application, we created the polymor-
phic site index curves of L. principis-rupprechtii plantations in northern China (Figure 3). For
model 8.7 with 5 groups, the site index value of L. principis-rupprechtii at age 50 were 10.4,
12.4, 13.9, 15.3, and 18.0, respectively.

Figure 3. Cont.
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Figure 3. Polymorphic site index curves of larch using the mixed-effect model for different site
types groups. ((a) represents M 8.7 with 3 groups; (b) represents M 8.7 with 5 groups; (c) represents
M 8.7 with 8 groups).

3.5. Evaluation of the Predictive Performance of Mixed Effects Models

Table 8 presents the predictive results of the three calibrated response patterns based
on the leave-one-out cross-validation approach. The value of RMSE and R2 were selected for
comparing the mean response (M response) and the subject-specific response (S response)
of the mixed-effects model with three combinations of site types.

Table 8. Evaluation of predictive performances of the mixed-effects model with three combinations
of the site types based on the leave-one-out cross-validation approach. Sub-sampling methods are
defined in Section 2.5.

Prediction Sub-Sampling Methods
M8.7-with 3 Groups M8.7-with 5 Groups M8.7-with 8 Groups

RMSE R2 RMSE R2 RMSE R2

M response none 2.6148 0.2057 2.3180 0.3758 2.1774 0.4492
S response Highest 1.4755 0.7471 1.2830 0.8088 1.3417 0.7909

Lowest 1.6341 0.6898 1.5681 0.7143 1.3969 0.7733
Random 1.2597 0.8157 1.1498 0.8464 1.1444 0.8479

The predictive performance showed that the S response was always more precise
than the M response, and the prediction accuracy was improved as the groups of site
types increased through the index RMSE and R2. Among three sub-sampling methods, the
alternative of randomly selected plots per forest site type had the best prediction accuracy
for all three groups of site types, i.e., model M8.7 with 8 groups produced the smallest
RMSE and the highest R2 for the random sampling method. Compared with fitting and
predictive performance, the different values of RMSE and R2 among the three mixed-effects
models were not evident for the random sampling method, i.e., the proportion of decrement
on R2 was 2.11%, 1.76%, and 2.35%, respectively (Tables 7 and 8). It implied that there
was no overfitting problem. However, the prediction accuracy of the M response was
considerably lower than the fitting accuracy of model M8. One of the leading factors was
that one grouped site type was left out from the full data set in the calibration procedure,
and reflected by the model established with the remaining data. Differences in height
growth curves among these forest site classes led to the difference between the prediction
and fitting accuracy.
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4. Discussion
4.1. Dominant Factors of the Site Index

Evaluating site quality and predicting site productivity is a crucial aspect of sustainable
forest management. The site index has been recognized globally as an indirect indicator of
stand productivity in even-aged pure plantations [40]. In the past few decades, site index
prediction based on environmental factors such as climate, topography, and soil has been
performed. This research is of great significance for providing a better understanding of
the site-growth relationship [18,41].

In this study, we used the random forest method to determine the relative impor-
tance of the factors influencing the dominant height. The elevation was the most signifi-
cant site factor influencing dominant tree height, followed by aspect and slope position
(Figure 1). Elevation was also the most influential factor in the geographical distribution of
Larix principis-rupprechtii in previous studies [2,24]. The elevation determines the vertical
distribution of water and heat, directly influencing the growth of larch, especially in the
northwest region with insufficient hydrothermal conditions. The temperature decreases
with increasing altitude, and the water conditions in the forest improve. The low tempera-
ture was also a major factor affecting the growth of larch [42–44]. Numerous studies have
shown that among environmental factors related to site conditions, altitude is the dominant
factor affecting dominant tree height [41,45,46].

In a mountainous environment, the aspect has a significant impact on factors limiting
plant growth, such as light, heat, and water [47,48]. Aspect has a strong influence on
temperature due to differences in solar radiation received by areas with different aspects.
The slope and the prevailing wind direction also affect temperature [49,50]. The area of
landforms with different aspects influences environmental conditions, and this effect is
most pronounced in arid and semiarid regions [51–53]. Aspect also influences the site index
of oriental spruce [54], Norway spruce [46], and Chinese fir [21].

Microtopography affects light, heat, soil moisture, and the spatial distribution of
various nutrients, which, in turn, influence plant growth and biomass. The slope position,
in particular, affects the seed bank and the spatial distribution, composition, structure, and
growth of plants by affecting precipitation and water distribution patterns [55–57]. Studies
showed that the height and diameter growth of Fraxinus mandshurica tended to increase
with the slope position in the northern secondary forest area [58]. The result of a site index
study in Douglas-fir plantations in the Massif Central area of France showed that slope
position had the largest effect (30.0%) among ecological variables on the site index [18].
Slope position was also the most important variable for predicting the site index of cork
oak stands in Portugal and of a subtropical broadleaved forest on Okinawa Island [59].

4.2. Site Index Model

The site index based on the relationship between the stand’s dominant height and age
has become an important parameter when assessing site quality in even-aged forests [60,61].
This relationship model has high accuracy and is, therefore, used in practical applications.
However, the shape of the curve differs for different tree species due to differences in
climate, soil, terrain, and other factors. Therefore, it is not suitable to use the same curve
for estimating the growth of different tree species [9,16,40,45,62].

Model selection is particularly important when using environmental factors to predict
the site index. The model has limitations for reflecting the temporal and spatial changes
in ecological processes, and the environmental factors and site indices often exhibit scale
dependence. Scholars often use multiple linear regression methods to investigate the rela-
tionship between the site index and environmental factors. However, the relationship does
not necessarily satisfy the assumptions of linear regression (linear, normal, independent,
and identically distributed), and the data often exhibit heteroscedasticity, making it difficult
to interpret. Multicollinearity exists between variables; thus, linear regression may be
inappropriate or result in unexplained variance [63].
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The nonlinear mixed-effects model has unique advantages in estimating the average
effect of the population and individual differences. A site index model with multiple
parameters can be established to improve the prediction accuracy. Furthermore, mixed-
effects models contain both fixed and random effects and can describe a mean trend and
the deviation from the mean trend [64].

Wang et al. [65] used a nonlinear mixed-effects model to predict the mean dominant
heights and site indices for different growing conditions of Eucalyptus globulus plantations
using annual rainfall and daily maximum temperature. Wang et al. [26] found that the
mixed-effects model was more accurate than the traditional method and reduced the
prediction error in the study of loblolly pine (Pinus taeda L.). A mixed-effects model was
established to determine the site index of different tree species in a mixed forest using
inter-species site index conversion equations. The Richards and logistic models were the
optimal models for Larix principis-rupprechtii and Betula platyphylla, respectively [22]. In
this study, the model performance (R2) increased from 0.5773 to 0.8679 after including the
random effects.

4.3. Clustering of the Site Types

Although the nonlinear mixed-effects model provided a high fitting performance by
including the environment variables, the site types were too complex (94 site types combina-
tion), and the site index model was inconvenient for practical applications. Zhu et al., [21]
used K-means clustering to cluster the site types into eight classes and used the grouped
site types as random effects to establish a mixed-effects polymorphic site index model.
The clustering process improved the model performance, but the eight site types were
inconvenient for practical application. We analyzed the relationship between the number
of site types and the model accuracy. Although the highest performance was obtained for
8 site types (AIC = 1223.2336, R2 = 0.8683), the result for 5 site types (as random effects) is
more practicable (AIC = 1228.1468, R2 = 0.8616). It is easier to group the site types at the
regional scale, resulting in convenient planning and design of forest management.

Using a leave-one-out cross-validation approach for evaluating the predictive per-
formance of mixed-effects models with combinations of site types as random effects, the
calibration procedure indicated that the sampling method had important effects on the
predictive ability, which was also consistent with those of the crown width modeling study
by Fu et al. [66] and height-diameter modeling studies by Calama and Montero [36]. The
random sampling plots per site type played a greater impact on the predictive ability of the
nonlinear mixed-effects models of larch. Due to the complexity of site type combination,
the method randomly selected from grouped site types resulted in less biased predictions,
compared to that tended to select plots larger or smaller on stand height.

Due to the difficulty and reliability of data acquisition, soil nutrients and climate
factors were not selected as environmental variables in the nonlinear mixed-effect model.
In the future, it may become easier to investigate the relationship between environmental
factors and the site index using big data, digital forestry, intelligent forestry, and other
related technologies.

5. Conclusions

The mixed-effects polymorphic site index model of larch in northern China was
established by taking the site type as a random effect. The site factors, i.e., elevation,
aspect, and slope position, enormously influenced the stand dominant height, and taking
the site factors as random effects can noticeably improve the performance of the model.
Moreover, hierarchical clustering was used to divide the 94 initial site types into 3, 5, and
8 site-type groups, but the fitting and predictive performance of mixed-effects models with
site-type groups were slightly decreased, resulting in more practical planning of forest
management. In short, the proposed mixed-effects polymorphic site index model improves
regional model accuracy and provides guidance and a robust method for estimating the
site productivity of complex site types.



Forests 2022, 13, 815 12 of 14

Author Contributions: Conceptualization, X.L. (Xianzhao Liu) and X.L. (Xiangdong Lei); Method-
ology, X.L. (Xiangdong Lei) and X.Z.; formal analysis, G.D.; resources X.L. (Xiangdong Lei); data
curation X.L. (Xianzhao Liu) and G.D.; writing—original draft preparation, G.D.; writing—review
and editing, G.D. and X.L. (Xianzhao Liu); visualization, G.D.; supervision, X.L. (Xianzhao Liu) and
X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Forestry Public Welfare Scientific Research Project
(No. 201504303) and the National Key Research and Development Plan of China (No. 2017YFD060040302).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Herrera-fernandez, B.; Campos, J.J.; Kleinn, C. Site productivity estimation using height-diameter relationships in Costa Rican

secondary forests. For. Syst. 2004, 13, 295–304.
2. Liu, X.; Duan, G.; Chhin, S.; Lei, X.; Zhang, X. Evaluation of potential versus realized site productivity of Larix principis-rupprechtii

plantations across northern China. For. Ecol. Manag. 2021, 479, 118608. [CrossRef]
3. Bravo-Oviedo, A.; Tome, M.; Bravo, F.; Montero, G.; Del Rio, M. Dominant height growth equations including site attributes in

the generalized algebraic difference approach. Can. J. For. Res. 2008, 38, 2348–2358. [CrossRef]
4. Westfall, J.A.; Hatfield, M.A.; Sowers, P.A.; O’Connell, B.M. Site index models for tree species in the northeastern United States.

For. Sci. 2017, 63, 283–290.
5. Corona, P. Relationship between environmental factors and site index in douglas-fir plantations in central Italy. For. Ecol. Manag.

1998, 110, 195–207. [CrossRef]
6. Chen, H.Y.; Krestov, P.V.; Klinka, K. Trembling aspen site index in relation to environmental measures of site quality at two spatial

scales. Can. J. For. Res. 2002, 32, 112–119. [CrossRef]
7. Auten, J. Prediction of site index for yellow poplar from soil and topography. J. For. 1945, 43, 662–668.
8. Antón-Fernández, C.; Mola-Yudego, B.; Dalsgaard, L.; Astrup, R. Climate-sensitive site index models for Norway. Can. J. For. Res.

2016, 46, 794–803. [CrossRef]
9. Yue, C.; Kahle, H.P.; Wilpert, K.V.; Kohnle, U. A dynamic environment-sensitive site index model for the prediction of site

productivity potential under climate change. Ecol. Model. 2016, 337, 48–62. [CrossRef]
10. Swenson, J.J.; Waring, R.H.; Fan, W.; Coops, N. Predicting site index with a physiologically based growth model across Oregon,

USA. Can. J. For. Res. 2005, 35, 1697–1707. [CrossRef]
11. Aertsen, W.; Kint, V.; Muys, B.; Orshoven, J. Effects of scale and scaling in predictive modelling of forest site productivity. Environ.

Model. Softw. 2012, 31, 19–27. [CrossRef]
12. Aertsen, W.; Kint, V.; Orshoven, J.V.; Özkan, K.; Muys, B. Comparison and ranking of different modelling techniques for prediction

of site index in Mediterranean mountain forests. Ecol. Model. 2010, 221, 1119–1130. [CrossRef]
13. Pietrzykowski, M.; Socha, J.; Van Doorn, N.S. Scots pine (Pious sylvestris L.) site index in relation to physieo-chemical and

biological properties in reclaimed mine soils. New For. 2015, 46, 247–266. [CrossRef]
14. Kang, Y.; Ozdogan, M.; Zhu, X.; Ye, Z.; Hain, C.; Anderson, M. Comparative assessment of environmental variables and machine

learning algorithms for maize yield prediction in the US Midwest. Environ. Res. Lett. 2020, 15, 064005. [CrossRef]
15. John, K.; Isong, I.A.; Kebonye, N.M.; Ayito, E.O.; Agyeman, P.C.; Afu, S.M. Using Machine Learning Algorithms to Estimate

Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil. Land 2020, 9, 487.
[CrossRef]

16. Stage, A.R.; Salas, C. Interactions of Elevation, Aspect, and Slope in Models of Forest Species Composition and Productivity.
For. Sci. 2007, 53, 486–492.

17. Zhu, G.; Kang, L.; He, H.; Lv, Y.; Yin, Y.; Wu, Y. Study on polymorphic site index curve model based on height-age classification
for Cuninghamia lanceolata plantation. J. Cent. South Univ. For. Sci. Technol. 2017, 7, 18–29. (In Chinese)

18. Curt, T.; Bouchaud, M.; Agrech, G. Predicting site index of Douglas-fir plantations from ecological variables in the Massif Central
area of France. For. Ecol. Manag. 2001, 149, 61–74. [CrossRef]

19. Jerez-Rico, M.; Moret-Barillas, A.Y.; Carrero-Gamez, O.E.; Macchiavelli, R.E.; Quevedo-Rojas, A.M. Site index curves based on
mixed models for teak (Tectona grandis LF) plantations in the Venezuelan plains. Agrociencia 2011, 45, 135–145.

20. Calegario, N.; Daniels, R.F.; Maestri, R.; Neiva, R. Modeling Dominant Height Growth Based on Nonlinear Mixed-effects Model:
A Clonal Eucalyptus Plantation Case Study. For. Ecol. Manag. 2005, 204, 11–21. [CrossRef]

21. Zhu, G.; Hu, S.; Chhin, S.; Zhang, X.; He, P. Modelling site index of Chinese fir plantations using a random effects model across
regional site types in Hunan province, China. For. Ecol. Manag. 2019, 446, 143–150. [CrossRef]

22. Wang, D.; Hu, X.; Li, D. Creating site index for needle and broadleaved mixed forest using nonlinear mixed effects model.
J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 44, 159–166. (In Chinese)

23. Zhang, J.; Meng, D. Spatial pattern analysis of individuals in different age-classes of Larix principis-rupprechtii in Luya mountain
reserve, Shanxi, China. Acta Ecol. Sin. 2004, 24, 35–40. (In Chinese)

24. Liu, X.; Han, W.; Gao, R.; Jia, J.; Bai, J.; Xu, J.; Gao, W. Potential impacts of environmental types on geographical distribution of
Larix principis-rupprechtii. Acta Ecol. Sin. 2021, 41, 1885–1893. (In Chinese)

http://doi.org/10.1016/j.foreco.2020.118608
http://doi.org/10.1139/X08-077
http://doi.org/10.1016/S0378-1127(98)00281-3
http://doi.org/10.1139/x01-179
http://doi.org/10.1139/cjfr-2015-0155
http://doi.org/10.1016/j.ecolmodel.2016.06.005
http://doi.org/10.1139/x05-089
http://doi.org/10.1016/j.envsoft.2011.11.012
http://doi.org/10.1016/j.ecolmodel.2010.01.007
http://doi.org/10.1007/s11056-014-9459-z
http://doi.org/10.1088/1748-9326/ab7df9
http://doi.org/10.3390/land9120487
http://doi.org/10.1016/S0378-1127(00)00545-4
http://doi.org/10.1016/j.foreco.2004.07.051
http://doi.org/10.1016/j.foreco.2019.05.039


Forests 2022, 13, 815 13 of 14

25. Di, X.; Meng, X.; Wang, M. Range-wide genetic diversity in natural populations of Larix principis-rupprechtii Mayr. J. For. Res.
2020, 32, 319–327. [CrossRef]

26. Wang, M.; Borders, B.E.; Zhao, D. An empirical comparison of two subject-specific approaches to dominant heights modeling:
The dummy variable method and the mixed model method. For. Ecol. Manag. 2008, 255, 2659–2669. [CrossRef]

27. GB/T 26424-2010; Technical Regulations for Inventory for Forest Management Planning and Design. State Forestry Bureau:
Beijing, China, 2010.

28. Huang, X.; Ma, C.; Xu, X. Management Technical Procedures for Plantation Forest of Larix Principis-Rupprechtii Mayr; State Forestry
Administration (LY/Y 1897–2010): Beijing, China, 2010.

29. Sabatia, C.O.; Burkhart, H.E. Predicting site index of plantation loblolly pine from biophysical variables. For. Ecol. Manag. 2014,
326, 142–156. [CrossRef]

30. Hartigan, J.A.; Wong, M.A. A K-Means Clustering Algorithm. J. R. Stat. Soc. Ser. C 1979, 28, 100–108.
31. Park, B.; Kargupta, H.; Johnson, E.; Sanseverino, E.; Hershberger, D.; Silvestre, L. Distributed, collaborative data analysis from

heterogeneous sites using a scalable evolutionary technique. Appl. Intell. 2002, 16, 19–42. [CrossRef]
32. Fang, Z.; Bailey, R.L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural

treatments. For. Sci. 2001, 47, 287–300.
33. Paulo, J.A.; Tomé, J.; Tomé, M. Nonlinear fixed and random generalized height–diameter models for Portuguese cork oak stands.

Ann. For. Sci. 2011, 68, 295–309. [CrossRef]
34. Lindstrom, M.J.; Bates, D.M. Nonlinear mixed effects models for repeated measures data. Biometrics 1990, 46, 673–687. [CrossRef]

[PubMed]
35. Meng, S.X.; Huang, S. Improved calibration of nonlinear mixed effects models demonstrated on a height growth function.

For. Sci. 2009, 55, 238–247.
36. Calama, R.; Montero, G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain. Can. J.

For. Res. 2004, 34, 150–163. [CrossRef]
37. Subedi, N.; Sharma, M. Individual-tree diameter growth models for black spruce and jack pine plantations in northern Ontario.

For. Ecol. Manag. 2011, 261, 2140–2148. [CrossRef]
38. Tang, S.; Lang, K.; Li, H. Statistics and Computation of Biomathematical Models (ForStat Course); Science Press: Beijing, China, 2009.
39. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2021. Available online: https://www.R-project.org/ (accessed on 12 October 2021).
40. Bontemps, J.D.; Bouriaud, O. Predictive approaches to forest site productivity: Recent trends, challenges and future perspectives.

Forestry 2014, 87, 109–128. [CrossRef]
41. Farrelly, N.; Ní Dhubháin, Á.; Nieuwenhuis, M. Site index of Sitka spruce (Picea sitchensis) in relation to different measures of site

quality in Ireland. Can. J. For. Res. 2011, 41, 265–278. [CrossRef]
42. Pacheco, C. Evaluating site quality of even-aged maritime pine stands in northern Portugal using direct and indirect methods.

For. Ecol. Manag. 1991, 41, 193–204.
43. Holmgren, P. Topographic and geochemical influence on the forest site quality, with respect to Pinus sylvestris and Picea abies in

Sweden. Scand. J. For. Res. 1994, 9, 75–82. [CrossRef]
44. Lv, Z.; Li, W.; Huang, X.; Zhang, Z. Predicting Suitable Distribution Area of Three Dominant Tree Species under Climate Change

Scenarios in Hebei Province. Sci. Silvae Sin. 2019, 55, 13–21. (In Chinese)
45. Seynave, I.; Gégout, J.C.; Hervé, J.C.; DhTe, J.F.; Drapier, J.; Bruno, É. Picea abies site index prediction by environmental factors

and understory vegetation, a two-scale approach based on survey databases. Can. J. For. Res. 2005, 35, 1669–1678. [CrossRef]
46. Socha, J. Effect of topography and geology on the site index of Picea abies in the West Carpathian, Poland. Scand. J. For. Res. 2008,

23, 203–213. [CrossRef]
47. Roise, J.P.; Betters, D.R. An aspect transformation with regard to elevation and site productivity models. For. Sci. 1981, 27, 483–486.
48. Fang, J.; Shen, Z.; Cui, H.T. Ecological characteristics of mountains and research issues of mountain ecology. Biodivers. Sci. 2004,

12, 10–19.
49. Fekedulegna, D.; Hicks, R.R., Jr.; Colberta, J.J. Influence of topographic aspect, precipitation and drought on radial growth of four

major tree species in an Appalachian watershed. For. Ecol. Manag. 2003, 177, 409–425. [CrossRef]
50. Zhang, B.; Tian, J.; Yao, Y.H. Digital Integration and Patterns of Mountain Altitudinal Belts; Environment Science Press: Beijing, China,

2009; pp. 218–224.
51. Stage, A.R. An expression for the effect of aspect, slope, and habitat type on tree growth. For. Sci. 1976, 22, 457–460.
52. Li, C.; Li, C.W. The significance of aspect in mountain geography. Acta Geogr. Sin. 1985, 40, 20–28.
53. Verbyla, D.L.; Fisher, R.F. Effect of aspect on ponderosa height and diameter growth. For. Ecol. Manag. 1989, 27, 93–98. [CrossRef]
54. Ercanli, I.; Gunlu, A.; Altun, L.; Baskent, E.Z. Relationship between site indexes of oriental spruce [Picea orientalis (L.) Link] and

ecological variables in Maçka, Turkey. Scand. J. For. Res. 2008, 23, 319–329. [CrossRef]
55. Ashton, P.M.S.; Harris, P.G.; Thadani, R. Soil seed bank dynamics in relation to topographic position of a mixed-deciduous forest

in southern New England, USA. For. Ecol. Manag. 1998, 111, 15–22. [CrossRef]
56. Tian, X.; Gao, K.; Zhang, L.J.; Yu, Y.Q.; Han, G.D. Effect of slope position on spatial distribution of soil water and vegetation in

sandy land. Bull. Soil Water Conserv. 2015, 35, 12–16.

http://doi.org/10.1007/s11676-019-01085-7
http://doi.org/10.1016/j.foreco.2008.01.030
http://doi.org/10.1016/j.foreco.2014.04.019
http://doi.org/10.1023/A:1012813326519
http://doi.org/10.1007/s13595-011-0041-y
http://doi.org/10.2307/2532087
http://www.ncbi.nlm.nih.gov/pubmed/2242409
http://doi.org/10.1139/x03-199
http://doi.org/10.1016/j.foreco.2011.03.010
https://www.R-project.org/
http://doi.org/10.1093/forestry/cpt034
http://doi.org/10.1139/X10-203
http://doi.org/10.1080/02827589409382815
http://doi.org/10.1139/x05-088
http://doi.org/10.1080/02827580802037901
http://doi.org/10.1016/S0378-1127(02)00446-2
http://doi.org/10.1016/0378-1127(89)90031-5
http://doi.org/10.1080/02827580802249100
http://doi.org/10.1016/S0378-1127(98)00305-3


Forests 2022, 13, 815 14 of 14

57. Wen, Y.; Hu, J.; Yang, X.; Liu, W.; Zhong, L.; Zhu, C.; Ma, J.H. Study of slop position effect on the tree structure characteristic of
mixed pobulus dacidiana and Betula platyphylla plantation. J. Agric. Univ. Hebei 2017, 40, 32–38.

58. Wang, X.; Sun, H.; Yu, X.; Gu, C.C. Influence of aspect and position of slope on the growth of Mid-age fraxinus mandshurica
plantation. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2011, 31, 30–34.

59. Paulo, J.A.; Palma, J.N.; Gomes, A.A.; Faias, S.P.; Tome, J.; Tome, M. Predicting site index from climate and soil variables for cork
oak (Quercus suber L.) stands in Portugal. New For. 2015, 46, 293–307. [CrossRef]

60. Skovsgaard, J.P.; Vanclay, J.K. Forest site productivity: A review of the evolution of dendrometric concepts for even-aged stands.
Forestry 2008, 81, 13–31. [CrossRef]

61. Fang, Z.; Bailey, R.L.; Shiver, B.D. A multivariate simultaneous prediction system for stand growth and yield with fixed and
random effects. For. Sci. 2001, 47, 550–562.

62. Brandl, S.; Mette, T.; Falk, W.; Vallet, P.; Rotzer, T.; Pretzsch, H. Static site indices from different national forest inventories:
Harmonization and prediction from site conditions. Ann. For. Sci. 2018, 75, 56. [CrossRef]

63. Guisan, A.; Edwards, T.C. Generalized linear and generalized additive models in studies of species distributions: Setting the
scene. Ecol. Model. 2002, 157, 89–100. [CrossRef]

64. Yang, Y.; Huang, S. Comparison of different methods for fitting nonlinear mixed forest models and for making predictions. Can. J.
For. Res. 2011, 41, 1671–1686. [CrossRef]

65. Wang, Y.; LeMay, V.M.; Baker, T.G. Modelling and prediction of dominant height and site index of Eucalyptus globulus plantations
using a nonlinear mixed-effects model approach. Can. J. For. Res. 2007, 37, 1390–1403. [CrossRef]

66. Fu, L.; Sharma, R.P.; Hao, K.; Tang, S. A generalized interregional nonlinear mixed-effects crown width model for Prince
Rupprecht larch in northern China. For. Ecol. Manag. 2017, 389, 364–373. [CrossRef]

http://doi.org/10.1007/s11056-014-9462-4
http://doi.org/10.1093/forestry/cpm041
http://doi.org/10.1007/s13595-018-0737-3
http://doi.org/10.1016/S0304-3800(02)00204-1
http://doi.org/10.1139/x11-071
http://doi.org/10.1139/X06-282
http://doi.org/10.1016/j.foreco.2016.12.034

	Introduction 
	Materials and Methods 
	Site and Data Description 
	Influencing Factors of Stand Dominant Height 
	Clustering of Site Types and Base Model Selection 
	Nonlinear Mixed-Effects Model 
	Predicition with Nonlinear Mixed-Effects Model 
	Model Evaluation 

	Results 
	Importance Ranking of the Site Factors 
	Base Model Selection and Simulation 
	Site Index Models for Different Site Type Combinations 
	Clustering of the Site Types and Model Simulation 
	Evaluation of the Predictive Performance of Mixed Effects Models 

	Discussion 
	Dominant Factors of the Site Index 
	Site Index Model 
	Clustering of the Site Types 

	Conclusions 
	References

