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ABSTRACT
The currently booming search engine industry has determined
many online organizations to attempt to artificially increase their
ranking in order to attract more visitors to their web sites. In the
same time, the growth of the web has also inherently generated sev-
eral navigational hyperlink structures which have a negative impact
on the importance measures employed by current search engines.
In this paper we propose and evaluate algorithms for identifying all
these noisy links over the web graph, may them be spam or simple
relationships between real world entities represented by sites, repli-
cation of content, etc. Unlike prior work, we target a different type
of noisy link structures, residing at the site level, instead of the page
level. We thus investigate and annihilate site level mutual reinforce-
ment relationships, abnormal support coming from one site towards
another, as well as complex link alliances between web sites. Our
experiments with the link database of the TodoBR search engine
show a very strong increase in the quality of the output rankings
after having applied our techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentation, Analysis

Keywords
PageRank, Link Analysis, Noise Reduction, Spam

1. INTRODUCTION
The popularity of search engines has thoroughly increased over

the past years. And so has the amount of information they are in-
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dexing. At the same time, upon searching this overwhelming quan-
tity of data, people usually view only the top answers returned for
each query [20]. It is thus very important to provide these responses
with the best quality possible. Alas, currently this is not an easy
task.

Search engines adopt several different sources of evidence to
rank the web pages matching a user query, such as textual content,
title of web pages, anchor text information, or the link structure of
the web. This latter measure is one of the most useful sources of
evidence adopted. To extract information from the link structure,
search engines use algorithms that assess the quality (or popularity)
of web pages by analyzing the linkage relationships among them.
The success of this strategy relies on the assumption that a link to
a page represents a vote from a user that sustains the quality of that
targeted page.

In spite of the success of link analysis algorithms, many link
structures created using the web hyperlinks lead these algorithms
to provide wrong conclusions about the quality of web pages. This
phenomenon happens because links that cannot be interpreted as
votes for quality sometimes negatively affect the link analysis re-
sults. We name these here as noisy links. A subset of them has al-
ready been addressed exhaustively in prior work, namely the nepo-
tistic links (also called spam links), i.e., the links intentionally cre-
ated to artificially boost the rank of some given set of pages, usu-
ally referred to as spam pages [27]. In fact, given the importance of
search engines in modern society, many online organizations cur-
rently attempt to artificially increase their rank, since a higher rank
implies more users visiting their pages, which subsequently implies
an increased profit. Thus, a new industry specialized in creating
spam information has emerged, called Search Engine Optimization
(SEO) [17].

Even though it is very important to diminish the noise effect
induced by spammers (i.e., creators of spam), many other noisy
links may appear in the web graph and should be detected as well.
For instance, two sites from companies of the same group may
be strongly interconnected by links that do not represent votes for
quality. Such links are created due to a relationship between the
entities represented by both sites and not by the intention to vote
for the quality of their pages, as assumed by the link analysis algo-
rithms. More, we argue that most of the noisy links on the web are
created in a non-intentional way. Therefore, devising algorithms
to detect noise in general (which also includes spam) is better than
devising algorithms considering only spam attacks over the web
graph.



In this paper we propose a site-level approach for detecting
generic noisy links on the web. Previous algorithms have focused
on identifying noise only by analyzing page level relationships,
which clearly misses some of the higher level noise, generated be-
tween a group of sites. We investigate three main types of site level
relationships: mutual reinforcement (in which many links are ex-
changed between the two sites), abnormal support (where most of
one site’s links are pointing to the same target site), and link al-
liances (in which several sites create complex link structures that
boost the PageRank score of their pages). When the relation be-
tween such sets of sites is considered suspicious, we assume that
the links between them are noisy and penalize them accordingly.
Finally, it is important to note that this new approach is comple-
mentary to the existing page level approaches, and both strategies
should be adopted simultaneously for identifying noisy links in a
search engine database.

We studied the impact of our noise removal techniques on Page-
Rank [25], as it is probably the most popular link analysis algorithm
for computing the reputation of pages over the web. Our experi-
ments have shown an improvement of 26.98% in Mean Recipro-
cal Rank [19] for popular bookmark queries, 20.92% for randomly
selected bookmark queries, and up to 59.16% in Mean Average
Precision [4] for topic queries. Furthermore, 16.7% of the links
from our collection were considered as noisy, while many of them
could not be considered nepotistic, thus demonstrating the impor-
tance of searching for noisy links in search engine databases instead
of searching only for spam.

The paper is organized as follows: Section 2 presents some back-
ground information and discusses the related work. Section 3 de-
scribes our site-level noise detection approach and the algorithms
we proposed. Then, we extensively evaluate these algorithms and
analyze their performance in Section 4. Finally, Section 5 draws
some conclusions and discusses future work.

2. BACKGROUND AND RELATED WORK

2.1 Background
Preliminaries. Link analysis algorithms are founded on the rep-

resentation of the web as a graph. Throughout the paper we will
refer to this graph as G = (V, E), where V is the set of all web
pages and E is a set of directed edges < p, q >. E contains an edge
< p, q > iff a page p links to a page q. In(p) represents the set of
pages pointing to p (the in-neighbors of p) and Out(p) the set of
pages pointed to by p (the out-neighbors of p). We denote the p-th
component of a vector v as v(p). Finally, let A be the normalized
adjacency matrix corresponding to G with, Aij = 1

|Out(j)| if page
j links to page i and Aij = 0 otherwise.

We now take a closer look at the PageRank, as it is one of the
most popular link analysis algorithms and as we used it to evaluate
the impact of our noise removal methods.

PageRank [25] computes web page reputation scores starting
from the idea that “a page should receive a high rank if the sum
of the ranks of its in-neighbors is also high”. Given a page p, the
PageRank formula is:

PR(p) = (1 − c) ·
X

q∈In(p)

PR(q)

‖Out(q)‖ +
c

‖V ‖ (1)

The dampening factor c < 1 (usually 0.15) is necessary to guaran-
tee convergence and to limit the effect of rank sinks [9].

2.2 Related work
Most of the previous works on noise are focused on solving the

problem of detecting spam, instead of detecting noise in a general
sense. Good solutions for the spam detection problem are impor-
tant and difficult because they need to deal with adversaries that
continuously try to deceive search engine algorithms. As the search
output is usually ordered using a combination of the various algo-
rithms available to assess the quality of each result (e.g., PageRank,
HITS, TFxIDF, etc.), spammers have devised specific schemes to
circumvent each of these measures. Consequently, the search en-
gines responded with detection or neutralization techniques. This
caused the spammers to seek new rank boosting methods, and so
on. Since our work here is focused on identifying noise on the link
structure of web collections, we will present in this section only the
most recent anti-spam techniques for link-based algorithms.

Ranking Based Approaches. The currently known types of ar-
tificial noisy link structures which could boost the rank of one or
more web pages have been investigated by Gyögyi et al. [16]. They
manually build toy-scale link farms (networks of pages densely
connected to each other) or alliances of farms and calculate their
impact upon the final rankings. We used their results to design
some of our spam fighting algorithms.

The seminal article of Bharat and Henzinger [7] has indirectly
addressed the problem of noise detection on the web. Though in-
herently different from our approach, it is the only work we found
in the literature that detects noise at a site level. Further, the authors
provide a valuable insight into web noise link detection: They dis-
covered the existence of “mutually reinforcing relationships” and
proposed to assign each edge an authority weight of 1/k if there
are k pages from the one site pointing a single document from an-
other site, as well as a hub weight of 1/l if a page from the first site
is pointing to l documents residing all on the second site. Authors
use this information to change HITS [21], a specific link analysis
algorithm. We believe their solution can be used to complement
our approach, and we intend to adapt it and integrate it into our al-
gorithms in future work. Later, Li et al. [24] also proposed an im-
proved HITS algorithm to avoid its vulnerability to small-in-large-
out situations, in which one page has only a few in-links but many
out-links. Nevertheless, their work only focuses on this specific
problem, thus not tackling noise detection at all.

Another important work is SALSA [23], where the “Tightly-Knit
(TKC) Community Effect” is first discussed. The organization of
pages into such a densely linked graph usually results in increasing
their scores. The authors proposed a new link analysis algorithm
which adopts two Markov chains for traversing the web graph, one
converging to the weighted in-degree of each page, for authority
scores, and the other converging to its weighted out-degree, for hub
scores. The approach resembles popularity ranking, which was also
investigated by Chakrabarti [12] and Borodin et al. [8]. However,
it does not incorporate any iterative reinforcement and is still vul-
nerable to some forms of the TKC effect [26].

Zhang et al. [29] discovered that colluding users amplify their
PageRank score with a value proportional to Out(1/ε), where ε
is the dampening factor. Thus, they propose to calculate Page-
Rank with a different ε for each page p, automatically gener-
ated as a function of the correlation coefficient between 1/ε and
PageRank(p) under different values for ε. Their work is extended
by Baeza-Yates et al. [3], who study how the PageRank increases
under various collusion (i.e., nepotistic) topologies and prove this
increase to be bounded by a value depending on the original Page-
Rank of the colluding set and on the dampening factor.

BadRank [2, 27] is one of the techniques supposed to be used
by search engines against link farms. It is practically an inverse



PageRank, in which a page will get a high score if it points to many
pages with high BadRank, as depicted in the formula below:

BR(p) = (1 − c) ·
X

q∈In(p)

BR(q)

‖Out(q)‖ + c · IB(p) (2)

The exact expression of IB(p) is not known, but it represents the
initial BadRank value of page p as assigned by spam filters, etc.
The algorithm is complementary to our approaches. We therefore
plan to investigate in a further work the idea of propagating the
badness score of a page as an extension on top of the algorithms
presented in this paper.

TrustRank [18] proposes a rather similar approach, but focused
on the good pages: In the first step, a set of high quality pages is se-
lected and assigned a high trust; then, a biased version of PageRank
is used to propagate these trust values along out-links throughout
the entire web. The algorithm is orthogonal to our approaches: In-
stead of seeking for good pages, we attempt to automatically iden-
tify and penalize malicious links, thus decreasing the authority of
the bad pages they point to. This ensures that good pages that are
accidentally part of a malicious structure will be at most down-
graded, but never dismissed from the possible set of query results
(as in TrustRank).

SpamRank [5] resembles an “opposite TrustRank”: First, each
page receives a penalty score proportional to the irregularity of the
distribution of PageRank scores for its in-linking pages; then, Per-
sonalized PageRank is used to propagate the penalties in the graph.
The advantage over TrustRank is that good pages cannot be marked
as spam, and comes at a cost of higher time complexity. Our ap-
proach is similar with respect to penalizing bad pages, but we build
our set of malicious candidates much faster, by identifying abnor-
mal link structures, instead of analyzing the distribution of Page-
Rank scores for the in-linking pages of each page.

Finally, Wu and Davison [27] first mark a set of pages as bad, if
the domains of n of their out-links match the domains of n of their
in-links (i.e., they count the number of domains that link to and
are linked by that page). Then, they extend this set with all pages
pointing to at least m pages in the former set, and remove all links
between pages marked as bad. Finally, new rankings are computed
using the “cleaned” transition probability matrix. Their algorithm
is complementary to our approach, as it operates at the lower level
of web pages, instead of sites. In [28], the same authors build bipar-
tite graphs of documents and their “complete hyperlinks”1 to find
link farms of pages sharing both anchor text and link targets (i.e.,
possibly automatically created duplicate links).

Other Approaches. While most of the web noise detection re-
search has concentrated directly on the link analysis algorithms
used within current search engines, another significant stream of
activity was dedicated to designing innovative third party solutions
to detect such unwanted hyperlinks. Kumar et al. [22] used bipar-
tite graphs to identify web communities and marked as nepotistic
those communities having several fans (i.e., pages contributing to
the core of the bipartite graph with their out-links) residing on the
same site. Roberts and Rosenthal [26] analyze the number of web
clusters pointing to each target page in order to decrease the influ-
ence of TKCs. They propose several methods to approximate these
clusters, but they evaluate their approach only on a minimal set of
queries. A rather different technique is employed in [1], where the
authors present a decision-rule classifier that employs 16 connec-
tivity features (e.g., average level of page in the site tree, etc.) to
detect web site functionality. They claim to have successfully used
it to identify link spam rings as well, but no details are given about

1Hyperlinks having the anchor text attached to them.

the importance of each feature for accomplishing this task.
Chakrabarti [11] proposed a finer grained model of the web, in

which pages are represented by their Document Object Models,
with the resulted DOM trees being interconnected by regular hy-
perlinks. The method is able to counter “nepotistic clique attacks”,
but needs more input data than our algorithms (which are based ex-
clusively on link analysis). Also, since we specifically target noise
removal, we are able to identify different types of link anomalies.

Fetterly et al. [15] use statistical measures to identify potential
spam pages. Most of the features they analyze can be modeled
by well known distributions, thus placing outliers in the position of
potential spammers. After a manual inspection, the vast majority of
them seemed to be spammers indeed. A related technique to detect
spam pages is based on machine learning algorithms: Davison [13]
uses them on several features of URLs (e.g., similar titles, domains,
etc.) in order to identify nepotistic links on the web.

Before proceeding to discuss our algorithms, we should note that
quite several other types of link noise exist besides spam. The most
common is caused by mirror hosts and can be eliminated using al-
gorithms such as those proposed by Broder et al. [10] or Bharat
et al. [6]. Also, navigational links are intended to facilitate web
browsing, rather than expressing true votes of trust. One work in-
directly related to this type of links is [14], where the authors de-
fined web documents as a “cohesive presentation of thought on a
unifying subject” and proposed using these entities for information
retrieval, instead of the regular web pages. Their work is however
orthogonal to ours, as they seek to identify the correct web entities,
whereas we propose solutions to remove noisy links from search
engine databases.

3. SITE LEVEL NOISE REMOVAL
We argue here that many noisy links can be easily detected when

the relationships between sites, instead of pages, are analyzed.
Even though the current page centered approaches for detecting
noise still hold (and will still be needed in the future), they may
not be the best solution to deal with many practical situations. For
example, a company having two branches with different sites will
probably have only few of its pages involved in page level link ex-
changes, many other links between its two sites being thus regarded
as true votes by the current approaches, even though they connect
two entities having the same owner. Similarly, undetected repli-
cated sites could exchange many links only at a high level, or could
be linked only in one direction, towards the newer replica of the
content. Finally, worst, automatically generated complex site level
link spam structures may be missed by the page level approaches.
Therefore, we propose detecting noise at a site level rather than on
page level. More specifically, we propose the following three ap-
proaches: (1) Identifying mutual reinforcement relations between
web sites, (2) identifying relationships between sites where one site
has PageRank scores accumulated mostly from only one different
site, and (3) penalizing alliances of sites that artificially promote
some target site.

3.1 Site Level
Mutual Reinforcement Relations

Our first site level approach to detect noise links on web col-
lections is based on the study of how connected are pairs of sites.
Our assumption in this approach is that when two sites are strongly
connected, they artificially boost their results in link analysis algo-
rithms. We name this phenomenon as a site level mutual reinforce-
ment. As one of the initial forms of noise, mutual reinforcement
relations have been tackled as early as 1998 by Bharat and Hen-
zinger [7]. However, all approaches proposed so far are centered



Figure 1: Example of site level link exchanges.

around the web page as a unit item.
We therefore study the mutual reinforcement problem at the site

level, because a considerable amount of noise links between these
type of web sites cannot be detected using approaches working at
the page level. We thus consider all links between strongly con-
nected sites as noise, including links between individual pages that
are not suspicious per se. These links are considered noise because
they can artificially boost the popularity rank of pages that belong
to a pair of web sites whose relationship is considered suspicious.

One of the many possible examples of how this noise may affect
the link analysis is depicted on the upper side of Figure 1, using
cycles. The connection between two sites may create a set of cy-
cles on the web graph containing pages from both of them. It is
known that such cycle structures can boost the popularity of web
pages [16], and since many cycles can arise from strongly con-
nected sites, such alliances between sites may create anomalies in
the final PageRank. Let us now discuss the two different algorithms
we propose for detecting mutual site reinforcement relationships.

Bi-Directional Mutual Site Reinforcement (BMSR). This al-
gorithm takes into account the number of link exchanges between
pages from the two studied sites. We say that two pages p1 and p2

have a link exchange if there is a link from p1 to p2 and a link from
p2 to p1. This first method tries to identify site pairs that have an
abnormal amount of link exchanges between their pages. In these
cases, we consider the pair as suspicious and all the links between
its sites are considered noisy. The threshold to consider a pair of
sites suspicious is set through experiments.

Notice that, as in the work of Wu and Davison [27], BMSR is
based on link exchanges. However, while they perform a page level
analysis of exchanges and they are interested in identifying spam
pages exclusively, we perform a site level analysis, while being in-
terested in identifying the more general phenomenon of noisy links.

Uni-Directional Mutual Site Reinforcement (UMSR). As sites
are large structures, we also investigate the possibility of relaxing
the notion of “link exchange” into “link density”, i.e., counting all
links between two sites, disregarding their orientation.

On the example from Figure 1, there are 3 link exchanges be-
tween the sites s and s′ and the link density is 9 (link exchanges
are also counted). In order to calculate these values, one needs
to iterate over all pages, and for each page to increment the site
level statistics every time a link exchange is found (see Algorithm
3.1.1 below, lines 5-8), for BMSR, or simply every time a link is
encountered (Algorithm 3.1.1, lines 5-6, and 9), for UMSR. In or-
der to keep clear the idea behind the algorithm, we did not include
in the description below several straightforward performance opti-
mizations, such as computing the BMSR for some sites s and s′

only once, as it is the same with that for s′ and s. Also, Algorithm
3.1.1 computes the link density as a measure of UMSR.

Algorithm 3.1.1. Detecting Link Exchanges at Site Level.

1: Let BMSR(s, s′) and UMSR(s, s′) denote the amount of
link exchanges and the link density between sites s and s′

respectively.
2: For each site s
3: For each site s′ 6= s
4: BMSR(s, s′) = UMSR(s, s′) = 0
5: For each page p ∈ V , p residing on site s
6: For each page q ∈ Out(p), q from site s′ 6= s
7: If p ∈ Out(q) then
8: BMSR(s, s′) = BMSR(s, s′) + 1
9: UMSR(s, s′) = UMSR(s′, s) = UMSR(s, s′) + 1

Computing Page Ranks. Let us now see how we could use
these measures to improve PageRank quality. An approach is de-
picted in Algorithm 3.1.2, which removes all links between all pairs
of sites (s, s′), if the BMSR or UMSR values between them are
above a certain threshold. In our experiments, we used 10, 20, 50,
100, 250 and 300 for link density (250 being best, yet still with poor
performance), and 2, 3 and 4 for link exchanges (with 2 having bet-
ter results, indicating that most sites exchange incorrect votes, or
links, with only a few partners, like a company with its branches).

Algorithm 3.1.2. Removing Site-Level Link Exchanges.

1: For each site s
2: For each site s′

3: If ∗MSR(s, s′) ≥ ε∗MSR∗ then
4: Remove all links between s and s′

5: Compute regular PageRank.

3.2 Site Level Abnormal Support
Another type of situation we consider as a noisy relation between

sites is the site level abnormal support(SLAbS). It occurs when a
single site is responsible for a high percentage of the total amount of
links pointing to another site. This situation can easily arise within
a web collection. For instance, and unfortunately, once the spam-
mers have read the previous section, they could start to seek for new
schemes that circumvent the algorithms we presented. A relatively
simple approach they could take is to create chains of sites support-
ing each other through a limited number of links (see Figure 2 for
an example). This is because their space of available choices is di-
minishing: Using too many links would make them detectable by
our site level mutual reinforcement algorithms above, while using
other structures than chains (e.g., hierarchy of sites) would visibly
make their success more costly. We therefore propose the following
axiom:

AXIOM 1. The total amount of links to a site (i.e., the sum of
links to its pages) should not be strongly influenced by the links it
receives from some other site.

In other words, for any site s, there should not be a site s′ 6= s,
whose number of links towards s is above a certain percentage of
the total number of links s receives overall. In our experiments,
we tested with thresholds ranging from 0.5% up to 20% of the to-
tal number of links to s and the best results were achieved at 2%.



Figure 2: Example of site chains.

Whenever such a pair of sites (s, s′) is found, all links between
them are marked as noisy links. Note that links from s to s′ are also
taken as noise because we consider the relationship between them
suspicious. Finally, after this trimming process is over, we remove
the detected noisy links and the regular PageRank algorithm is run
over the cleaned link database. The approach is also summarized
in Algorithm 3.2.

Algorithm 3.2.. Removing Site-Level Abnormal Support(SLAbS).

1: For each site s
2: let t be the total number of links to pages of s
3: For each site s′ that links to s
4: let t(s′,s) be the number of links from s′ to s
5: supp = t(s′,s)/t
6: If supp ≥ εAS then
7: Remove all links between s′ and s
8: Compute regular PageRank.

3.3 Site Level Link Alliances
Another hypothesis we considered is that the popularity of a site

cannot be supported only by a group of strongly connected sites.
The intuition behind this idea is that a web site is as popular as di-
verse and independent are the sites that link to it. In fact, as we
will see from the experiments section, our algorithm which detects
and considers this concept of independence when computing Page-
Rank gives a strong improvement in the overall quality of the final
rankings.

Further, continuing the scenario discussed in the previous Sec-
tion, suppose spammers do have enough resources available to
build complex hierarchies of sites that support an end target site,
as illustrated in Figure 3. These hierarchies have previously been
named Link Spam Alliances by Gyögyi and Garcia-Molina [16], but
they did not present any solution to counteract them. Such struc-
tures would generate sites linked by a strongly connected commu-
nity, thus contradicting our general hypothesis about the relation
between diversity of sites that link to a site and its actual popular-
ity.

Before discussing our approach, we should note that we do not
address page level link alliances, i.e., hierarchies of pages meant to
support an end target page, all pages residing on the same site, or on
very few sites. These types of structures could be easily annihilated
for example by using different weights for intra-site and inter-site
links, or by implementing the approach presented by Bharat and
Henzinger in [7], where every in-link of some page p is assigned
the weight 1/k if there are k pages pointing to p (for link alliances
distributed over several sites).

The more complicated situation is to find link alliances (inten-
tional or not) over several sites, as the one depicted in Figure 3

Figure 3: Example of link alliance spanning over several sites.

(boxes represent sites). Our intuition is that these alliances would
still have to consist of highly interconnected pages. More specifi-
cally, if a page p has in-links from pages i1, i2, . . ., iI , and these
latter pages are highly connected, then they are suspect of being
part of a structure which could deceive popularity ranking algo-
rithms. We evaluate the degree of susceptivity using the following
algorithm:

Algorithm 3.3.1.. Computing Site-Level Link Alliance Susceptivity.

1: For each page p
2: Let Tot count the number of out-links of all pages q ∈ In(p)
3: Let TotIn count the number of out-links of all pages q ∈ In(p),

such that they point to some other page from In(p)
4: For each page q ∈ In(p)
5: For each page t ∈ Out(q)
6: Tot = Tot + 1
7: If t ∈ In(p) then
8: TotIn = TotIn + 1
9: Susceptivity(p) = TotIn

Tot
.

Once the susceptivity levels are computed, we downgrade the
in-links of every page p with (1 − Susceptivity(p)), uniformly
distributing the remaining votes to all pages. This latter step is
necessary in order to ensure the convergence of the Markov chain
associated to the web graph, i.e., to ensure the sum of transition
probabilities from each state st remains 1. The entire approach is
also presented in Algorithm 3.3.2.

Algorithm 3.3.2.. Penalizing Site-Level Link Alliances.

1: Let PR(i) = 1/‖V ‖,∀i ∈ {1, 2, ..., ‖V ‖}
2: Repeat until convergence
3: For each page p
4: PR(p) = (1 − Susceptivity(p)) · (1 − c)·P

q∈In(p)
PR(q)

‖Out(q)‖ + c
‖V ‖

5: Residual = Susceptivity(p) · (1 − c)·P
q∈In(p)

PR(q)
‖Out(q)‖

6: For each page p′

7: PR(p′) = PR(p′) + Residual
‖V ‖



4. EXPERIMENTS

4.1 Experimental Setup
We evaluated the impact of our noise removal techniques on the

link database of the TodoBR search engine. This database consisted
of a collection of 12,020,513 pages extracted from the Brazilian
web, connected by 139,402,245 links. As it represents a consider-
ably connected snapshot of the Brazilian web community, which is
probably as diverse in content and link structure as the entire web,
we think it makes a realistic testbed for our experiments.

In order to evaluate the impact of our algorithms within practical
situations, we extracted test queries from the TodoBR log, which is
composed of 11,246,351 queries previously submitted to the search
engine. We divided these selected queries in two groups:

1. Bookmark queries, in which a specific web page is sought;
2. Topic queries, in which people are looking for information

on a given topic, instead of some page.
Each query set was further divided in two subsets, as follows:

• Popular queries: Here, we selected the top most popular
bookmark / topic queries found in the TodoBR log. These
queries usually search for well known web sites and are use-
ful to check what happens to these most commonly searched
pages after the noise removal methods have been applied.

• Randomly selected queries: Here, we selected the queries
randomly. These queries tend to search for less popular sites
and show the impact of our techniques on pages that are
probably not highly ranked by PageRank.

Then, 14 undergraduate and graduate computer science students
(within different areas) evaluated the selected queries under various
experimental settings. All of them were familiar with the Brazilian
web pages and sites, in order to ensure more reliability to our ex-
periments.

The bookmark query sets contained each 50 queries, extracted
using the above mentioned techniques. All bookmark query results
were evaluated using MRR (Mean Reciprocal Ranking), which is
the metric adopted for bookmark queries on the TREC Conference2

and is computed by the following equation:

MRR(QS) =

P
∀qi∈QS

1
PosRelAns(qi)

|QS| (3)

where QS is the set of queries we experiment on, and
PosRelAns(qi) is the position of the first relevant answer in the
rankings output for query qi. MRR is the most common metric for
evaluating the quality of results in bookmark queries. As it can be
seen, its formula prioritizes methods that obtain results closer to the
top of the ranking, adopting an exponential reduction in the scores
(i.e., higher scores are better), as the position of the first relevant
answer in the ranking increases. Also, MRR is very good at assess-
ing the “real life” performance of the search engine, as the URLs
most likely to be visited are those returned at the very top of the re-
sult list [20]. However, MRR is not sensible to pages having huge
drops in position (e.g., from place 15 to place 40). Therefore, we
also adopted another measure, mean position, (denoted MEANPOS
in the tables to follow), which computes the average position of the
first relevant answer in the output provided for each query. This
metric results in a linear increase in the scores (higher is worse) as
the position of the relevant answer increases.

For topic queries, we used two sets of 30 queries also selected
from the TodoBR log as described previously. These different
queries evaluate the impact of our noise removal algorithms when
searching for some given topics. In this case, we evaluated the
2http://trec.nist.gov/

results using the same pooling method as used within the Web Col-
lection of TREC [19]. We thus constructed query pools containing
the first top 20 answers for each query and algorithm. Then, we as-
sessed our output in terms of various precision based metrics. The
precision of an algorithm is defined as the number of relevant re-
sults returned divided by the total number of results returned. For
each algorithm, we evaluated the Mean Average Precision (MAP),
the precision at the first 5 positions of the resulted ranking (P@5),
as well as the precision at the top 10 output rankings (P@10). In
all cases the relevant results were divided in two categories, (1)
relevant and (2) highly relevant. Also, we processed all queries ac-
cording to the user specifications, as extracted from the TodoBR
log: phrases, Boolean conjunctive or Boolean disjunctive. The set
of documents achieved for each query was then ranked according to
the PageRank algorithm, with and without each of our link removal
techniques applied. Finally, all our results were tested for statistical
significance using T-tests (i.e., we tested whether the improvement
over PageRank without any links removed is statistically signifi-
cant).

In all the forthcoming tables, we will label the algorithms we
evaluated as follows:

• ALL LINKS: No noise removal.
• UMSR: Uni-directional Mutual Site Reinforcement.
• BMSR: Bi-directional Mutual Site Reinforcement.
• SLAbS: Site Level Abnormal Support.
• SLLA: Site Level Link Alliances.
• Combinations of the above, in which every method is applied

independently to remove (UMSR, BMSR, SLAbS) or down-
grade (SLLA) links, and then PageRank is applied on the
resulted “cleaned” graph. Quite several combinations have
been tested, but due to space limitations, only the best of
them will be presented here.

Algorithm specific aspects. Another important setup detail is to
divide the collection in web sites, as the concept of web site is rather
imprecise. In our implementation, we adopted the host name part
of the URLs as the keys for identifying individual web sites. This is
a simple, yet very effective heuristic to identify sites, as pages with
different host names usually belong to different sites, while those
with identical host names usually belong to the same site.

As UMSR, BMSR and SLAbS all use thresholds to determine
whether links between pairs of sites are noisy or not, it is impor-
tant to tune such thresholds in order to adjust the algorithms to
the collection in which they are applied. For the experiments we
performed, we adopted the MRR results achieved for bookmark
queries as the main parameter to select the best threshold. This
metric was adopted because the link information tends to have a
greater impact on bookmark queries than on topic queries. Further,
MRR can be calculated automatically, reducing the cost for tun-
ing. The best parameters for each method depend on the database,
the amount of noisy information and the requirements of the search
engine where they will be applied.

Table 1 presents the best thresholds we found for each algo-
rithm using the MRR as the tuning criteria. These parameters were
adopted in all the experiments presented.

4.2 Results
Bookmark Queries. We evaluated the bookmark queries

in terms of Mean Reciprocal Rank (MRR) and Mean Position
(MEANPOS) of the first relevant URL output by the search engine.
Table 2 shows the MRR scores for each algorithm with popular
bookmark queries. The best result was achieved when combining
all the noise detection methods proposed, with an improvement of



Method Threshold
UMSR 250
BMSR 2
SLAbS 2%

Table 1: Best thresholds found for each algorithm using MRR
as the tuning criteria.

Method MRR Gain [%] Signific., p-value
ALL LINKS 0.3781 - -

UMSR 0.3768 -0.53% No, 0.34
BMSR 0.4139 9.48% Highly, 0.008
SLAbS 0.4141 9.5% Yes, 0.04
SLLA 0.4241 12.14% Yes, 0.03

BMSR+SLAbS 0.4213 11.40% Yes, 0.02
SLLA+BMSR 0.4394 16.20% Highly, 0.01
SLLA+SLAbS 0.4544 20.17% Highly, 0.003

SLLA+BMSR+SLAbS 0.4802 26.98% Highly, 0.001

Table 2: Mean Reciprocal Rank (higher is better) for popular
bookmark queries.

26.98% in MRR when compared to PageRank. The last column
shows the T-test results, which indicate the statistical significance
of the difference in results3 for each database when compared to the
ALL LINKS version (i.e., PageRank on the original link database).
The only method that had a negative impact on MRR was the
UMSR, which indicates that many unidirectional relations between
sites are rather useful for the ranking. This was also the only algo-
rithm for which the T-test indicated a non-significant difference in
the results (p-values lower than 0.25 are taken as marginally signif-
icant, lower than 0.05 are taken as significant, and lower than 0.01
as highly significant).

Table 3 presents the Mean Position of the first relevant result
(MEANPOS) achieved for popular bookmark queries under each
of the algorithms we proposed. The best combination remains
SLLA+BMSR+SLAbS, with a gain of 37.00%. Thus, we conclude
that for popular bookmark queries the combination of all methods
is the best noise removal solution. Also, individually, Site Level
Link Alliance (SLLA) produced the highest increase in PageRank
quality.

After having evaluated our techniques on popular bookmark
queries, we tested their performance over the randomly selected
ones. The MRR results for this scenario are displayed in Table 4.
Again, the best outcome was achieved when combining all the
noise detection methods proposed, with an improvement of 20.92%
in MRR when compared to PageRank. Note that an improvement
is harder to achieve under this setting, since the web pages searched
in these queries are not necessarily popular, and thus many of them
may have just a few in-going links and consequently a low Page-
Rank score. Therefore, as removing links at the site level might also
have the side effect of a further decrease of their PageRank score,
they could become even more difficult to find. This is why both
site level mutual reinforcement algorithms (BMSR and UMSR)
resulted in a negative impact in the results, indicating that some
site level mutual reinforcement might not necessarily be a result of

3Recall that statistical significance is not computed on the average
result itself, but on each evaluation evidence (i.e., it also considers
the agreement between subjects when assessing the results). Thus,
smaller average differences could result in a very significant result,
if the difference between the two algorithms remains relatively con-
stant for each subject.

Method MEANPOS Gain [%] Significance
ALL LINKS 6.35 - -

UMSR 6.25 1.57% No, 0.34
BMSR 5.37 18.25% Yes, 0.04
SLAbS 5.84 8.72% No, 0.26
SLLA 5 27.06% Highly, 0.003

BMSR+SLAbS 5.63 12.89% Minimal, 0.12
SLLA+BMSR 4.84 31.17% Highly, 0.01
SLLA+SLAbS 4.68 35.86% Highly, 0.002

SLLA+BMSR+SLAbS 4.62 37.29% Yes, 0.04

Table 3: Mean position of the first relevant result obtained for
popular bookmark queries.

Method MRR Gain [%] Signific., p-value
ALL LINKS 0.3200 - -

UMSR 0.3018 -5.68% Highly, 0.01
BMSR 0.3195 -0.17% No, 0.45
SLAbS 0.3288 2.73% No, 0.31
SLLA 0.3610 12.81% Yes, 0.04

BMSR+SLAbS 0.3263 -2.19% No, 0.36
SLLA+BMSR 0.3632 13.47% Yes, 0.03
SLLA+SLAbS 0.3865 20.78% Yes, 0.017

SLLA+BMSR+SLAbS 0.3870 20.92% Yes, 0.016

Table 4: Mean Reciprocal Rank (higher is better) for randomly
selected bookmark queries.

noise (at least the uni-directional type of reinforcement). Similar
results have been observed when computing the Mean Position of
the first relevant result, instead of the MRR (see Table 5). Individ-
ually, SLLA is still the best algorithm, whereas the best technique
overall is again the combined SLLA+BMSR+SLAbS.

Topic Queries. As mentioned earlier in this section, we eval-
uated the topic queries using precision at the top 5 results (P@5)
and at the top 10 results (P@10), as well as the mean average pre-
cision (MAP). We first turn our attention to the experiment in which
the output URLs assessed both as relevant and highly relevant are
considered as good results. Table 6 presents the evaluation for the
most popular 30 topic queries under this scenario. All results were
tested for significance, and in both P@5 and P@10 no method man-
ifested a significant gain or loss. Even so, in both P@5 and P@10
we see that BMSR has a slight gain over UMSR. SLLA exhibited
the greatest gain in P@5, but the results were relatively similar for
all algorithms in P@10. As for MAP, most of the results (except
for SLAbS, BMSR, and their combination) had significant gain on
MAP, when compared with the database without noise removal. Fi-
nally, SLAbS performance was rather poor. However, this behavior
of SLAbS was recorded only with this kind of queries, where it is
also explainable: Some very popular sites might indeed get an ab-
normal support from several of their fans; some would consider this
as noise, but our testers apparently preferred to have the ranks of
these sites boosted towards the top. The best individual method was
SLLA and the best combination was SLLA with BMSR, which was
better than the combination of all three methods due to the negative
influence of SLAbS.

The same experiment was then performed for the 30 randomly
selected topic queries. Its results are depicted in Table 7. Here,
SLLA remains a very effective individual algorithm, but SLAbS
shows even better results. This indicates that an abnormal support
for less popular sites usually appears as a result of noise. More,
due to this special behavior of our algorithms, under this setting



Method MEANPOS Gain [%] Significance
ALL LINKS 8.38 - -

UMSR 8.61 -2.71% Highly, 0.01
BMSR 8.28 1.28% No, 0.27
SLAbS 8.23 1.80% Minimal, 0.24
SLLA 7.42 12.89% Minimal, 0.11

BMSR+SLAbS 8.02 4.09% No, 0.36
SLLA+BMSR 7.27 15.21% Minimal, 0.07
SLLA+SLAbS 7.12 17.61% Highly, 0.01

SLLA+BMSR+SLAbS 7 19.76% Highly, 0.005

Table 5: Average mean position of the first relevant result for
randomly selected bookmark queries.

Method P@5 P@10 MAP Signif. for MAP
ALL LINKS 0.255 0.270 0.198 -

UMSR 0.255 0.282 0.207 Highly, 0.0031
BMSR 0.260 0.285 0.198 No, 0.3258
SLAbS 0.226 0.262 0.185 Minimal, 0.0926
SLLA 0.275 0.270 0.227 Highly, 0.0030

BMSR+SLAbS 0.226 0.276 0.200 No, 0.3556
SLLA+SLAbS 0.245 0.255 0.216 Yes, 0.0429
SLLA+BMSR 0.270 0.273 0.231 Highly, 0.0031

SLLA+BMSR+SLAbS 0.245 0.259 0.223 Yes, 0.0129

Table 6: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering all the relevance judg-
ments for popular topic queries.

the main contributor to the combined measures was SLAbS, thus
yielding the best MAP score for BMSR+SLAbS.

Before concluding this analysis, we also measured the quality of
our methods under the same setting, but considering only the highly
relevant output URLs as good results (recall that our subjects eval-
uated each URL as irrelevant, relevant and highly relevant for each
query). For the popular topic queries (Table 8), the performance of
the individual methods was similar to the scenario that considered
both relevant and highly relevant results, with the main difference
being that here SLAbS gains about 12% over the database without
noise removal, instead of losing. This is because the sites previ-
ously discovered due to noise (i.e., those being very popular, but
also abnormally supported by some fans) were considered only rel-
evant by our testers, and thus not included in this more strict exper-
iment. Finally, for the randomly selected queries (Table 9), SLAbS
again showed the best individual performance (just as in the sibling
experiment considering both kinds of relevance judgments), with
the overall top scores being achieved for SLLA+BMSR+SLAbS
and BMSR+SLAbS.

Conclusion. In order to make our results more clear, we also
plotted their relative gain over regular PageRank (i.e., without noise
removal). Figure 4 depicts this gain in percentage for bookmark
queries and Figure 5 depicts it for topic queries. We first note that
UMSR yielded negative results in three of the four experiments
with bookmark queries, which makes it less preferable to its sibling
BMSR, even though it performed better than the latter one with
topical queries. Also, we observe that SLAbS performed quite well
under both broad experimental settings, but SLLA is clearly the
best single approach for bookmark queries. Finally, all combined
measures performed very well, with SLLA+BMSR+SLAbS being
the best one.

Method P@5 P@10 MAP Signif. for MAP
ALL LINKS 0.412 0.433 0.311 -

UMSR 0.442 0.442 0.333 Highly, 0.0030
BMSR 0.400 0.445 0.314 No, 0.3357
SLAbS 0.436 0.458 0.340 Yes, 0.0112
SLLA 0.461 0.455 0.327 Yes, 0.0125

BMSR+SLAbS 0.448 0.470 0.358 Highly, 0.0012
SLLA+BMSR 0.485 0.448 0.326 Highly, 0.0006
SLLA+SLAbS 0.461 0.461 0.354 Minimal, 0.0618

SLLA+BMSR+SLAbS 0.461 0.467 0.346 Highly, 0.0002

Table 7: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering all the relevance judg-
ments for random topic queries.

Method P@5 P@10 MAP Signif. for MAP
ALL LINKS 0.152 0.141 0.112 -

UMSR 0.152 0.147 0.131 Highly, 0.0002
BMSR 0.152 0.150 0.127 Highly, 0.0022
SLAbS 0.152 0.147 0.126 Yes, 0.0172
SLLA 0.162 0.153 0.163 Highly, 0.00003

BMSR+SLAbS 0.152 0.156 0.128 Highly, 0.0016
SLLA+SLAbS 0.157 0.147 0.175 Highly, 0.00002
SLLA+BMSR 0.157 0.153 0.168 Highly, 0.00005

SLLA+BMSR+SLAbS 0.157 0.150 0.179 Highly, 0.00001

Table 8: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering only the highly rele-
vant results selected by our subjects for popular topic queries.

4.3 Practical Issues
Amount of removed links. Even though the amount of removed

links does not necessarily represent the performance increase of
each algorithm, it is still interesting to see how much did they trim
the original link structure. We thus present these values in Table
10 (recall that SLLA does not remove any links, but only down-
grades them). We observe that BMSR has removed a relatively low
amount of links (at least when compared to the other methods),
which indicates that SLLA+SLAbS could be preferred in practi-
cal implementations when faster computations of the algorithm are
desired, at the cost of a minimally lower output quality.

Scalability. Algorithms dealing with large datasets as the web
need to have a very low complexity in order to be applied in a real
environment. We argue that all the algorithms we proposed in this
paper have a computational cost growth linear in the number of
pages.

Both Mutual Reinforcement detection algorithms behave in a
similar way, with UMSR being slightly less expensive than BMSR.
The former one needs a simple pass over all links and thus has the
complexity O(|E|). If M = Averagep∈V (Out(p)), and if the
in-links information is present in the search engine database, but
with the in-links in a random order, then the complexity of BMSR
is O(|V | · M2), with M2 being the cost of sequential searching.
Furthermore, if the in-links are sorted, then the complexity falls to
O(|V | · M · log(M)).

SLAbS is very similar to UMSR. For each page p we up-
date the statistics about its in-going links. Thus, if P =
Averagep∈V (In(p)), then the computational complexity of
SLAbS is O(|V | · P ).

SLLA is based on the in-linkers of a page p that are not from the
same site as p. Thus, the algorithm needs to calculate the amount of
links from pages from In(p) that point to other pages within In(p).



Method P@5 P@10 MAP Signif. for MAP
ALL LINKS 0.170 0.179 0.187 -

UMSR 0.176 0.191 0.196 Yes, 0.0457
BMSR 0.170 0.185 0.195 Minimal, 0.0520
SLAbS 0.182 0.191 0.201 Yes, 0.0200
SLLA 0.164 0.185 0.194 No, 0.2581

BMSR+SLAbS 0.188 0.197 0.207 Highly, 0.0068
SLLA+BMSR 0.182 0.194 0.205 Highly, 0.0090
SLLA+SLAbS 0.182 0.206 0.203 Yes, 0.0180

SLLA+BMSR+SLAbS 0.200 0.212 0.208 Highly, 0.0012

Table 9: Precision at the first 5 results, at the first 10 results,
and Mean Average Precision considering only the highly rele-
vant results selected by our subjects for random topic queries.

Figure 4: Relative gain (in %) of each algorithm in MRR and
Mean Position for bookmark queries.

If the out-links or the in-links are already sorted, the complexity of
this approach is O(|V | ·M2 · log(M)). Otherwise, the complexity
is O(|V | · M3), since a sequential search is now needed.

Finally, we note that all algorithms we proposed in this paper do
a page-by-page processing, thus being trivially parallelizable.

5. CONCLUSIONS AND FURTHER WORK
In this paper we proposed using site level link analysis to detect

the noisy links from search engine link databases. We designed
and evaluated algorithms tackling three types of inappropriate site
level relationships: mutual reinforcement, abnormal support and
link alliances. Our experiments have showed an improvement of
26.98% in Mean Reciprocal Rank for popular bookmark queries,
20.92% for randomly selected bookmark queries, and up to 59.16%
in Mean Average Precision for topic queries. Furthermore, our al-
gorithms identified up to 16.7% of the links from our collection
as noisy, while many of them could not be considered nepotistic,
thus demonstrating that searching for noisy links in search engine
databases is more important than searching only for spam.

While most of the algorithms we presented in this paper directly
removed the identified malicious links, in future work we intend
to investigate using different weights for various types of links,
according to the relation they represent (i.e., inter-site or intra-
site relation), as well as to their probability of representing a vote
of importance. Additionally, we would like to study more com-
plex (eventually automatic) approaches to tune up the parameter
thresholds, instead of using the MRR scores resulted for bookmark
queries.

Figure 5: Relative gain (in %) in MAP for all algorithms for
topic queries, considering only highly relevant results as rele-
vant (High), and considering both relevant and highly relevant
answers as relevant (All).

Method Links Detected % of Total Links
UMSR 9371422 7.16%
BMSR 1262707 0.96%
SLAbS 21205419 16.20%

UMSR+BMSR 9507985 7.26%
BMSR+SLAbS 21802313 16.66%

Table 10: Amount of links removed by each of our algorithms.
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