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Abstract—This paper is the first analytical work to exhibit the
substantial gains resulting from applying site specific knowledge
to frequency allocation in wireless networks. Two new site-specific
knowledge-based frequency allocation algorithms are shown to
outperform all other published work. Site specific knowledge
refers to knowledge of building layouts, the locations and elec-
trical properties of APs, users, and physical objects. We assume
that a central network controller communicates with all APs,
and has site specific knowledge which enables the controller to
predict, a priori, the received power from any transmitter to any
receiver. Optimal frequency assignments are based on predicted
powers to minimize interference and maximize throughput. Our
algorithms consistently yield high throughput gains irrespective
of network topology, AP activity level, and the number of
APs, rogue interferers, and available channels. Our algorithms
outperform the best published algorithm by up to 3.68%, 8.95%,
13.6%, 15.1%, 25.8%, and 84.9% for 50, 25, 20, 15, 10, and 5
percentiles of user throughputs, respectively.

I. INTRODUCTION

Radio propagation characteristics are fundamentally site

specific, since radio propagation mechanisms (e.g. penetration,

reflection, and diffraction) are directly related to the locations,

sizes, and electrical properties of physical objects in the

surroundings. Site-specific channel prediction algorithms [1]–

[3] use a building layout or a satellite map and compute path

losses between any two locations in indoor or outdoor envi-

ronments. The complexity of these prediction tools has been

reduced, and computing power has increased, so that they can

be implemented for real-time network management applica-

tions. Today, site specific knowledge is becoming much more

available from blueprints, AutoCAD, and GoogleTM Maps,

for example. In this paper we use site specific knowledge to

improve on-going frequency allocation in WLANs formed by

APs and clients. In WLANs, a number of orthogonal frequency

channels are allocated, and each AP is allocated one channel.

When the number of channels is limited relative to the number

of APs, some APs inevitably use the same channel and induce

co-channel interference. The same problem exists in cellular

networks. Judicious channel reuse mechanisms are necessary

to reduce interference, particularly for the case of mobile users,

such as in enterprise voice over IP networks or in cellular

networks.

A number of WLAN frequency allocation schemes have

been proposed thus far. The work in [4] assumes each AP

1This work is sponsored by NSF Grants ACI-0305644 and CNS-0325788.
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has a different fixed traffic load, and defines the effective

channel utilization of an AP as the fraction of time the

channel is used for data transmission or is sensed busy due

to interference from other APs; then, the maximum effective

channel utilization among all APs is minimized. AP placement

and frequency allocation are jointly optimized in [5] with the

same objective of minimizing the max channel utilization as

in [4]. The frequency allocation problem is modeled as a

minimum-sum-weight vertex-coloring problem in [6] where

vertices are APs, and the weight of each edge between two

APs denotes the number of clients that are associated with

either one of these two APs and are interfered by the other

AP. The work in [7] minimizes the number of clients whose

transmissions suffer channel conflicts; a client associated with

an AP suffers conflicts if other clients or other APs interfere

with the client or the AP under consideration. The definition

of channel conflict in [7] is more comprehensive than those in

[4]–[6]; the work in [7] has been shown to outperform [4]–[6].

However, none of [4]–[7] presents mechanisms to detect and

reduce the negative impact from rogue interferers, which refer

to intentional or unintentional RF interferers in noncooperative

networks, microwave ovens, or other RF devices that also

operate on the unlicensed bands as WLAN. Only the work in

[8], [9] handle rogue interferers. In [8], each AP senses inter-

ference and independently selects a channel whose measured

interference power is below a predefined threshold, without

coordinating with other APs. The work in [9] assumes that

clients periodically report in situ interference measurements

to their associated APs, and presents three iterative algorithms

that use the reported measurements to minimize interference

seen by clients. In each iteration, these three different al-

gorithms reduce the overall interference (computed by some

weighted function defined in [9]) seen in a single cell, a group

of nearby cells, or all cells, respectively, where a cell means

an AP and its associated users. The second algorithm with

local coordination among nearby APs has been shown to be

the best among the three in [9].

Most traffic in WLANs is downlink [3]; hence, maximizing

signal-to-interference-and-noise ratio (SINR) and downlink

throughput as seen by users are key to proper network design.

The work in [4], [5], [8] minimizes the interference at APs

rather than minimizes that at users, as is done in [6], [7], [9].

The work in [6]–[8] use a binary model for interference, which

has been shown to be inferior than the physical interference



model used in [9]. Since [9] also has the ability to deal with

rogue interferers, [9] has been shown to outperform [4]–[8].

Despite their success, the measurement-based algorithms in

[9] can still be improved if we assume that a central network

controller has and uses site specific knowledge to optimize

frequency allocation of each AP and each user. The advantage

of using site specific knowledge is to predict a priori path loss

between any pair of AP and user, when the user’s location is

obtained via GPS (Global Positioning System) or other known

position location technologies2. The predicted path losses

can help formulate a global optimization problem, thereby

maximizing throughputs and saving power, etc. In this work

we assume that the actual path loss between any transmitter

and receiver can be perfectly predicted by the site specific

knowledge. Though the environment affects the path losses,

empirical results show that by modeling large fixed partitions

and items in the environment (such as walls, book shelves, and

cubicles), the predicted and the measured path losses show

high agreement (zero mean error and standard deviation of 3-

4 dB) [1]–[3]. The study of the effect of imperfect predictions

of channel gains is an ongoing and future work.

Distributed measurement-based algorithms with the knowl-

edge of APs’ transmit powers via message exchanges can

learn over time the path loss or received power between every

transmitter and every receiver; examples of such algorithms are

described in [12]. Nevertheless, the time needed for learning

may be long when the number of interfering APs is large.

Saving the learning time for measurement-based algorithms is

a topic for ongoing and future work; in this paper, we choose to

use site specific knowledge to predict a priori the interference

power between any transmitter and any receiver.

Note that the central controller must know the active

transmitters at any point in time in order to predict correct

interference at all times; this information may be too costly

to obtain, but time sampling may be done. Since downlink

volume presently dominates WLAN traffic, this paper consid-

ers a case where all APs are actively transmitting downlink

traffic. It is reasonable to assume that frequency allocation

is optimized with respect to this most active case, since in

this case, frequency allocation is most crucial for interference

mitigation. Simulations in Section IV show that our algorithms

also perform well in scenarios with both downlink and uplink

traffic and with different levels of AP activity.

We present system models, notation, and assumptions, fol-

lowed by the details of the two algorithms based on site

specific knowledge. Then we show by simulations that our

algorithms substantially outperform the others in [4]–[9].

II. SYSTEM MODEL, NOTATION, AND ASSUMPTIONS

Suppose M APs, indexed by M = {1, 2, . . . ,M}, op-

erate on K orthogonal frequency channels, indexed by

2Several indoor position location approaches, based on signal strength
sensing, are widely known today and used in some WLANs [10], [11]. Other
triangulation methods can also be used to locate a client. Modern cellular
handsets are equipped with GPS chips or other position location technologies.
State-of-the-art GPS can work not only outdoors but also indoors; various
vendors, e.g. Metris and SnapTrack, provide indoor GPS solutions.

K = {1, 2, . . . ,K}. We index users (or clients) by L =
{1, 2, . . . , L}. We denote the identity of an AP and a client by

am (m ∈ M) and cl (l ∈ L), respectively. We assume for this

work the locations of the APs and the clients do not vary with

time, and no APs or users are at the same location, although

the algorithms given here also apply for mobile APs and/or

clients. We assume every user is associated with a single AP.

Let fm (fm ∈ K) denote the channel that am operates on, and

let �f = {f1, f2, . . . , fM} denote the channels of all M APs.

We assume that the central network controller periodically

(say every 5 minutes) requires the APs to stop transmitting for

a short duration of time (say, one second). In this duration,

APs take turns in requiring all users associated with them

to perform measurements of background interference, which

refers to both the noise floor and rogue interference from RF

devices outside the controlled network. Note that each user

needs to measure the background interference for all available

frequency channels. The users then feedback to APs these

measured background interference. Site specific knowledge

along with measurements of background interference make

the estimations of SINR at users or APs much more accurate.

III. SITE-SPECIFIC KNOWLEDGE-BASED ALGORITHMS

A. The Site-Specific SINR (SS-S) Formulation

We shall consider optimizing a sum of utility functions for

all the users’ SINR, assuming all APs are actively transmitting

downlink traffic (but not uplink traffic). That is, we optimize

the following problem over �f ∈ K
M , which is denoted Site

Specific SINR or SS-S in the rest of this paper:

max
�f∈KM

{

∑

l∈L

U(γl) |γl =
Scl,am

P i
cl

+
∑

n:fn=fm,n �=m Scl,an

,∀l ∈ L

}

(1)

where am in (1) denotes the AP with which cl is associated,

P i
cl

denotes background interference power that cl measures

(as described in Section II), γl denotes the SINR at user cl

as shown in (1), Scl,am
denotes the average received signal

power from am to cl. Note that the objective in (1) is not

optimizing ‘sum SINR’, since such an objective may favor

users that are closer to APs and may cause users which are

further away to suffer low SINR. A fair SINR distribution can

be achieved if we optimize the sum of utility functions in (1),

where the utility function U(·) in (1) can be any function that

is concave, continuously differentiable, and strictly increasing.

For example, Mo and Walrand have proposed a class of

utility functions that capture different degrees of fairness

parameterized by q [13]:

U(γl) =

{

(1 − q)−1γ
(1−q)
l , if q �= 1

log γl, if q = 1
, γl ∈ (0,∞). (2)

This family of utility functions is concave, continuously dif-

ferentiable, and strictly increasing. Intuitively, as q increases,

the degree of fairness increases, but the sum SINR decreases.

A trade-off between sum SINR and fairness of the individual

SINR of users that are further away from a serving AP can be



observed. By increasing the degree of fairness, we imply that

users that are further from APs have higher SINR (which is

needed to provide high throughput to distant users). The work

in [13] shows that if q → ∞, the formulation in (1) becomes

a special case that achieves max-min fairness.

At max-min fairness, the degree of fairness is the highest;

however, the sum SINR is the lowest. Simulation results in

Section IV show that q = 2 may be a good parameter to

capture this trade-off, but this remains a topic for further

research.

As described in Section II, we assume that the APs and/or

the users in the controlled network periodically measure the

background interference; hence, P i
cl

in (1) is known. We

assume that the central network controller has site specific

knowledge and the locations of all APs and users, can predict

signal power for any pair of AP and user, and can compute

Scl,an
for all cl, an in the denominator of (1). Thus all the

quantities in the optimization problem in (1) are known, yet

measurement-based algorithms (such as the ones presented

in [9]) do not know each individual component of Scl,an
in

(1) and thus are not able to solve (1) directly. Because the

optimization in (1) is a combinatorial problem, there is no

fast algorithm (polynomial-time) that can solve (1). Therefore,

we propose an efficient heuristic in Section III-C that can

find the locally optimal solution of (1); simulations show that

the algorithm in III-C outperforms the measurement-based

algorithms in [9], as well as all other frequency allocation

algorithms in [4]–[8].

B. The Site-Specific Rate (SS-R) Formulation

The formulation in (1) in Section III-A strives to provision

fair SINR across users. From the users’ perspective, however,

throughput may be a better metric than SINR for users’ per-

formance. Below we formulate another problem that aims at

provisioning fair throughput across users, and this formulation

may be denoted Site Specific Rate or SS-R.

max
�f∈KM

{

∑

l∈L

U(χl) |χl =
rl(γl)

Lm

, (3)

γl =
Scl,am

P i
cl

+
∑

n:fn=fm,n �=m Scl,an

,∀l ∈ L

}

(4)

where Lm denotes the number of clients that are associated

with am, χl denotes the throughput of cl from am (cl is

associated with am), rl(γl) denotes the long-term average data

rate that cl receives from am if cl is the only user associated

with am; rl depends on the SINR seen at user cl, i.e., γl.

rl(γl) may also be viewed as the achievable capacity between

cl and am. We assume that the AP am evenly distributes its

resource (e.g. time) amongst its Lm users and therefore has the

denominator in (4). There are several ways to model rl(γl);
for example, we may use Shannon capacity

rl(γl) = log2 (1 + γl) (5)

or an empirical model, e.g., such as introduced in [3], [14] to

relate throughput to SINR:

rl(γl) = Tmax

(

1 − e−Ae(γl−γ0)
)

, (6)

where the three constants Tmax, Ae, and γ0 denote peak

throughput, slope of throughput variation, and the cutoff SINR,

respectively, as described in [3]. The model in (6) captures

the downlink throughput of a client cl when all other clients

associated with the same AP are idle. In our simulation, we

use a time division multiplexing model. Hence, at any point

of time, an AP is sending data to only one client. The model

in (6) is valid, as long as we multiply the throughput in (6)

by the time fraction that am allocates to Client cl.

C. A Local Optimization Algorithm for SS-S and SS-R

The optimization problems in (1) and (3) are combinatorial;

solving them exhaustively requires exponential computation

time (exponential in the number of APs). Hence, we present

an iterative local optimization procedure that yields rapid and

nearly-optimal solutions of (1); the same procedure can also

solve (3). At the beginning of each iteration, a frequency

allocation �f is given, and at the end of the iteration, we find a

better frequency allocation �g that improves the objective in (1);
�f and �g may differ in several elements, which means that the

channels of several APs may change. During each iteration,

we do the following steps. First, we select an AP, say am. We

find V −1 other APs that produce the strongest interference on

am, assuming these V − 1 other APs and am are on the same

channel; for example, V = 7 implies that we find 6 other

APs that are in the vicinity of am so that they will likely

interfere with am’s clients the most. We try all possible KV

permutations of channels for these V APs, while fixing the

channels at the other M −V APs. We can find the best out of

the KV permutations so that (1) is maximized and is strictly

larger than the value before this iteration; then we change the

corresponding V elements in �f and thus form �g. If these V

APs have operated on the best channel allocation before this

iteration, we have �f = �g; in this case, another AP (instead of

am) and its V − 1 neighboring APs will be selected to restart

this iteration. This iterative algorithm runs until every set

of V neighboring APs reaches the best frequency allocation.

This iterative algorithm converges in a finite number of steps,

since the number of channel permutations is finite, and each

iteration strictly increases the objective in (1). In practice,

one may limit the number of iterations or specify a minimum

difference of weighted interference so that the iterations can

be finished in a reasonable amount of time (say 1, 5, or 30

seconds). We expect that the channel allocation found by this

local optimization algorithm will be close to the optimum if

V is large enough, since the exhaustive search can explore

more possible allocations with a larger V . The simulations in

Section IV shows that this local optimization algorithm with

V = 7 outperforms all other algorithms [4]–[8].

The algorithm proposed above solves the SS-S formulation

in (1) and the SS-R in (3). When it is applied to solve SS-S, we

refer to the algorithm as the SS-S algorithm; similarly, when
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Fig. 1. Frequency allocation examples for 49 APs on a 7-by-7 nonuniform or
uniform topology. Three kinds of objects (squares, stars, and circles) signify
three orthogonal frequency channels. Filled back objects denote 49 APs;
hollow objects denote 196 users; double-layered objects with inner part filled
with black denote 20 rogues. The units of X and Y axes are meters.
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Fig. 2. User throughput (in Mbps) comparison with different levels of noise
floor in a setting with APs on a uniform 10-by-10 layout, 400 users, and
10 rogue RF interferers. Only the 200 users with the lowest throughputs are
shown.

the algorithm is used to maximize throughput (rate), we refer

to it as the SS-R algorithm.

IV. SIMULATION SETUP AND RESULTS

The algorithm in [7], denoted as CF, has been shown to

outperform [4]–[6]. Hence, we compare our proposed algo-

rithms against CF, the algorithm in [8] (called LC), and the

two better measurement-based algorithms Lo-U and No-U in

[9]. First, we consider a saturated network where all APs are

transmitting downlink traffic. We set the number of orthogonal

channels (K) to 3 to represent 802.11b/g; other larger values of

K produce very similar trends as to those shown in Figs. 2-

4, making our approach applicable to cellular networks and

802.11a. We consider three network sizes, three levels of

rogue interference, and two network topologies, and thus have

eighteen combinations (3 × 3 × 2), as shown in the x-axis of

Fig. 3. The three network sizes include a 4-by-4 AP layout

with 64 users, a 7-by-7 layout with 196 users, and a 10-by-

10 layout with 400 users. Each AP may be associated with a

different number of users; the average number of users for each

AP is four. We consider low, medium, and high interference
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from rogue interferers, where the ratio of the number of rogue

interferers to the number of APs is 10%, 40%, and 70%,

respectively. We consider a uniform topology where APs are

regularly located as illustrated in Fig. 1(a), and a nonuniform

topology, where APs are perturbed from the uniform layout

with a small random distance (up to 25% of separation), as

shown in Fig. 1(b). The separation between adjacent APs is

240 meters. We set q as 2. The noise floor is 10 dB above

the thermal noise to properly represent the real world [12].

We assume each AP can source a max of 54 Mbps per the

802.11g standard.

For example, Fig. 2 considers 100 controlled APs with 10

rogues. LC in [8] is known to be the best prior to our previous

work in [9]. Fig. 2 shows that SS-R and SS-S outperform LC

by 13.1% and 16.8% in terms of mean user throughput, 13.6%

and 18.5% in terms of median, 87.1% and 97.6% in terms of

25-percentile, and 1110% and 1180% in terms of 15-percentile

user throughputs. Lo-U is known to be the best algorithm

among all prior work, especially at uplifting throughputs for

users with lowest throughputs. Nevertheless, Fig. 2 shows

that SS-S outperforms Lo-U by 3.68%, 8.95%, 13.6%, 15.1%,



25.8%, and 72.6%, and SS-R outperforms Lo-U by -0.619%,

3.13%, 7.68%, 8.77%, 19.5%, and 84.9%, in terms of 50, 25,

20, 15, 10, and 5 percentiles of user throughputs, respectively.

SS-R yields the highest 3-percentile throughput. Generally, SS-

R sacrifices the users with higher throughput to improve the

users with lower throughput. Although SS-R is worse than

SS-S for users with high throughput, SS-R is still better than

Lo-U, the best algorithm in the literature. Our algorithms

yield enormous throughput gains especially for users with low

throughputs. Fig. 3 shows that our algorithms enable more

users to operate above 512 kbps irrespective of the number

of APs and rogues; this trend is true for other throughput

thresholds, as well. Fig. 3 shows that SS-R accommodates up

to 18% and 7% more users than LC and Lo-U, respectively.

Above we assumed all traffic was downlink and optimized

the frequency allocation for the most active case where all

APs are transmitting downlink traffic. It is reasonable to

optimize frequency allocation for this case, since in this case,

frequency allocation is most crucial for interference mitigation.

Now we examine the performance of the optimized frequency

allocations in the presence of both downlink and uplink traffic.

Work in [15] shows that uplink and downlink capacities in

multiple cells are mutually coupled due to inter-cell inter-

ference, and no system-level analytic model has been found

to model activities of multiple APs. In our next simulation,

we consider that time is slotted, and propose an approximate

probabilistic model where APs independently choose one of

the three possible activity states at each time slot. An AP

can be transmitting downlink traffic, receiving uplink traffic,

or idle, with probabilities pd, pu, and pi = 1 − pd − pu,

respectively. For any AP that is transmitting downlink traffic or

receiving uplink traffic at a certain time slot, a user is randomly

chosen (with uniform probability distribution) out of all the

users associated with this AP to be the recipient or the sender

of the traffic. We fix the ratio of pd to pu as 5:1 [3], and

and simulate 5 cases where pd + pu (the probability that an

AP is active) is 0.2, 0.4, . . . , 1.0, respectively. We intend to

see the effect of pd + pu on the performance of the proposed

algorithms. The assumption that the activity of each AP is

independent from the other APs simplifies the simulations and

provides a rule-of-thumb for the comparison. Fig. 4 shows that

our algorithms consistently yield throughput gains (including

both downlink and uplink) irrespective of the probability of

AP activity; particularly the gains are high (up to 71% for 25-

percentile throughput and 19% for median throughput) when

APs are highly active (i.e., when the network traffic load is

heavy). In Fig. 4 we see the same trend as in Fig. 2 that SS-S

and SS-R are the best at providing high throughputs for users

who suffer the lowest throughputs.

V. CONCLUSIONS

A central network controller with site specific knowledge

can predict the path loss between any AP and client, and

therefore predict the impact of SINR and throughput on every

AP and user when the channel of any AP is changed. This site

specific knowledge leads to vast network improvements which

we have demonstrated by using two site-specific algorithms

that can incorporate the importance of fairness across users.

These algorithms substantially outperform all other published

ones in various scenarios. Our proposed algorithms are par-

ticularly useful when the traffic load of the network is high

and APs are highly active. The two algorithms, SS-S and

SS-R, are better at uplifting the throughputs of users that

suffer lowest throughputs when particular utility functions are

chosen. Judicious selection of utility function is a topic of

future research. We believe that site specific knowledge is

also useful for other wireless communication problems in both

cellular networks and WLANs, which will be validated by

ongoing and future work; for example, work in [16] use site

specific knowledge for load balancing in wireless networks.
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