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Sitting and standing intention can be decoded from scalp
EEG recorded prior to movement execution
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Low frequency signals recorded from non-invasive electroencephalography (EEG), in

particular movement-related cortical potentials (MRPs), are associated with preparation

and execution of movement and thus present a target for use in brain-machine interfaces.

We investigated the ability to decode movement intent from delta-band (0.1–4 Hz) EEG

recorded immediately before movement execution in healthy volunteers. We used data

from epochs starting 1.5 s before movement onset to classify future movements into one

of three classes: stand-up, sit-down, or quiet. We assessed classification accuracy in both

externally triggered and self-paced paradigms. Movement onset was determined from

electromyography (EMG) recordings synchronized with EEG signals. We employed an

artifact subspace reconstruction (ASR) algorithm to eliminate high amplitude noise before

building our time-embedded EEG features. We applied local Fisher’s discriminant analysis

to reduce the dimensionality of our spatio-temporal features and subsequently used a

Gaussian mixture model classifier for our three class problem. Our results demonstrate

significantly better than chance classification accuracy (chance level = 33.3%) for the

self-initiated (78.0 ± 2.6%) and triggered (74.7 ± 5.7%) paradigms. Surprisingly, we

found no significant difference in classification accuracy between the self-paced and

cued paradigms when using the full set of non-peripheral electrodes. However, accuracy

was significantly increased for self-paced movements when only electrodes over the

primary motor area were used. Overall, this study demonstrates that delta-band EEG

recorded immediately before movement carries discriminative information regarding

movement type. Our results suggest that EEG-based classifiers could improve lower-limb

neuroprostheses and neurorehabilitation techniques by providing earlier detection of

movement intent, which could be used in robot-assisted strategies for motor training and

recovery of function.

Keywords: EEG, electroencephalography, movement-related cortical potentials, classification, brain-machine

interface, mobile neuroimaging, lower extremity

INTRODUCTION

Robot-assisted therapies have shown promising results, com-

pared to traditional therapy, for functional recovery of movement

after injury in the upper and lower extremities (Winchester

et al., 2005; Hogan and Krebs, 2011). These neurorehabilita-

tion paradigms could be improved by faster and more robust

detection of movement intent where it originates in the brain.

Incorporation of a brain machine interface (BMI) can reduce

the latency between motor planning in the cortex and activa-

tion of a device to execute (or assist) the movement, thereby

enhancing the opportunity for brain plasticity and motor recov-

ery (Daly and Wolpaw, 2008). The intuitive nature of a BMI

based on signals directly related to intended movement could

be advantageous for rehabilitation by expediting adaptation

of the brain to the BMI algorithm and the robotic device.

Electroencephalography (EEG) provides a non-invasive method

for imaging brain activity with enough time resolution to exert

control over an assistive device. Many strategies for deploying

EEG in a BMI by detecting movement intent (imagined and

real) have been reported (Pfurtscheller et al., 1996, 2006; Wolpaw

et al., 2002; Millán et al., 2004; Qin et al., 2004; Hung et al.,

2005; Morash et al., 2008). These systems typically leverage one

of two phenomena to detect movement intent: event related

(de)synchronization (ERD/ERS) and movement related slow cor-

tical potentials (MRPs). ERD, a decrease of power in alpha

and beta bands, is typically localized to the contralateral sen-

sorimotor areas before movement while ERS, a power increase,

has been observed after movement (Pfurtscheller and Lopes da

Silva, 1999). Modulation of these sensorimotor rhythms has

been employed for classification of imagined (Pfurtscheller et al.,

2006; Pfurtscheller and Neuper, 2006) and executed (Morash

et al., 2008) movements with some success. ERD has also shown

capacity to categorize gross lower extremity tasks, including dif-

ferentiation of right and left leg motor imagery (Boord et al.,

2010) and identification of imagined standing (Zhong et al.,

2007).
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MRPs are slow negative potentials observed in EEG preced-

ing movement. MRPs can be divided into two segments: the

first begins as early as 2 s before movement onset and has been

observed over the entire pre-supplementary motor area (SMA),

and over the SMA and lateral premotor cortex according to soma-

totopic organization (Ikeda et al., 1992; Hallett, 1993; Shibasaki

and Hallett, 2006; Bai et al., 2011). The second, or late, segment

typically has a steeper negative slope and is observed in the con-

tralateral primary motor cortex (M1) and lateral premotor cortex

according to precise somatotopic arrangement. These potentials

are well established in upper and lower extremity movements

both real and imagined (Boschert and Deecke, 1986; Shibasaki

and Hallett, 2006). Interestingly, MRPs recorded from EEG pre-

ceding toe, foot, and ankle movements tend to be larger on the

ipsilateral side of the brain, which is the opposite of upper extrem-

ity movements that create larger MRPs on the contralateral side

(Brunia and Van Den Bosch, 1984; Boschert and Deecke, 1986).

This paradoxical lateralization of the MRP during foot move-

ments may be explained by its localization along the midline deep

within the precentral gyrus of the motor cortex, thereby direct-

ing electrical current from activation of these cell columns to the

opposite hemisphere.

The type and sequence of movement affects MRPs recorded

from EEG. MRPs appear to be more pronounced during

self-initiated movements compared to triggered movements

(Jahanshahi et al., 1995; Cui and MacKinnon, 2009); the differ-

ence appears to be further enhanced if the timing of the triggered

movements is variable (Jankelowitz and Colebatch, 2002). In the

case of finger movements, force level (Slobounov et al., 2002),

finger sequence (Bortoletto et al., 2011), and task complexity

(Shibasaki and Hallett, 2006) all appear to modulate the MRP.

MRP amplitude was found to be highly correlated to joint torque

and electromyography (EMG) amplitude during isolated elbow

flexion (Siemionow et al., 2000). In the lower extremity, the rate

of torque development appears to influence the late MRPs pre-

ceding isolated ankle movements (do Nascimento et al., 2006).

Slow negative shifts in EEG similar to MRPs have been observed

during coordinated movements of the lower extremity, including

rising onto the toes (Saito et al., 1996) and self-paced forward

postural sway (Slobounov et al., 2005). The direction of gait ini-

tiation and stepping has been reported to influence both the

slope and magnitude of MRPs (do Nascimento et al., 2005).

These previously published studies suggest that slow developing,

movement related potentials observed prior to movement may

contain discriminative information regarding the movement that

is being performed. Further, MRPs appear to provide an appro-

priate measure for timing of afferent feedback to induce long term

potentiation of cortical projections. As demonstrated in the tib-

ialis anterior muscle, only peripheral stimulation delivered at the

peak of the MRP increased motor evoked potentials from tran-

scranial magnetic stimulation (TMS) targeting the ankle area of

the motor cortex (Mrachacz-Kersting et al., 2012).

Because of their small amplitude and low frequency con-

tent, the best way to extract MRPs from EEG recording is to

average across many trials of the same movement. Single trial

classification of movement intention from MRPs is possible, but

achieving high accuracy can be difficult. Classification typically

involves several steps, including signal pre-processing, feature

extraction, dimensionality reduction, and finally feature classifi-

cation (Bashashati et al., 2007). Numerous approaches to these

steps have resulted in application of many machine learning,

feature selection, and pattern recognition techniques for classi-

fication of movement intent and direction based on EEG signals

(Garrett et al., 2003; Peterson et al., 2005; Bai et al., 2007; Lotte

et al., 2007). The first example of a BMI-based spelling device uti-

lized slow cortical potentials derived from a motor imagery task

to provide individuals with amyotrophic lateral sclerosis control

of a cursor on a screen (Birbaumer et al., 1999). Two individ-

uals were able to achieve accuracies greater than 75% after 327

and 288 training sessions. Recent studies have demonstrated suc-

cess in utilizing MRPs extracted via low frequency or delta band

EEG, including classification of finger movement (Liao et al.,

2007), joystick direction (Waldert et al., 2008), wrist movement

direction (Vuckovic and Sepulveda, 2008), direction of a center

out reaching task (Robinson et al., 2013), and movement inten-

tion in a self-paced reaching task (Lew et al., 2012). The latter

study showed higher detection accuracy using the lower delta

band than alpha (7–13 Hz) or beta (13–20 Hz) bands. MRPs have

also been successfully deployed for classification of lower extrem-

ity movements. At the ankle, MRPs have been used to detect

movement intention in healthy subjects with average accuracy

of 82.5% for movement execution, and with slightly lower accu-

racy for motor imagery (64.5%) and attempted movement in

stroke patients (55%) (Niazi et al., 2011). Similar accuracies were

reported in a study that did not incorporate an individual-specific

training phase (Niazi et al., 2013), further supporting the robust-

ness of MRP as a BMI target. In addition to movement intention,

MRPs recorded during imagined plantar flexion have also been

used to distinguish between two different rates of torque devel-

opment (do Nascimento and Farina, 2008). Recent studies have

demonstrated that MRPs recorded from EEG can be deployed in

real-time BMIs. In one, MRPs preceding imagined ankle dorsi-

flexion were identified online to trigger electrical stimulation of

the tibialis anterior (Niazi et al., 2012). Not only did this study

show feasibility of MRPs for use in a BMI, but it also demon-

strated the potential benefits BMMI-based neurorehabilitation

since motor evoked potentials from TMS were enhanced follow-

ing the intervention in healthy individuals. Another study showed

that delta band EEG could reliably ascertain ankle movement ini-

tiation in real time with a mean latency of 315 ms (Xu et al.,

2014).

In addition to detecting and classifying movement type, sparse

networks of low frequency EEG have also been successful in

decoding kinematics and EMG activity during various move-

ments, including decoding of hand grasping patterns (Agashe and

Contreras-Vidal, 2013), hand and finger velocity (Bradberry et al.,

2010; Liu et al., 2011; Paek et al., 2014), and muscle synergies dur-

ing reaching (Beuchat et al., 2013). Additionally, peri-movement

neural activity representative of movement direction has been

observed in electrocorticographic (ECoG) signals over primary

motor, premotor, posterior-parietal, and lateral prefrontal cor-

tex (Ball et al., 2009). Action intention can also be decoded from

fMRI data recorded from a wide cortical network, spanning from

the parieto-occiptial sulcus through the prefrontal cortex, both
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preceding and during movement execution (Gallivan et al., 2011).

Taken together these studies suggest non-invasive EEG recorded

from large areas of the scalp immediately prior to movement

execution could carry useful information about movement.

EEG has been used to examine cortical activity during gait,

including studies demonstrating that intra-stride changes in spec-

tral power are coupled to gait cycle (Gwin et al., 2011) and that

level of user-involvement in robotic-assisted walking alters gait-

related patterns of electrocortical activity (Wagner et al., 2012).

Low frequency EEG also appears to carry useful information

regarding walking. A recent study showed that features corre-

sponding to frequencies less than 2 Hz were the most heavily

weighted during single trial classification of walking and point-

ing direction (Velu and de Sa, 2013). Delta-band EEG was used to

classify walking intention in one individual with paraplegia using

a robotic exoskeleton with accuracy greater than 98% (Kilicarslan

et al., 2013) and to decode lower limb kinematics during walk-

ing in healthy individuals (Presacco et al., 2011, 2012). MRPs

have also been used with a matched filtering technique to detect

single-trial step initiation (Jiang et al., 2014). An important con-

sideration for application of low frequency EEG to the study

of whole-body movements such as walking or sit/stand tran-

sition is the presence of movement-related artifacts. A recent

study showed similar power spectral density patterns from an

accelerometer mounted on the head and from EEG electrodes

(Castermans et al., 2014). Interestingly, the patterns were sim-

ilar only at higher walking speeds, while differences between

the accelerometer and EEG were observed at slower speeds. The

study did not compare spectral patterns from EEG during walk-

ing without the rigid plate and linkage assembly used to mount

the accelerometer on the head, so the effect of its mass and

inertia remains unknown. Also, the study did not employ active

EEG electrodes which provide amplification at the electrode to

minimize movement artifacts and increase signal-to-noise ratio.

Spatial filtering techniques, such as independent component anal-

ysis (Delorme et al., 2007), may be used to isolate gait-related

artifact, but the effectiveness of these techniques is still under

investigation. In one study, gait-related artifact remained in many

independent components of EEG, resulting in development of

a template subtraction technique to clean EEG collected during

walking (Gwin et al., 2010). This type of template regression

would not be appropriate for studying cortical contribution to

locomotion because all signals coupled to the gait cycle would

likely be removed. Another technique utilizes principal compo-

nent analysis to compare sliding windows of EEG to a baseline

recording, thereby removing high amplitude artifacts (Mullen

et al., 2013); this approach may be better suited for removing

movement artifacts but has not yet been applied to gait. Thus,

the feasibility of utilizing EEG to study cortical activations dur-

ing whole-body movement tasks is an ongoing area of research.

Nevertheless, an inherent advantage of MRPs is their presence

in EEG recorded before movement, when motion artifacts are

minimized.

In this study we examined the use of non-invasive EEG

recorded prior to movement execution to discriminate a user’s

intent to perform two coordinated whole body movements—

rising from a seated to standing posture and lowering from a

standing to a seated posture—in a three class problem, where

the third class constituted no movement or “quiet”; this class

included data collected during quiet standing and quiet sitting.

Based on the previous body of evidence regarding the discrim-

inative nature of MRPs with regards to movement, we utilized

delta band EEG to build our features for classification. We trained

and tested our classifier using time periods before executed move-

ments, as opposed to cue-based imagery, so we could precisely

align EEG recordings with movement onset detected from EMG

recordings. We studied classification accuracy during two differ-

ent paradigms: a self-initiated series of stand-to-sit and sit-to-

stand transitions and transitions which were cued by an audio

trigger. Because triggered movements are reported to produce

less prominent MRPs (Jankelowitz and Colebatch, 2002; Cui and

MacKinnon, 2009), this protocol allowed us to examine the effect

of MRP signal to noise ratio on classification accuracy. We uti-

lized time-embedding and concatenation of EEG channels from

the time before movement execution to create a feature vector

of high dimension to classify the intended movement (stand-

up, sit-down, or quiet). Given the autoregressive nature of EEG

signals (Muller et al., 2003) and the underlying neurophysiol-

ogy (e.g., volume conduction), we assume that the recorded EEG

originates from a system with fewer degrees of freedom than our

feature vector dimensions, resulting in a manifold data structure.

Recent advances in machine learning have resulted in algorithms

which preserve the local structure of a manifold data set in a

reduced dimensional subspace (Sugiyama, 2007; Li et al., 2012)

thereby enhancing the discriminative power of the data set. Based

on the observation that information pertinent to movement is

contained in low frequency EEG, we hypothesized that apply-

ing a locality preserving dimensionality reduction technique to

our high dimensional feature vector derived from time-embedded

and spatially diverse delta band EEG would reveal its under-

lying discriminative structure. We coupled this supervised data

reduction with a Gaussian mixture model classifier to test if we

could reliably ascertain the intended movement of the user from

offline analysis of EEG recordings. We believe such a classifier

could eventually be deployed in a real-time BMI system to con-

trol an assistive device or as a component of a neurorehabilitation

paradigm to restore motor control.

METHODS

DATA COLLECTION

Ten healthy adults (6 male, 4 female) with no history of neu-

rological disease participated in the study after giving informed

consent. This study protocol was approved by the Institutional

Review Board at the University of Houston. Participants com-

pleted two trials of 10 alternating sit-to-stand and stand-to-sit

transitions; one trial was self-paced and one trial was cued via

audio trigger. Each trial began with the participant standing qui-

etly in an upright posture for 15 s. In the triggered trial, an

audio cue (beep) was given after which point the participant ini-

tiated a transition to a seated posture. The seated posture was

held for a period ranging randomly from 3 to 10 s, after which

a second audio cue was given to initiate the transition from

sit-to-stand. The standing posture was held for another (ran-

dom) 3–10 s interval, at which point the process was repeated
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until 20 transitions (10 of each) were completed. The procedure

for the self-paced trial was similar. After 15 s of quiet standing,

the participant was instructed via verbal cue to begin the self-

initiated stand-to-sit and sit-to-stand transitions. The participant

was instructed to wait for a random interval of 3–10 s before

self-initiating the next transition. Finally, the participant was

notified by verbal cue once he/she had completed 20 self-initiated

transitions.

Time-locked EMG and EEG data were collected simulta-

neously using a previously developed data collection system

(Bulea et al., 2013). Surface EMG (Biometrics, Ltd, Ladysmith,

VA) was recorded at 1000 Hz bilaterally from the tibialis ante-

rior, gastrocnemius, biceps femoris, and vastus lateralis. Whole

scalp, active electrode, 64-channel EEG (Brain Products, GmbH,

Morrisville, NC) were collected at 1000 Hz and labeled by

the 10–20 international system. The impedance of each EEG

electrode was maintained below 25 k� for the entire data

collection.

DATA ANALYSIS FOR CLASSIFICATION OF MOVEMENT INTENT

Preprocessing

All data analysis and classifier optimization and evaluation were

performed off-line using custom software in Matlab (Mathworks,

Natick, MA). The data processing and classification methodol-

ogy is shown in Figure 1. Peripheral EEG channels susceptible to

eye blinks and facial/cranial muscle activity were removed from

offline analysis (all channels labeled Fp, AF, FT, T, TP, O, PO, and

F5-8, P5-8) resulting in 28 channels being retained for classifica-

tion. EEG signals were then high pass filtered at 0.05 Hz using a

zero-phase 8th order Butterworth filter. Next, we removed tran-

sient, high-amplitude artifacts from stereotypical (e.g., eye blinks)

and non-stereotypical (e.g., movement, muscle bursts) using an

automated artifact rejection method termed Artifact Subspace

Reconstruction (ASR) (Mullen et al., 2013) which is available as

a plug-in for EEGLAB software (Delorme and Makeig, 2004).

ASR uses a sliding window technique whereby each window of

EEG data is decomposed via principal component analysis so

it can be compared statistically with data from a clean baseline

EEG recording, collected here as 1 min of EEG recorded during

quiet standing. Within each sliding window the ASR algorithm

identifies principal subspaces which significantly deviate from

the baseline EEG and then reconstructs these subspaces using a

mixing matrix computed from the baseline EEG recording. In

this study, we used a sliding window of 500 ms and a threshold

of 3 standard deviations to identify corrupted subspaces. After

ASR, the cleaned EEG was band pass filtered with a zero phase,

3rd order Butterworth filter from 0.1 to 4 Hz to isolate the delta

band activity. The EEG data were then standardized by channel

by subtracting the mean and dividing by the standard deviation

(z-score).

EMG recordings from the lower extremity muscles were used

to determine movement onset of each stand-to-sit and sit-to-

stand transition. First, the Teager-Kaiser energy operator was

applied to each EMG channel to enhance the signal-to-noise ratio

for onset detection (Li et al., 2007). Next, each EMG channel

was detrended, band pass filtered (15–300 Hz), rectified, and low

pass filtered at 3 Hz to compute the linear envelope. Then, the

FIGURE 1 | Flow chart describing the EMG and EEG data processing

for neural decoding of sitting and standing movement. A threshold of 3

standard deviations was applied to the EMG linear envelope to identify

quiet periods and periods of movement (sitting and standing). Only

pre-movement epochs (1.5 s before movement to movement onset) and

quiet epochs (1.5 s after movement completion to 1.5 s before next

movement) were retained for analysis. As a control, a separate decoding

analysis using movement epochs (movement onset to 1.5 s after onset)

was also performed. Artifact subspace reconstruction (ASR) algorithm,

available as a plug-in for EEGLAB software (Delorme and Makeig, 2004),

was applied to eliminate artifacts from EEG data during pre-processing.

Note that the optimization and evaluation data sets are mutually exclusive.

linear envelope of each muscle was thresholded into a binary sig-

nal which was equal to 1 when the envelope exceeded its mean

baseline value during quiet standing and sitting by more than

3 standard deviations (Hodges and Bui, 1996) and zero when it

was within 3 standard deviations of baseline. The baseline period

of EMG activity before each movement was identified a pos-

teriori by visual inspection starting with the initial 15 s of rest

before the first movement. The baseline period between each
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successive sit-to-stand and stand-to-sit transition comprised at

least 2 s. Movement onset for each transition was determined

when any of the 8 thresholded EMG envelopes transitioned from

rest (0) to active (1). Likewise, the end of each movement was

determined when all 8 channels returned to rest (0). The algo-

rithmically determined periods of activity were visually inspected

for accuracy. Using prior knowledge of the experimental proto-

col (i.e., the order of the stand-to-sit and sit-to-stand transitions),

the periods of muscle activity were labeled as stand-to-sit or sit-

to-stand. Note that for some trials, gastrocnemius muscles were

active during the quiet stance phase and/or biceps femoris EMG

was contaminated by artifact from the leg during sitting, thereby

increasing the standard deviation in these channels and limit-

ing the ability to determine the true state using that muscle.

When these periods of activity/artifact were observed visually,

these muscles were removed from the trial; in this case the user

activity was assessed using the remaining 6 muscles.

Next, the time-locked EEG and EMG data were downsampled

to 200 Hz. EEG data were then epoched into pre-movement, post-

movement and quiet periods based on the thresholded (binary)

EMG signal. Each pre-movement epoch consisted of data from

1.5 s before movement onset up to movement onset. EEG data

from 1.5 s after movement completion until 1.5 s before the next

movement onset, with a maximum of 5 s, comprised the quiet

epochs. These epochs were then concatenated into a single time

series containing alternate periods of quiet and pre-movement.

For control purposes, we also created a second time series of data

containing concatenated quiet epochs and epochs of EEG from

movement onset to 1.5 s after movement onset (post-movement

epochs).

The concatenated EEG data sets comprised the three-class clas-

sification problem for each trial; each time point of the quiet

epochs was labeled as class 0 (quiet) while each time point of each

pre-movement epoch was labeled according to the type of move-

ment it preceded: class 1 (stand-to-sit) or class 2 (sit-to-stand).

Next, a time-embedded feature matrix was constructed for each

trial. Each time point in the feature matrix was a vector composed

of 10 lags, corresponding to 50 ms in the past, of EEG data. The

number of lags and embedded time interval was chosen based

on previous studies demonstrating accurate decoding of move-

ment kinematics from low frequency EEG (Bradberry et al., 2010;

Presacco et al., 2011). The feature vector for each time point was

constructed by concatenating the 11 lags (the current time point

plus the 10 prior) for each channel into a single vector of length

11 × N, where N is the number of EEG channels used for classi-

fication (for this study, N = 28). To avoid the problem of missing

data, the feature matrix was buffered by starting at the 11th EEG

sample of each epoch, resulting in a feature matrix of dimension

[Mt−L] × [11 × N] for each trial of self-initiated and triggered

movements where Mt is the number of time points in each trial

and L is the number of past time lags multiplied by the number of

epochs in each trial (for this study, L = 10∗41 = 410). On aver-

age, there were 18,442 ± 2110 time points in each feature matrix,

with exactly 2900 time points for class 1 and 2900 time points for

class 2 while the remaining time points represented class 0. For all

subjects, the original dimensionality of the feature space was 308

(11 × N).

Dimensionality reduction

Since our EEG-based feature vectors were of relatively high

dimension and were composed of time lagged and spatially dis-

tributed samples, we assumed our original dataset to represent a

manifold which may contain multimodal within-class distribu-

tions. Furthermore, we sought to classify gross motor intention

and therefore had a limited number of classes (in this case

there were three: quiet, stand-to-sit, and sit-to-stand). Thus, we

performed dimensionality reduction on our feature matrices to

eliminate any redundant features, reduce computational com-

plexity, prevent over-fitting during classifier training and increase

classification performance. Many techniques have been reported

for dimensionality reduction in EEG based classifiers, including

principal component analysis (PCA), linear discriminant analysis

(LDA), and genetic algorithm (GA) (Bashashati et al., 2007; Lotte

et al., 2007). Consideration of the task, neurophysiology and EEG

recording system suggests that a supervised dimensionality reduc-

tion technique could improve feature selection for classification

purposes. EEG data generally have a low signal-to-noise ratio and

unsupervised linear dimensionality reduction techniques may be

affected by these signal distortions. PCA reduces dimensionality

by maximizing data variance in the projected subspace via a linear

transformation. The transformation, dictated by the eigenvectors

that correspond to the largest eigenvalues of the data covariance

matrix, is unsupervised and can discard useful information for

classification that is contained in the lower energy dimensions of

the original data (Prasad and Bruce, 2008). In contrast, LDA is a

supervised dimensionality reduction technique since it attempts

to maximize between-class scatter while minimizing within-class

scatter in the projected subspace. However, LDA has difficulty

doing this if the original data are heteroscedastic or multimodal.

Furthermore, the size of the LDA-reduced subspace is limited to

c-1 (where c is the number of classes).

Local Fisher’s discriminant analysis (LFDA) combines the

strategy of LDA with a locality-preserving projection to provide

a linear manifold learning technique that preserves the within-

class structure of the original space in the projected subspace;

details of the LFDA algorithm applied in this study are provided

in Sugiyama (2007). Briefly, LFDA seeks to find a transformation

that preserves local neighborhood information, thereby ensuring

that the underlying structure of the data distribution is preserved

in the lower dimensional (size r) subspace. To accomplish this, the

scatter matrices typical of LDA are scaled using an affinity matrix

that measures the closeness of any two points relative to their knn-

nearest neighbor. The parameters knn and r must be optimized in

concert with the classifier for each subject. LFDA has been previ-

ously deployed as a preprocessing step for classification of walking

intention (Kilicarslan et al., 2013) and classification of expressive

movement (Cruz-Garza et al., 2014) from EEG. A similar locality

preserving projection was also employed for detection of ankle

movement intention from low frequency EEG (Xu et al., 2014).

Classification algorithm

Once a suitable algorithm for dimensionality reduction was deter-

mined, we next identified a classification scheme to decode

movement intent from our EEG-based features. Gaussian mix-

ture model (GMM) classifiers are common in the fields of
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biometrics and biomedical engineering because GMMs are capa-

ble of representing arbitrary statistical distributions as a weighted

summation of multiple Gaussian distributions, termed compo-

nents (Paalanen et al., 2006). Utilizing a GMM to compute the

class-conditional probabilities in a maximum-likelihood classi-

fier could improve performance over the traditional formulation,

especially when the within-class feature set may be non-Gaussian,

as could be the case for the temporally and spatially diverse EEG

based features used in this study. The probability density func-

tion for a given training data set in the LFDA projected subspace,

X = {xi}
n
i = 1 ∈ R

r , is given by:

p(x) =

K∑

k = 1

αkφk (1)

φk(x) =
exp[−0.5(x − µk)T�−1

k (x − µk)]

(2π)r/2 |�k|
1/2

(2)

where K is the number of components, αk is the mixing weight,

µk is the mean vector, and
∑

k is the covariance matrix of the

k-th component. The parameters of each GMM component K,

including αk, µk, and
∑

k, are estimated as those which maximize

the log-likelihood of the training set given by:

Lk =

n∑

i = 1

log pk(xi) (3)

where p(x) is given in (1). Maximization of (3) is carried out using

an iterative expectation-maximization (EM) algorithm (Vlassis

and Likas, 2002), with the initial estimate of the parameters αk,

µk, and
∑

k established via k-means clustering (Su and Dy, 2007),

until the log-likelihood reaches a predetermined threshold. The

number of components K is a critical parameter for success-

ful implementation of a GMM classifier. During training, we

limited the maximum value of K to be 10 and computed the

maximum log likelihood from (3) for each model with values

of K ∈ {1, 2 . . . 10}. We estimated the optimal value of K as the

model that minimized the Bayes information criterion, which has

been reported as an effective measure for optimizing the number

of GMM components (Li et al., 2012). In this manner, GMMs

representing each movement class were specified for use in a

maximum-likelihood classifier.

The parameters for each class-conditional GMM were com-

puted using an optimization data set for each participant (see

Classifier optimization section). The parameter space which must

be explored in order to fit these mixture models can be quite

large, especially if the feature dimension is large. Given the lim-

ited time and training data available during EEG studies, this

learning task may be impractical, but as indicated in the pre-

vious section, LFDA has been shown to effectively reduce data

dimensionality while preserving the statistical information. Thus,

we applied LFDA dimensionality reduction on our EEG feature

set prior to training and testing a GMM model for use in a

maximum-likelihood classifier of intended motion.

Classifier optimization

The EEG feature matrix from each trial was split into two mutu-

ally exclusive sets: one for LFDA-GMM classifier optimization

and one for classifier evaluation (Figure 1). The optimization

data set was selected randomly from the full data set, and it

comprised 400 samples (2 s) of data from each class. The opti-

mization data set was then split into two equally sized exclusive

subsets, one for training and one for testing. The parameters

for the LFDA-GMM classifier (the nearest neighbor (knn) used

in the affinity matrix, the dimensionality (r) of the projected

subspace, and the number of mixture components (K) in the

mixture model) were optimized for each subject and trial type—

self initiated and triggered—using the optimization data set.

Optimization involved three steps (Figure 1): (i) dimensionality

reduction using LFDA for values of knn and r from 1 to 249 and 1

to 250, (ii) identification of the optimal value of K for each class

at each grid point in (i) using the training data from the optimiza-

tion set, and (iii) computation of the accuracy of the LFDA-GMM

classifier at each grid point in (i) using the testing data from the

optimization set. The optimal parameters {knn, r, K} for each sub-

ject were selected as those which produced the highest overall

classification accuracy from the testing data.

Classifier performance via cross validation

The performance of the LFDA-GMM classifier with the opti-

mal parameter set was analyzed for each subject and trial

using repeated random sub-sampling cross validation (Figure 1).

Repeated sub-sampling was chosen because the variable timing

of the movements in each trial would result in an unequal num-

ber of samples from each class if k-fold cross validation scheme

was used. The evaluation data set was randomly split into mutu-

ally exclusive training and testing data sets (Figure 1). Each of the

three classes in the training set contained 600 data points repre-

senting 20% of the sit and stand classes. (Because the sit and stand

classes were composed of ten 1.5 s long pre-movement epochs for

each subject, their size was always equal). After training, LFDA-

GMM classifier performance was analyzed using the testing data

set, which contained all remaining data from the sit and stand

classes, and an equal number of data points randomly selected

from the quiet class. Thus, each class in the testing set contained

1900 data points. This test set structure was used to control for

effects of class population size by assuring an equal number of

testing samples in each class. During testing a classification deci-

sion was made for each data point, which represented a single

time sample from the trial. The posterior probability of each data

point was computed using the optimized GMM for each class

and the data point was then assigned to the class that returned

the largest value. This process yielded a classification decision for

1900 data points per trial. To avoid training bias, the random

training and testing process was repeated 20 times and the aver-

age classification accuracies were reported for each subject under

each condition (self-initiated and triggered movements). We

performed post-hoc statistical comparisons between conditions

using the non-parametric Kruskal-Wallis one-way analysis of

variance.

To examine the effects of the ASR algorithm and the potential

contribution of motion artifacts, we repeated the optimization
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and cross validation procedure using EEG data from pre-

movement epochs pre-processed in the same manner as Figure 1

except that the ASR process was omitted. We also examined the

classification accuracy using EEG epoched from movement onset

to 1.5 s after movement onset both with and without the ASR

algorithm. Finally, we divided the scalp into four major regions

of interest (ROI) to assess the classification ability of each area

individually. The ROIs included the frontal cortex (F3,F1, Fz, F2,

F4, FC2, FC1, FC2, and FC4), the motor strip (C5, C3, C1, Cz, C2,

C4, and C6), the parietal cortex (CP5, CP3, CP1, CPz, CP2, CP4,

CP6, P3, P1, Pz, P2, and P4) and the central midline (FC1, FC2,

C1, Cz, C2, CP1, CPz, and CP2). For each condition, we assessed

within subject differences in accuracy across ROIs using the non-

parametric Friedman test. The statistical sign test was used to

assess if the difference in accuracy between self-initiated and trig-

gered movements for each participant and ROI were significantly

different from a distribution with a median of zero.

Demonstration of simulated real-time classification

We implemented a two-fold approach to demonstrate LFDA-

GMM classifier performance in a simulated real-time environ-

ment using EEG data from the self-paced trial. The classifier was

trained using ASR-cleaned EEG data from the first half of the

trial with the optimal parameter set for each subject. Unlike dur-

ing the cross-validation procedure, the time periods immediately

following the movement execution were not trimmed from the

data set but instead were included in the quiet class. Data from

the second half of the trial, containing five transitions each of

stand-to-sit and sit-to-stand, was used to test the controller in a

simulated real-time manner resulting in a continuous time series

of classification decisions.

OBSERVATIONAL EEG MEASURES

In addition to classification of movement intent, we computed

several observational measures to help assess differences in corti-

cal activity across the experimental conditions. We computed the

MRPs from each subject during both the self-initiated and trig-

gered conditions. To compute MRPs, each EEG channel was band

pass filtered between 0.1 and 50 Hz and epoched from 2.5 s before

movement onset to 1 s after onset. Each channel and epoch was

baseline corrected using the mean voltage from 2.5 to 2 s before

onset. Each channel was then averaged over all 20 epochs for each

condition.

To ascertain differences between periods of quiet (i.e.,

rest between movements), pre-movement, and post-movement

epochs under each condition (self-initiated and triggered) we

computed the power spectral density (PSD) for each EEG chan-

nel with a frequency resolution of 0.12 Hz using the Thompson

Multitaper method in Matlab with a time bandwidth product of

4. The PSD was computed after artifact removal with ASR but

before band-pass filtering and standardization. EEG was common

average referenced for purposes of PSD computation. The spa-

tial distribution of alpha band (8–13 Hz) ERD was computed for

the pre-movement and post-movement epochs under both con-

ditions as was the change in power in the delta band (0.1–4 Hz).

The change in power for both frequency bands was computed rel-

ative to the quiet epochs for each condition (self-initiated and

triggered). We assessed statistical differences across conditions

using the non-parametric Kruskal-Wallis one-way analysis of

variance with a Bonferroni correction for multiple comparisons.

RESULTS

OBSERVATIONAL MEASURES

Standardized EEG and the linear envelope of EMG recorded dur-

ing a typical trial for one subject is shown in Figure 2. EEG

with and without ASR is shown, demonstrating the removal of

high amplitude artifacts, especially in the time periods following

movement onset. Although all 64 channels of EEG are displayed,

those channels marked with an asterisk (∗) were removed prior

to classification of movement intention. The EEG PSD computed

during rest (quiet standing) and the pre-movement epochs dur-

ing the self-initiated and triggered trials is shown in Figure 3. The

grand mean PSD across all participants and electrodes used for

classification (lower inset, Figure 3) is shown. Two identifiable

peaks are present in the rest condition, during which the sub-

ject was standing quietly; one in the theta band at approximately

7 Hz and one in the alpha band at approximately 11 Hz. Power in

these bands were significantly greater at rest than during the pre-

movement epochs under both conditions (p < 0.01 for both).

Notably, the delta band power during the pre-movement epochs

was greater than rest while the power in the theta and alpha

band was greater during rest (upper inset, Figure 3). In the pre-

movement epochs, there was significantly less power in the theta

band (4–8 Hz) during self-initiated transitions compared to trig-

gered (p = 0.004), while power in the alpha band (8–13 Hz) was

not statistically different between conditions (p = 0.107). Finally,

power roll-off, indicated by the slope of the PSD, was diminished

in theta and alpha bands compared to surrounding delta and beta

bands for the self-initiated pre-movement; however, roll-off was

only decreased in the alpha band for the triggered condition.

The change in delta and alpha band power for the pre- and

post-movement epochs, relative to the periods of quiet sitting and

standing between movement executions, averaged over all partici-

pants is shown in Figure 4. In the delta band, we observed slightly

increased power in the pre-movement epochs over all electrodes

for both conditions, with slightly more delta power present in

the self-initiated trials. In contrast, delta band power during the

post-movement epochs was much larger, especially for the trig-

gered trials, which showed nearly double the delta band power of

the rest condition. The same level of increase was not observed

over the full scalp in the self-initiated trials, although delta band

power over the central midline electrodes increased by nearly

100%. Alpha band power was similar to quiet periods across most

electrodes (note the difference in scale between alpha and delta

power in Figure 4). Bilateral alpha band ERD was observed in

both conditions; however for the triggered trials the ERD was less

prominent and restricted to the central sensorimotor and parietal

electrodes, while frontal and peripheral electrodes showed a slight

increase in alpha power. Conversely, alpha ERD was stronger in

the self-initiated condition, especially in the central-parietal areas

of the scalp.

We found the presence of MRPs to be variable across subjects

and conditions. In 3 subjects, MRPs were prominent across the

scalp during the self-initiated movement epochs but not during
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FIGURE 2 | Typical recordings of EEG and EMG data during

the sitting and standing task. (A) Standardized (z-score) EEG

data is shown before (black) and after (red) ASR algorithm for

artifact rejection. An asterisk (∗) indicates peripheral channels

which were removed prior to decoding. (B) The linear envelope

of EMG data used to determine movement onset time, shown

as vertical black lines. The type of movement is indicated at

the top of the figure.
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FIGURE 3 | Grand mean power spectral density (PSD) of EEG

recordings across the 10 subjects. The PSD was computed across all

channels retained for neural decoding (left inset) during quiet standing

(black line) and concatenated pre-movement epochs during triggered

sitting and standing (pre-trigger, green line), and concatenated

pre-movement epochs during self-initiated sitting and standing (pre-self,

red line). The right inset shows the ratio of pre-trigger and pre-self

PSD to rest.

FIGURE 4 | Scalp maps of the change in power compared to rest during

pre- and post-movement epochs. The two sets of maps show the average

change in delta and alpha band power across all electrodes and subjects

during the pre-movement epoch (1.5 s before movement to movement onset)

and post-movement epoch (movement onset to 1.5 s after onset) relative to

the quiet state for both the triggered and self-initiated conditions.

the triggered movements (Figure 5A). For the remaining subjects,

less prominent MRPs were present at some electrodes for both

conditions (Figure 5B). We examine the relationship between

MRP and classification accuracy in more detail below.

CLASSIFIER VALIDATION

The LFDA-GMM classification accuracy surface followed a sim-

ilar pattern for most subjects (Figure 6), rising sharply as the

size of the reduced subspace (r) increased. Accuracy typically
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FIGURE 5 | Example of movement related potentials (MRPs) recorded in

two different subjects. (A) MRP from S5 indicating a difference between

triggered (black line) and self-initiated (red line) movements. (B) MRP from S9

indicating similar, less prominent RPs for both the triggered and self-initiated

trials. For each subject, MRPs were averaged across all 20 movements for

each condition; movement onset is at 0 s.

FIGURE 6 | Example of a subject-specific accuracy surface created

during LFDA-GMM classifier optimization. The accuracy plotted at

each point {r, knn} on the surface is the average accuracy with the

optimal number of mixture components (K ) for each class at that point.

peaked for r values between 50 and 125 before decreasing slightly,

and then reaching a plateau as the value of r was further

increased. Classification accuracy was generally insensitive to the

knn parameter with the exception of very low r values. The opti-

mal parameter set for each subject and condition is provided

in Table 1. Across subjects and conditions, the average dimen-

sion of the EEG-based feature space following LFDA was 88

(range 30–118), representing a significant reduction from the

original size of 308. With few exceptions, the optimal accuracy

was achieved using only one mixture component (K = 1) and

thus, the LFDA-reduced EEG features were generally not strongly

multimodal.

The mean overall classification accuracy obtained from the

20 times cross validation procedure for each subject and condi-

tion is shown in Figure 7 along with the overall mean across all

Table 1 | Optimized LFDA-GMM parameters for each subject and

condition.

Subject Reduced Nearest Mixture components (K ) by class:

dimension neighbor

(r) (knn) 0 1 2

(quiet) (stand-to-sit) (sit-to-stand)

1 118 62 103 1 1 1 1 1 1 1

2 106 74 101 1 1 1 1 1 1 1

3 86 106 57 37 1 1 1 1 1 1

4 86 110 17 89 1 1 1 1 1 1

5 114 34 81 5 1 1 1 8 1 9

6 90 82 25 41 1 1 1 1 1 1

7 110 102 101 37 1 1 1 1 1 1

8 34 110 83 85 2 1 1 1 7 1

9 90 102 81 33 1 1 1 1 1 1

10 30 118 21 65 3 1 8 1 10 1

The table indicates optimal parameter set for the triggered (white background)

and self-initiated (shaded background) paradigms.

subjects for each condition. The mean accuracy across subjects

was 74.1 ± 5.7% for the triggered condition and 78.0 ± 2.6%

for self-initiated. Testing sample size was equal across the three

classes (1900 samples per class for each subject and condition).

Interestingly, there was no significant difference in overall accu-

racy between self-initiated and triggered movements across the

entire group of subjects. For subjects S2, S4, S5, and S7 decoding

accuracy was significantly greater (p < 0.01) for the self-initiated

sit-to-stand and stand-to-sit transitions compared to the trig-

gered paradigm. Two subjects, S1 and S3, showed significantly

better classification accuracy for the triggered movements com-

pared to self-initiated, though with less strength (p < 0.05). The

normalized confusion matrix for each condition was computed

by summing the total number of predicted samples for each class

across all 10 subjects and then dividing each predicted sum by

the actual class sample size (Figure 8). We also computed the
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overall kappa coefficient (Cohen, 1968; Carletta, 1996) for each

condition, resulting in κ = 0.61 for triggered and κ = 0.67 for

self-initiated. For both triggered and self-initiated conditions, the

quiet class was decoded with the highest accuracy and misclassi-

fications for the quiet class were evenly distributed between the

two types of movement (sit and stand). Notably, classification

accuracy for all three classes was slightly, though not significantly,

higher during the self-initiated trials. The majority of misclas-

sifications for sit and stand movements were in the quiet class

regardless of condition. Classifier confusion between movement

types was slightly larger for the triggered paradigm, with 10.2%

of sit movements misclassified as stand (as opposed to 4.2% for

self-initiated) and 7.6% of stand movements misclassified as sit

(compared to 3.0% for self-initiated).

FIGURE 7 | Mean accuracy (n = 20) by subject for decoding

triggered and self-initiated sitting and standing from pre-movement

EEG. Error bars indicate ±1 standard deviation. Statistically significant

within subject differences across conditions are indicated as follows:
∗p < 0.01, ∗∗p < 0.05.

To assess the relationship between classifier accuracy and

MRPs we computed the grand median area under the MRP curve

for each condition and subject in a three step process. We first

computed the area under the MRP of each channel for each move-

ment epoch; a negative number for this area indicated a larger

MRP presence. Next, we computed the median area under the

curve for each electrode, and then we took the grand median

area across all electrodes. We plotted this value against the mean

classification accuracy for both the self-initiated and triggered

conditions (Figure 9A). Surprisingly, we did not find a strong

correlation between area under the MRP curve and classification

accuracy (R2 = 0.09). Based on our prior observation that some

subjects showed more prominent MRPs during the self-initiated

movement compared to triggered, we computed the individual

change in accuracy and the change in median area under the MRP

curve across these conditions for each subject (Figure 9B). There

was a slightly stronger, but still modest (R2 = 0.27) correlation

between individual change in accuracy and area under the MRP

curve. Interestingly, the subject with the most visually promi-

nent difference in MRP between conditions (S5, Figure 5A; blue

arrow in Figure 9B) showed the second largest increase in accu-

racy between the self-initiated and triggered conditions. However,

the subject with the largest increase in accuracy across conditions

(S8, red arrow in Figure 9B) showed only a moderate increase

area under the MRP curve. The two subjects with significantly

greater accuracy for the triggered condition also had larger areas

under the MRP curve in that condition (Figure 9B).

CLASSIFICATION BY ROI

The mean and subject specific classification accuracy was lower

for all four ROIs than with the full set of non-peripheral

electrodes for both self-initiated and triggered movements

(Figure 10), a result that was expected due to the lower num-

ber of electrodes used for classification. Of note, however, was

that despite the differing number of electrodes within each ROI

we observed few within subject significant differences in accu-

racy for each condition (Figures 10B,C). Similarly, when accuracy

was averaged across the 10 subjects, there were no statistically

FIGURE 8 | Normalized confusion matrices across all subjects for the

three class decoding problem for (A) triggered and (B) self-initiated

conditions. The confusion matrices were computed by totaling the

predicted number of samples from each class across all 10 subjects

and dividing by the total number of samples from each. For each

repetition of the sub-sampling cross-validation procedure there were

1900 samples included in each class. The overall kappa coefficient for

each condition is included in parentheses.
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FIGURE 9 | Relationship between pre-movement decoding accuracy

and the movement related potential (MRP). (A) The median area under

the MRP curve plotted against the mean decoding accuracy for each

subject and condition. A negative value of MRP area under the curve

indicates the presence of larger MRPs. The coefficient of determination

(R2) is indicated. (B) The change in decoding accuracy across conditions

plotted against the change in area under the MRP curve for each subject. A

large negative value for change in area indicates a stronger MRP presence

during the self-initiated condition, while a large positive value indicates a

stronger MRP presence during the triggered condition; values close to zero

indicate similar MRPs for both conditions. The coefficient of determination

(R2) is indicated. The two participants with the largest difference in

accuracy across conditions are indicated by the arrows.

significant differences between the ROIs for either condition. To

assess the effect of self-initiated vs. triggered movements, we com-

puted the within subject difference in accuracy for each ROI

between these conditions (Figure 10D). A majority of partici-

pants (8/10) showed similar or significantly greater accuracy for

all four ROIs in the self-initiated condition. The two subjects

(S1 and S3) who showed significantly greater accuracy for the

triggered movements with the full set of electrodes also showed

greater accuracy in several, but not all, ROIs in this condition.

Interestingly, when the difference was averaged across subjects,

only the motor strip ROI showed significantly increased classifi-

cation accuracy for the self-initiated condition. Indeed, decoding

accuracy of movement intent during self-initiated sitting and

standing using the motor ROI was significantly greater than dur-

ing triggered movement in 7/10 subjects, similar in 2/10 subjects,

and decreased in only 1/10 subjects.

EFFECTS OF ARTIFACT REMOVAL

To examine the effect of the ASR artifact rejection algorithm,

and the potential effect of motion or other artifacts on clas-

sification accuracy, we repeated the classifier optimization and

cross-validation procedure for the self-initiated condition using

three control data sets and compared those with the original pre-

processing (Figure 11). The original data set is termed ASRpre in

Figure 11. The first control data set was composed of the same

pre-movement epochs consisting of 1.5 s of EEG data recorded

immediately prior to movement onset, however, ASR was omitted

from the pre-processing (Figure 1); this data set is termed Rawpre.

We decoded movement intent using an equally sized epoch

encompassing the 1.5 s time period immediately after movement

onset. We processed these data with (ASRmove) and without

(Rawmove) the ASR artifact rejection algorithm. We found that

the ASR algorithm had no statistically significant affect on accu-

racy when using the pre-movement epochs to decode movement

intent (Figure 11). This result was consistent for every subject

and when accuracy was averaged across all subjects. When move-

ment type was classified with EEG from epochs immediately after

movement onset, a statistically significant increase in accuracy

was observed in every subject when the data were not cleaned with

ASR (Rawmove). Application of the ASR algorithm (ASRmove)

resulted in a statistically significant drop in accuracy for decoding

with the post-movement epochs in 9/10 subjects. When aver-

aged across participants, no significant difference in accuracy was

observed between ASR cleaned pre- and post-movement epochs,

while accuracy was significantly higher for decoding with raw

post-movement data.

SIMULATED REAL-TIME CLASSIFICATION

The results of simulated real-time decoding using cleaned EEG

data are shown in Figure 12. Class-wise accuracy in this demon-

stration was different than observed from the cross-validation

(Figure 8) an effect caused by the training sample bias inher-

ent to the two-fold procedure used for the demonstration. The

quiet class (0) contains a larger number of samples than either

stand-to-sit (class 1) or sit-to-stand (class 2) resulting in very

high accuracies during quiet periods. Confusion between classes

1 and 2 was present during most transitions; the low number

of transitions used in this demonstration likely contributed to

this confusion. Errors at the beginning and end of the movement

periods skewed toward class 0 (quiet).

DISCUSSION

CLASSIFICATION OF SELF-INITIATED AND TRIGGERED MOVEMENT

FROM PRE-MOVEMENT EEG

Our results demonstrate successful, high accuracy classification

of movement intent in healthy individuals from delta-band EEG

recorded before movement execution. We framed our experiment

into a three-class problem where each time point was classified

into one of three states: quiet, stand-to-sit transition, or sit-to-

stand transition. It is important to note that we trimmed the
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FIGURE 10 | Pre-movement decoding accuracy by region of interest

(ROI). (A) Scalp map indicating the electrodes included in each ROI.

(B) Average decoding accuracy ±1 standard deviation (n = 20) using

the optimized LFDA-GMM algorithm for each ROI and subject during

the self-initiated condition. (C) Average decoding accuracy ±1

standard deviation (n = 20) using the optimized LFDA-GMM algorithm

for each ROI and subject during the triggered condition. Hash marks

(#) indicates accuracy for at least one ROI is significantly different

(p < 0. 05) for a given subject and condition based on Friedman’s

test. (D) The mean difference in pre-movement decoding accuracy

between the self-initiated and triggered conditions for each

subject ±1 standard deviation. Asterisks (∗) indicate differences which

were statistically significant (p < 0.05) from a distribution with a

median of zero based on the sign test.

time periods of actual movement execution—as determined from

EMG activity—from our EEG recordings. Thus, our classifier was

trained and tested using mutually exclusive EEG datasets recorded

during either quiet standing or quiet sitting but when subjects

presumably were preparing for the incoming action. We labeled

each time point in the 1.5 s epoch before movement onset accord-

ing to the type of movement that was executed in the future:

stand-to-sit or sit-to-stand. All other time points were placed

into a single quiet class. Classification ability was assessed in two

different movement execution paradigms, one that was cued by

www.frontiersin.org November 2014 | Volume 8 | Article 376 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Bulea et al. Decoding sit/stand intention from EEG

an audio signal (triggered) and one that was self-paced (self-

initiated). Interestingly, we observed no statistically significant

difference in classification accuracy between these two conditions,

though average accuracy across the 10 subjects was slightly higher

for the self-initiated condition (78.0 ± 2.6%) compared to trig-

gered (74.7 ± 5.7%) and both of these were significantly better

than chance accuracy of 33.3%.

Prominent MRPs were not visible in all subjects (Figure 5) and

we found almost no correlation between median area under the

FIGURE 11 | Classification accuracy using pre- and post-movement

epochs with and without ASR pre-processing. The classifier was trained

and tested for the self-initiated case using pre-movement epochs with the

original pre-processing pipeline (ASRpre, green) and using pre-movement

epochs omitting ASR from pre-processing (Rawpre, red). As a control, the

classifier was also trained and tested using equally sized epochs (1.5 s)

immediately following movement onset that were pre-processed with

(ASRmove, gray) and without (Rawmove) ASR for artifact rejection.

MRP curve and classification accuracy (Figure 9A). For within

subject comparisons between conditions, we observed signifi-

cantly better accuracy in four of ten subjects during the self-

initiated compared to triggered paradigm, while two subjects

had higher accuracy for triggered standing and sitting. When

examining subject specific changes in accuracy across the two

different paradigms, we found a slightly stronger correlation

between increased accuracy and area under the MRP curve. And

the two individuals that showed a decrease in accuracy in the self-

initiated vs. triggered trials also showed an increased area under

MRP curve, indicating less prominent MRPs. These results appear

to contradict previous examples which indicated that MRPs may

be more prominent in self-paced vs. cued movement paradigms

(Jahanshahi et al., 1995; Jankelowitz and Colebatch, 2002; Cui and

MacKinnon, 2009). There are several possible explanations. First,

our experimental paradigm included a relatively low number

of epochs (n = 20) for each condition, compared to traditional

studies of MRPs which typically utilize close to 100 (Shibasaki

and Hallett, 2006). This low number of epochs may be the rea-

son for the large variability in the presence of MRPs (Figure 5).

Additionally, in the self-paced experiment, participants were

instructed to pause 3–10 s between each movement though they

were also instructed not to count the seconds between each

movement. As a result, participants rarely waited 10 s between

self-paced movements; most periods of quiet lasted 5 s or less.

Previous studies have observed trial-to-trial variation in timing

and power of MRPs relating to self-paced left and right hand

movements, making classification of those movements using low

frequency features more difficult (Bai et al., 2007). Another study

found that while they were present for most—but not all—

subjects and movements, low frequency features were less critical

than ERD/ERS in classifying four different types of movement

from EEG (Morash et al., 2008). The latter study utilized the

contingent negative variation (CNV), which is a low frequency,

FIGURE 12 | Simulation of real-time decoding of movement intention

from low frequency EEG for one subject. The classifier was trained using

ASR-cleaned EEG data from the first half of the self-initiated trial; the figure

contains a time series of simulated real-time classification decisions from the

second half of the trial. The line represents the true class of each time point;

the asterisks show the LFDA-GMM classifier output. The percentage of

correct decisions is provided under each stand-to-sit and sit-to-stand

transition.

Frontiers in Neuroscience | Neuroprosthetics November 2014 | Volume 8 | Article 376 | 14

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Bulea et al. Decoding sit/stand intention from EEG

event related-potential entailing a widespread negative shift in

EEG observed in paradigms involving conditional and imperative

stimuli (Walter et al., 1964). While our paradigm did not involve

dual stimuli, it is possible that some participants experienced a

similar effect due to the alternating nature of the movements.

That is, completing the previous maneuver (sitting or standing)

may have created a conditional response in which the subject

then began to prepare for the next movement, which would be

the opposite of the prior one. This conditional response may

be another reason that we did not observe prominent MRPs in

some subjects. Indeed, trial-to-trial variation in CNV amplitude

has been described previously and this variation may be repre-

sentative of anticipated events and/or fluctuations in attention to

the task (Scheibe et al., 2010). The observed variation in MRPs

may also be responsible for the skewed misclassification of sit and

stand movement intentions as quiet (Figure 8). Note that while

the full time series of EEG data contained more samples in the

“quiet” class than in the “sit” and “stand” class, an equal amount

of data from each class was used for cross-validation, and thus,

this pattern of misclassification was not a result of training bias.

Variable timing of movement execution and conditional

response may have affected the prominence of MRPs, but it did

not hinder classification accuracy. One reason for this may be

the time-embedding of our classification features which encom-

passed information from up to 50 ms before the current time

point, helping to alleviate previously reported MRP-based fea-

ture variability (Bai et al., 2007). Low frequency EEG has been

shown to contain information regarding intention (Lew et al.,

2012), direction (Liao et al., 2007; Vuckovic and Sepulveda, 2008;

Waldert et al., 2008; Robinson et al., 2013), velocity (Bradberry

et al., 2010), and type (Agashe and Contreras-Vidal, 2013) of

hand movement. In the lower extremity, the ability to detect

voluntary ankle dorsiflexion movement from MRPs with accura-

cies up to 80% has been reported (Niazi et al., 2011; Xu et al.,

2014). During walking, intra-stride changes in electrocortical

activity coupled to gait phase have been observed at frequencies

as low as 3 Hz (Gwin et al., 2011) and inter-limb and intra-limb

kinematics (Presacco et al., 2011, 2012) as well as the intention

to start and stop walking (Kilicarslan et al., 2013) have been

decoded using delta band EEG. In another recent study, features

extracted from the delta band were the most heavily weighted

for single trial classification of walking movement intention from

EEG recorded prior to movement (Velu and de Sa, 2013). Our

results, which classified lower extremity movement type using

pre-movement EEG, corroborate these findings and provide fur-

ther evidence that low frequency EEG contains discriminative

information pertaining to lower extremity movement intent.

CLASSIFICATION BY REGION OF INTEREST

The results from our ROI analysis (Figure 10) support the

hypothesis that stand-to-sit and sit-to-stand transitions are pre-

ceded by event-related activity across a distributed, sparse cortical

network. As expected due to the reduced number of electrodes,

no ROI reached the classification accuracy attained when all

electrodes were included in the classifier. When averaged across

subjects, there were no statistically significant differences in clas-

sification accuracy between the ROIs for either condition, despite

the difference in number of electrodes. The ROI analysis also

revealed a statistically significant increase in accuracy for within

subject differences across conditions (self-initiated vs. triggered)

when using only the electrodes over the motor area. A similar

difference was not found for any other ROI or for the entire

scalp. This result suggests that the primary motor cortex (M1)

region contains more discriminative information for identifica-

tion of standing and sitting intention when the movements are

self-initiated compared to cued. This finding is supported by pre-

vious work indicating MRPs from this region differ when the

motor task emphasized sequence initiation compared to rhythm

(Bortoletto et al., 2011). EEG recorded from these electrodes has

also been demonstrated to most accurately track movement ini-

tiation using other frequency bands such as mu/alpha ERD and

beta ERS (Wolpaw et al., 2002).

ARTIFACT SUBSPACE RECONSTRUCTION

This study, along with previously mentioned work, establishes

compelling evidence for neural correlates of movement within

EEG signals recorded immediately prior to movement execution;

however, it is important to address the possible role of artifacts,

both physiological such as muscle and eye and non-physiological,

such as movement. Our signal processing approach for classi-

fier training and evaluation (Figure 1) was designed to minimize

the effect of artifacts in several ways. First, we eliminated frontal,

temporal, and occipital electrodes which can be contaminated by

EMG and/or EOG artifacts. Second, we trimmed all EEG that

was recorded during periods of movement as indicated by lower

extremity EMG from our data set, leaving only EEG recorded dur-

ing periods of quiet sitting and standing for classification. Third,

we applied a PCA-based artifact rejection algorithm (ASR) that

was designed to eliminate high amplitude and high variance arti-

facts, such as those from movement or muscle, from EEG (Mullen

et al., 2013). Our pre-processing analysis demonstrated similar

power spectral density between rest (quiet standing) and pre-

movement periods under both conditions (Figure 3), suggesting

that our pre-processing steps were effective in removing artifacts

from EEG. We also observed alpha ERDs in the period imme-

diately following movement onset (Figure 4), especially during

self-initiated trials, an observation that would have been unlikely

if muscle activity had remained in the cleaned-EEG signals since

EMG tends to have power in this frequency band.

To further elucidate the possible role of artifacts and these steps

to mitigate them, we compared the LFDA-GMM classifier perfor-

mance when it was trained and tested with three different control

data sets with our original processing pipeline (Figure 11). This

analysis showed no statistically significant difference in accuracy,

regardless of whether the pre-movement EEG was cleaned with

ASR or not, suggesting that artifacts were not present and there-

fore did not affect classification using the pre-movement epochs.

We did observe a significant increase in accuracy when the pre-

movement epochs were replaced with equally sized epochs imme-

diately following movement onset that had not been cleaned

using ASR. After ASR cleaning, classification accuracy was com-

mensurate with pre-movement epochs, although with a slightly

larger standard deviation across subjects. The increased accuracy

using post-movement epochs without ASR suggests that artifacts
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may have been present during this time and these artifacts may

have enhanced decoding accuracy. The decreased accuracy fol-

lowing ASR suggests that this algorithm is effective at removing

high amplitude artifacts from EEG data. This conclusion is fur-

ther supported by the simulated real-time demonstration using

ASR-cleaned data. The time periods after movement onset were

included in the quiet class during training and were decoded with

high accuracy during testing (Figure 12). But, caution should be

exercised regarding the conclusion that ASR completely elim-

inates low frequency, high amplitude artifacts. We note that

while we did observe alpha ERD in ASR-cleaned post-movement

epochs, we also observed enhanced power in the delta band

across the scalp, particularly in the triggered condition (Figure 4).

One possible explanation for the post-movement increase in

delta band power in the triggered trials could be residual head

movement and/or muscle artifacts as the participant reacted to

the audio cue to stand or sit. Further spectral, topographical,

and temporal analysis should be undertaken to parse movement

related artifacts from true electrocortical sources recording dur-

ing the actual sitting and standing movements. In particular,

the parameters of the ASR algorithm can be optimized to more

aggressively remove artifacts at the expense of potentially remov-

ing true EEG. We emphasize that our primary analysis involved

only EEG from pre-movement and quiet periods, thereby limit-

ing the contribution of these potential artifactual components as

indicated by the above analysis.

EEG USE IN REHABILITATION AND RESTORATION OF MOVEMENT

To our knowledge, this is the first study that classifies this type

of gross, full lower extremity movement intention—sit-down,

stand-up, or quiet—from non-invasive EEG signals. Previously,

surface EMG from leg muscles has been used with an LDA clas-

sifier to identify standing and sitting transition in amputees with

accuracies greater than 99% (Zhang et al., 2012). Achievement of

these high accuracies required the use of a post-processing major-

ity voting step, which resulted in a decision delay of up to 400 ms.

Another approach has deployed center of pressure to detect sitting

and standing transition in individuals with paraplegia (Quintero

et al., 2011). Classification of sitting and standing using EEG

offers advantages over these approaches. On average, we were

able to achieve 78% accuracy using features extracted from the

pre-movement epochs with no post-processing required, thereby

minimizing delay between movement intention and classification.

It should be noted that our classification accuracy was assessed

using single time points that were randomly selected from each

trial. This conservative approach was necessary to prevent model

over-fitting during training and to assure an equal number of data

points in each class during testing due to the relatively low num-

ber of movements executed (20 per condition) for each subject.

An example of the LFDA-GMM algorithm in a simulated real-

time environment is shown in Figure 12. We note that classifier

training was not optimal for this demonstration; only 5 stand-to-

sit and sit-to-stand transitions were employed. Further, clinical

deployment of the classifier as a component of a BMI could be sig-

nificantly improved by addition of an aggregate post-processing

step—such as requiring a number of consecutive time points to

be predicted as the same movement type or a sliding window

moving average with a threshold—to trigger a change in state.

The parameters of this post-processing step need to be tuned for

each subject and application to maximize accuracy and minimize

false positives. Future studies will investigate this possibility and

the tradeoff between gains in accuracy and increased classification

latency from post-processing.

One drawback of utilizing GMM based classifiers is the size

of the parameter space which must be learned, which is given

by K ∗ (1 + d ∗ (d − 1)/2) + K ∗ d, where K is the number of

Gaussian components in the mixture, and d is the dimensionality

of the data to be fit (Li et al., 2012). To fit a GMM to our time-

embedded EEG-based feature data set, which includes data from

28 channels of EEG at 11 time points and a maximum of K = 10

components for a given class, requires learning a parameter space

of dimension 4.76 × 105. Our results demonstrate that LFDA

is a powerful dimensionality reduction technique; the median

dimension of the reduced subspace was 96 (Table 1), represent-

ing a median reduction of 69% across subjects. LFDA reduced

the size of the GMM parameter by an order of magnitude, result-

ing in a large decrease of computation time to fit the models of

the classifier. Classifier optimization and training was performed

using custom software developed in Matlab®, including the par-

allel processing toolbox, run on a dual core PC (2.40 GHz, 24

GB RAM). On average, optimization across the full LFDA-GMM

parameter space was complete in less than 15 min per subject, and

training of the optimized LFDA-GMM classifier in less than 5. If

deployed for control of an assistive device, LFDA-GMM classifier

optimization and training may be required before each session of

use; these results suggest this is feasible. Examination of the opti-

mization surface (Figure 6) shows that gains in accuracy level-off

at moderate values of r while accuracy is relatively insensitive to

knn. The same trend is observed in all subjects, with some showing

decreases in accuracy for increasing r-values, while in others there

is no difference in accuracy as the parameter values are increased.

Thus, these parameters could be limited to smaller values, thereby

reducing the parameter space to be searched during LFDA-GMM

optimization. However, the optimal parameter set is expected to

vary with the task and also with the ability of the subject to learn

how to operate the BMI over time, and so caution should be exer-

cised when determining the upper limits. Also, full covariance

matrices (
∑

k) were deployed for each component of the GMMs;

however, if the subspace of the data following LFDA dimensional-

ity reduction was large, employing diagonal covariance matrices

could be used as a way to speed classifier training.

The LFDA-GMM classifier presented here could be incorpo-

rated into a closed loop BMI system with an exoskeleton to restore

function to individuals with paralysis. Such a system would be

comprised of a shared control paradigm, whereby the gross motor

instruction (in this case, the intention to sit-down or stand-up)

is extracted from the user’s EEG and the commands to execute

the movement are performed autonomously by the exoskeleton.

In this setup, the exoskeleton would be triggered at the first time

point in which the BMI detected a change in class; a process that

would likely include a post-processing step requiring a sequence

of consistent classifier decisions to trigger a change in state.

The decoding algorithm would then be blanked so that no state

changes could be triggered during the execution of a movement.
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Our observed accuracy of 78% in self-paced movements would

need to be improved for clinical viability. However, the data used

in this study were purely observational, while operation of a BMI

is a learned skill that incorporates feedback to the user regard-

ing performance; thus accuracy of the BMI may increase as the

user gains additional experience with the device. In the future,

EEG and EMG could be combined to create a comprehensive

neural-machine interface for control of advanced prosthetics. The

combined EEG-EMG interface could provide intuitive control of

artificial limbs while minimizing delay between detection of vol-

untary movement intention and its execution. Our classification

approach could also be used in an intervention to treat phantom

limb pain, whereby a descending motor command is determined

from EEG and a motorized prosthesis executes the movement

providing afferent feedback which could obviate maladaptive

cortical reorganization following amputation. EEG-based classi-

fication of movement intent could also be incorporated into a

neurorehabilitation protocol to recover more normal motor func-

tion in individuals with neurologic impairments. For example,

the EEG based classifier would activate a device to assist move-

ment, thereby creating more normal afferent feedback, which

could enhance brain plasticity and speed motor recovery (Daly

and Wolpaw, 2008). Such a strategy requires extraction of motion

intent from the motor impaired population; in this study only

healthy able-bodied individuals were tested. Future studies will

examine the ability to apply LFDA-GMM classification to indi-

viduals with central nervous systems deficits with an aim toward

neurorehabilitation strategies.
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