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 
Abstract— One challenging aspect of the Connected and 

Automated Vehicle (CAV) operation in mixed traffic is the 

development of a situation-awareness module for CAVs. While 

operating on public roads, CAVs need to assess their 

surroundings, especially the intentions of non-CAVs. Generally, 

CAVs demonstrate a defensive driving behavior, and CAVs expect 

other non-autonomous entities on the road will follow the traffic 

rules or common driving behavior. However, the presence of 

aggressive human drivers in the surrounding environment, who 

may not follow traffic rules and behave abruptly, can lead to 

serious safety consequences. In this paper, we have addressed the 

CAV and non-CAV interaction by evaluating a situation-

awareness module for left-turning CAV operations in an urban 

area. Existing literature does not consider the intent of the 

following vehicle for a CAV’s left-turning movement, and existing 

CAV controllers do not assess the following non-CAV’s intents. 
Based on our simulation study, the situation-aware CAV 

controller module reduces up to 47% of the abrupt braking of the 

following non-CAVs for scenarios with different opposing through 

movement compared to the base scenario with the autonomous 

vehicle, without considering the following vehicle’s intent. The 
analysis shows that the average travel time reductions for the 

opposite through traffic volumes of 600, 800, and 1000 

vehicle/hour/lane are 57%, 51%, and 61%, respectively, for the 

aggressive human driver following the CAV if the following 

vehicle’s intent is considered by a CAV in making a left turn at an 
intersection. 

 
Index Terms—connected automated vehicle, autonomous 

vehicle, situation-aware, V2I, aggressive, rear-end  

 

I. INTRODUCTION 

ith the emergence of innovative computation and 
networking solutions, and novel sensor technology, 

Connected Automated Vehicle (CAV) will be mainstream in 
the future transportation system. However, CAVs will have to 
co-exist with the non-CAVs (i.e., human-driven vehicles) in the 
foreseeable future, and interacting with other surrounding 
objects for the shared roadway spaces can be challenging for 
CAVs [1], [2]. CAVs are operated by programmable controller 
software, and the logics embedded in the controller software are 
based on traffic rules and common driving norms/code of 
conduct. By default, CAVs are programmed to be ‘defensive’, 
which implies that the controllers are not allowed to violate any 
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traffic rules. On the contrary, the driving behavior of different 
human drivers varies significantly. Based on the weather 
effects, and demography, psychology, and physical condition 
of the driver, humans can behave significantly different from 
each other. The driving behavior can also change due to the 
surrounding road conditions, and lack of available journey time 
[3]–[5]. In terms of aggressiveness, driver behavior can range 
anywhere from aggressive to non-aggressive and anything in-
between. Dukes et al. (2001) classified aggressive drivers as 
active aggressive drivers (who behave abruptly) and passive-
aggressive drivers (who induce others to act aggressively, e.g., 
driving slow and blocking others) [6]. Due to the aggressive 
nature of human drivers, a human can accelerate/decelerate 
abruptly, and maintain very little headway while following 
vehicles in front of them. This behavior often results in road 
rages or serious crashes. In urban areas, the presence of traffic 
signal controls could often lead to aggressive driving behavior 
[5]. The following aggressive driver can cause rear-end crashes 
if the leading vehicle suddenly decides not to cross the 
intersection and applies the brake. Also, if the front vehicle does 
not make any turn during the permissive phase, the following 
aggressive vehicle has to face a longer waiting time, and this 
can lead to road rage. The complicated interactions between 
CAVs (connected driverless vehicles with software making 
decisions based on input from in-vehicle sensors and wireless 
communication with the outside entities, such as other 
connected vehicles and roadside infrastructure) and non-CAVs 
(human-driven vehicles) result in varying driving behavior, 
which can lead to collisions in a mixed traffic scenario where 
both CAVs and non-CAVs coexist and share the same physical 
space. According to a real-world Autonomous Vehicle (AV) 
crash database, such conflicts between AVs and non-AVs exist 
[7]. Multiple studies found that the rear-end crash type 
dominates the total AV-related crash types in a mixed traffic 
scenario (i.e. traffic contains both AVs and non-AVs) [7]–[10]. 
For almost all of these rear-end crash cases, the primary reason 
was the following human driver applying poor braking and/or 
being distracted [7]. The conservative behavior of AVs is found 
to lead to potential conflicts with other non-AVs in the mixed 
traffic scenario [11]. The existing hierarchical planning 
architectures for AV controllers have a behavioral planning 
component where AVs decide about actions based on the 
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estimated location, size, and speed of surrounding vehicles [11], 
[12], and it can include the intentions of following vehicles. 
Existing literature does not consider the intent of the following 
vehicle for the left-turning movement [13]–[16]. A few studies 
have discussed the aggressiveness of AVs with AVs showing 
human-like aggressive behaviors and found that the imitation 
of human driving behavior could improve traffic operation and 
safety [11], [17]. However, existing left-turning CAV 
controllers do not assess the following vehicle’s intent. Based 
on a 28-month Autonomous Vehicle Disengagement Reports 
Database (September 2014-January 2017), 89% of the total 
crashes for Autonomous Vehicles (AVs) occurred at 
intersections, 69% of the total crashes occurred with AV speed 
less than 2.24 ms-1 (5mph), and 58% of the crashes were rear-
end caused by human drivers following an AV [9]. A 2016 
survey found that 37% of Americans among 2,264 participants 
were concerned about the interaction of AVs and non-AVs [18]. 

In this research, we specifically focus on scenarios in an urban 
Transportation Cyber-Physical Systems (TCPS) environment 

where CAVs operate in the mixed traffic stream, as shown in 
Fig. 1(a). In an urban TCPS, the physical components include 
CAV sensors and actuators, traffic signal controllers, roadside 
units, and video cameras [19]–[21]. The cyber components 
include wireless communication, CAV controller software, and 
computing software in the roadside unit. Based on the in-
vehicle sensor captured data about the surrounding 
environment, the CAV controller manages the CAV movement 
[22]. The objective of this research is to develop and evaluate a 
situation-aware CAV controller module, which will operate in 
response to an aggressive human driver and consider the intent 
of aggressiveness in the CAV decision-making controller 
module. As shown in Fig. 1(a), the contribution of this study is 
the development of a situation-aware CAV controller module, 
which considers the following human-driven vehicle’s intent 
while making a left-turn at an intersection to minimize abrupt 
braking, and/or to minimize the waiting time of the following 
human-driven vehicles. The situation-aware CAV operation 
will be influenced by external factors (e.g., congested traffic 

 
 

 
(a) In a TCPS based intersection 

 

 
(b) In an IoT environment 

Fig. 1. Situation-aware CAV operations 
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conditions, extreme weather, etc.), and the integration of an 
Internet of Things (IoT) environment can assist the CAV 
operation in these events. Fig. 1(b) shows the interconnection 
of situation-aware CAV operation with other CPSs for an IoT 
environment, where data are exchanged, processed, and stored 
following a TCPS-incorporated IoT architecture [23], [24]. IoT 
connects different TCPS components, such as vehicles, people, 
and transportation infrastructure at different layers, with other 
CPSs, such as weather management CPS and emergency 
management CPS, to support the situation-aware CAV 
operations. For example, our situation-aware CAV operations 
will be affected by the roadway weather conditions at the 
intersection which will require the IoT services to provide real-
time coordination between TCPS and weather management 
CPS (shown in Fig. 1(b)). Also, emergency management CPS 
can be activated if any collision happens due to the interaction 
between the aggressive driver and CAV in the IoT-enabled 
scenario. Inside TCPS, other systems, such as intersection 
management CPS, can simultaneously operate with the 
situation-aware CAV CPS. With the IoT integration, once the 
presence of an aggressive vehicle is detected by a CAV, the 
information can be shared with the intersection management 
CPS controller and other CAVs in the surrounding areas with 
the available communication options. The arrival of the 
aggressive human driver can trigger sufficient green time 
allocation at the traffic signals for a specific approach, to avoid 
any unwanted conflict with vehicles coming to the intersection 
from any other approaches. 

This research focuses on developing a situation-aware CAV 
controller module that will enable safe and efficient left-turns 
at an intersection considering the following vehicle’s 
aggressiveness. The controller module avoids any abrupt 
braking incidents and minimizes the intersection wait time of 
the following vehicle. Situation-aware CAVs dynamically 
identify the intent of the following vehicle using sensor 
captured data and adjust speed in real-time to reach the 
intersection. A video camera at the intersection will monitor the 
opposite through traffic stream, and using Vehicle-to-
Infrastructure or V2I communication, the information will be 
communicated to the CAVs. In the future, when all vehicles 
will be connected, the gap information can be derived from the 
connected vehicle data using Vehicle-to-Vehicle 
communication. CAVs will identify the appropriate gaps in the 
opposite through traffic stream and accelerate/decelerate to 
reach the intersection to capture the appropriate gaps and clear 
the shared lane, which will be used by the following vehicle to 
move in through direction and clear the intersection.  

The following Section II discusses related studies of 
aggressive driver identification, rear-end collision 
minimization, and situation-aware CAVs. Section III discusses 
the situation-aware CAV operation in an urban TCPS 
environment. Base AV operations, without considering the 
following vehicle’s intent, are discussed in Section IV. Sections 
V and VI discuss the evaluation scenario and findings from this 
research. Finally, Section VII elaborates on the conclusions and 
future research. 

II. RELATED STUDY 

The following subsections discuss the related studies about 
rear-end collision mitigation approaches, situation-aware 
CAVs, and driver aggressiveness. Literature related to the rear-
end collision avoidance strategies and situation-aware CAVs 
emphasizes the fact that existing left-turning AV controllers 
still lack a mechanism to avoid collisions based on the 
following human driver’s intent. While developing such a CAV 
controller module, we used existing research on driver 
aggressiveness to identify which parameters should be used by 
a CAV controller to detect aggressiveness of the following 
vehicle. 

A. Rear-end Collision Mitigation 

The sudden brake by following aggressive human drivers can 
increase the likelihood of rear-end crashes. The aggressive 
driving behavior (i.e., speeding) was the contributing factor in 
26% of all traffic fatalities in 2017 [25]. For autonomous 
vehicles, based on the 28-months Autonomous Vehicle 
Disengagement Reports Database (September 2014-January 
2017), 58% of the crashes were rear-ended, where the following 
vehicles were human-driven [9]. In one study, the authors found 
tactile and audible collision warning systems can reduce the 
rear-end collision events for human drivers by increasing the 
brake response time, while the drivers were engaged in a cell 
phone conversation [26]. In a similar study, to identify the rear-
end collision mitigation method for human drivers, the authors 
found that the audio and visual warning assisted to release the 
accelerator faster by the human drivers to avoid a potential rear-
end crash [27]. Due to the faster accelerator release response, 
drivers could apply brakes gradually to avoid a collision. 
Another rear-end collision mitigation system for human drivers 
was the use of a green signal countdown timer, which was found 
to reduce rear-end crashes during the yellow interval [28]. The 
rear-end collision anticipation warning can be provided using 
vehicle-to-vehicle communication. As the rear-end collision 
avoidance application needs to satisfy strict delay constraints, 
the authors in one study developed a rear-end collision 
avoidance strategy using IEEE 802.11 standard and multi-hop 
broadcast system [29]. Using simulated single-lane and multi-
lane scenarios, the rear-end crash avoidance strategy reduced 
almost all rear-end crashes for the following vehicles. AVs still 
lacks a mechanism to avoid rear-end crashes when the 
following vehicle is a human driver [9]. In this study, we have 
developed such a control module for left-turning autonomous 
vehicles to reduce the rear-end crash possibility and reduce 
road-rage events.  

B. Situation-aware CAV 

Earlier research developed the situation-awareness for AVs 
based on the Partially Observed Markov Decision Process, 
where an autonomous agent chooses a policy for taking an 
action, without knowing the system state, to maximize rewards 
[30]. The authors considered intention recognition and sensing 
uncertainties in the framework and measured the conflicting 
vehicle intention with respect to speed. Compared to the 
reactive approach, the situation-aware autonomous vehicle 
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showed fewer failure rates in different scenarios (such as 
interacting at roadways with T-intersection and roundabout), 
meaning autonomous vehicles did not always purposefully give 
way to the conflicting vehicles. Rather, autonomous vehicles 
acted proactively to reduce the waiting time. A similar method 
was used in another research, where the authors used four 
parameters (i.e., distance to the intersection, yaw rate, speed, 
and acceleration) to identify each vehicle’s intent at an 
unsignalized intersection [31]. The reward function includes 
reward due to adherence to the traffic law, reduction in travel 
time and improvement in safety. Using Prescan software, the 
autonomous vehicles were modeled and using a driving 
simulator, research participants drove the human-driven 
vehicles. The analysis showed that, without considering the 
human intention, the autonomous vehicles were confused about 
whether to cross the intersection. In another study, the authors 
discussed the use of temporal domain prediction instead of 
spatial domain prediction to predict uncertainty in other agent’s 
intent [32]. For autonomous agents, the authors showed that the 
required time to reach a destination, and maneuvering time can 
be designed as a Gaussian distribution. With Monte Carlo 
simulations, the authors demonstrated that the autonomous 
vehicle can safely maneuver through roundabouts while 
considering other vehicle’s predicted position in future times. 
In order to reduce conflicts among multiple agents, one study 
investigated the empathic autonomous agent which made 
decisions based on a utility function (this function depends on 
the acceptability of any action by all agents, based on the 
action’s future consequences) of everyone in the driving 
environment [33]. Here, the empathic autonomous agent made 
the decision that was acceptable to everyone. In another study, 
autonomous vehicles considered the yielding intent of merging 
vehicles on the freeway entrance ramp [34]. Using the 
acceleration value of the merging vehicle, the intent of the 
merging vehicle was recognized. Upon recognizing the intent, 
an autonomous vehicle would generate candidate strategies to 
minimize a cost function, which avoids conflict, passenger 
discomfort, excess fuel consumption, and undesirable 
operational outcomes. If the merging vehicles did not show the 
intent to yield, autonomous vehicles would slow down to avoid 
conflict. In this research, we have developed a situation-aware 
CAV controller module for one of the most critical interactions 
between CAVs and following aggressive vehicles, which 
results in the most prominent crash type, i.e., rear-end crash, for 
real-life autonomous vehicles [9].  

C. Driver Aggressiveness Identification 

The aggressive driver behavior was previously studied using 
data from the smartphone, where the authors identified the 
acceleration behavior of both aggressive and non-aggressive 
drivers to provide feedback in real-time to the corresponding 
drivers about their driving behavior [35]. The types of 
aggressive behavior included excess speeding, abrupt braking, 
lane changes, and aggressive U-turns. The authors in [35] 
considered the driver experience and road surface condition to 
identify the boundary values of acceptable longitudinal and 
lateral accelerations. The smartphone-based GPS sensor was 

used to obtain the real-time acceleration rate of the vehicle, and 
when the acceleration exceeds the allowable threshold, drivers 
can be alerted about their aggressive behavior in real-time. In 
another study, the aggressiveness behavior of a subject vehicle 
was identified based on the vehicle’s current lane deviation 
possibility, speed and estimated collision time with the front 
vehicle [36]. The authors used both an in-vehicle sensor and 
camera sensor to collect the required data and trained a machine 
learning-based classifier (i.e., support vector machine) to 
identify aggressive driving behavior. The machine learning-
based classifier achieved 93% accuracy to classify drivers 
according to their aggressive driving behavior. Vehicle 
trajectory data was used in another study, where the authors 
used relative speed, average speed, distance to leading vehicles, 
longitudinal jerk and lane change data from the I80 corridors in 
California to identify driving behavior of a subject vehicle [37]. 
The authors interviewed 100 participants (whose driving data 
were not included in the I80 database) to identify the driving 
behavior and level of attentiveness of the subject vehicle driver. 
The driving behavior identification module was incorporated 
into a simulated vehicle navigation system to ensure safe 
navigation. Both speed and lateral and longitudinal acceleration 
were used to derive the mathematical model of driver 
aggressiveness in another study, where the authors used real-
world data from vehicles [38]. The authors developed a 
classifier using Gaussian Mixture Models and maximum-
likelihood, which achieved a 92% accuracy to identify each 
driver’s behavior. In another study, the authors used 
acceleration and speed of the leading vehicle, and the time gap 
between the leading vehicle and following vehicle to cluster 
different driving behaviors [39]. Based on the driving behavior 
and acceleration of the leading vehicle, the car-following 
behavior was found to be linearly stable. Vehicle data from the 
I80 corridors in California, available via the Next Generation 
Simulation database, were used to develop the car-following 
model. In this research, the driver's intent of the following 
vehicle needs to be identified. In an urban TCPS, with the 
following vehicle’s acceleration/deceleration rate [34], [38], 
[39], we can directly estimate whether the following vehicle 
will slow down while following the leader left-turning CAV. 
However, time headway is another important parameter [39], as 
with time headway we can monitor how closely the following 
vehicle is following the leader CAV in the urban area. A 
closely-following vehicle is considered to be more aggressive, 
compared to the following vehicle maintaining a high headway. 
Thus we have used both the acceleration of the following 
vehicle and time headway between the subject vehicle and 
following vehicle to identify the following vehicle’s 
aggressiveness in this study. 

III. SITUATION-AWARE LEFT-TURNING CAV OPERATION  

Steps associated with the situation-aware left-turning CAV 
operation, as shown in Fig. 2(a), are: (A) detect the following 
vehicle’s intent, (B) predict future traffic state of the opposite 
traffic lane, (C) identify a gap in the opposite traffic, and (D) 
optimize CAV movement. In this paper, the speed profile of the 
turning CAV is modeled following an earlier study [13]. Other 
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components of the framework (i.e., steps (A), (B), (C), and rest 
part of step (D) including the inflow and outflow optimization) 
are developed by us, the authors of this study. The situation-
aware left-turning CAV operates depending on the surrounding 
situation, which for this research is an aggressive behavior of 
the following vehicle. If the following vehicle’s intent is 
identified, CAV can operate accordingly to prevent or minimize 
negative consequences, which include abrupt hard braking, and 
increased waiting time for the following vehicle. Predicting the 
future condition of the surrounding traffic helps to take proper 
actions by an autonomous vehicle [40]–[42]. In this case, the 
opposing traffic stream’s future condition will dictate the 
availability of the target gap at the intersection when the CAV 
will arrive at the intersection stop bar to initiate the left-turn 
maneuver [43]. If an inaccurate prediction happens while 
identifying gap in the opposite traffic stream, the in-vehicle 
sensors (camera, lidar) of the CAV will still be able to detect 
the incoming vehicles from the opposite direction after reaching 
the intersection stop bar, and the CAV will not enter the 
intersection. Such a case can lead to the following aggressive 
human driver applying sudden brake as the CAV will keep 
waiting at the intersection. Finally, while taking the left turn, 
the CAV needs to confirm that adequate gaps are there so that 
there will be no direct conflict with the opposite through traffic 
stream and the subject CAV. The four steps, as shown in Fig. 
2(a), are discussed in the later subsections. 

Fig. 2(b) shows the components for the situation-aware 
control module for left-turning CAVs. The sensors used by this 
module include a rear-view camera, a GPS sensor, and a V2I 
communication radio. Earlier studies found that CAV 
operations can be improved if external data can be utilized 
through V2X wireless communication [19], [44]. Using these 
sensors, the intent of the following vehicle (from the rear-view 

camera) and gaps in the opposite through traffic stream (from 
V2I communication radio using the analyzed intersection video 
feed from the roadside unit) are identified. If all vehicles are 
connected, the gap information can be derived from the 
connected vehicle data using Vehicle-to-Vehicle 
communication without any need for cameras installed at an 
intersection. The GPS sensor is used to identify the location of 
the CAV. Using the rear-view camera, the relative position of 
the following vehicle is identified. Based on the relative 
position of the following aggressive vehicle and the CAV’s own 
position, the position of the following vehicle is identified. The 
planning sub-module predicts the future possible gap in the 
opposite through traffic stream and identifies how CAV should 
operate in terms of a left turn at an intersection based on the 
existing road traffic conditions, and traffic signal status, while 
also considering the speed limit of major and minor streets. This 
sub-module identifies the final speed to be achieved by a CAV 
to reach and clear the intersection. Based on the criteria 
identified by the planning sub-module, the control sub-module 
runs the optimization to estimate the speed profile to be 
followed by the CAV.  

A. Intent Recognition of Following Vehicles 

As discussed earlier, the following vehicle can show either 
aggressive or non-aggressive behavior. To identify the intent, 
CAVs can consider the data regarding the following vehicle 
captured by its sensors. Different sensors can be used to obtain 
data from the following vehicles, and different types of data can 
be used. These sensors include radar, camera, and LIDAR [45]. 
In this research, we have considered the following vehicle’s 
acceleration, and time headway between the CAV and the 
following vehicle to identify the intent of the following vehicle. 
The CAV follows a decision-making framework, shown in Fig. 

 

(a) Steps for the CAV left turn decision module 
 

 
 

(b) Situation-aware left-turning CAV module components 
Fig. 2. CAV left turn steps and decision module 
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3, for its left-turn maneuver. At first, it detects if there is any 
following vehicle. If the following vehicle is present, the CAV 
sensor captures the data of the relative position of the following 
vehicle ∆𝑝𝑡1 at time t1. Based on its own position 𝑝𝑡1 (captured 

by the GPS sensor available in the CAV), and ∆𝑝𝑡1, the position 
of the following vehicle 𝑝𝑓𝑜𝑙𝑙𝑜𝑤,𝑡1 can be estimated using (1). 

Using the following vehicle’s position for two consecutive 
times, 𝑡1 and 𝑡2, the speed 𝑣𝑡2  at time 𝑡2 can be estimated using 

(2). From the 𝑣𝑡2  (calculated speed) and ∆𝑝𝑡1 (relative position 

of the following vehicle at time 𝑡2), the acceleration 𝑎𝑡2  and 

time headway 𝑡ℎ𝑡2of the following vehicle at time t2 can be 

estimated using (3), and (4), correspondingly, as shown here  

 

 

 
Fig. 4. Probability of aggressiveness based on acceleration and headway 
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𝑝𝑓𝑜𝑙𝑙𝑜𝑤,𝑡1 = 𝑝𝑡1 + ∆𝑝𝑡1, (1)  𝑣𝑡2 = 
𝑝𝑓𝑜𝑙𝑙𝑜𝑤,𝑡2−𝑝𝑓𝑜𝑙𝑙𝑜𝑤,𝑡1𝑡2−𝑡1 ,  (2)  𝑎𝑡2  = 
𝑣𝑡2−𝑣𝑡1𝑡2−𝑡1 , (3)  𝑡ℎ𝑡2 = 
∆𝑝𝑡2𝑣𝑡2 . (4) 

To identify the probability of the following vehicle’s intent, 
we have used Bayes Theorem [46]. Equations ((5), and (6)) can 
be used to derive the probability of aggressiveness (A) or non-
aggressiveness (NA) based on the attitude (Att) of the following 
vehicle, as shown  

 P(A|Att)=
𝑃𝑟 (𝐴𝑡𝑡|𝐴) 𝑃(𝐴)𝑃(𝐴𝑡𝑡|𝐴) 𝑃(𝐴)+𝑃(𝐴𝑡𝑡|𝑁𝐴) 𝑃(𝑁𝐴), (5) 

P(NA|Att)=
𝑃(𝐴𝑡𝑡|𝑁𝐴) 𝑃(𝑁𝐴)𝑃(𝐴𝑡𝑡|𝐴) 𝑃(𝐴)+𝑃(𝐴𝑡𝑡|𝑁𝐴) 𝑃(𝑁𝐴). (6) 

The assumption is that there is an equal amount of chance for 
the following vehicle to be aggressive or non-aggressive. Thus 

P(A) and P(NA) is equal to 0.5. In order to get the P(A|Att) and 
P(NA|Att), we have considered that the aggressive and non-
aggressive behaviors follow the distribution as shown in Fig. 4 
and Fig. 5, correspondingly. Studies conducted on urban 

arterials were reviewed to obtain the threshold values for both 
acceleration and time headway [47], [48]. In an urban area, 2𝑚𝑠−2 acceleration is considered to be aggressive [48]. This 
value is considered as the mean of the Gaussian distribution and 

the standard deviation is considered to be 
43𝑚𝑠−2 (when the 

acceleration is less than 2𝑚𝑠−2). Beyond the mean 
acceleration, the following vehicle will always be considered 
aggressive. As the CAV will have to decelerate, the following 
vehicle should slow down, and the non-aggressive behavior 
would imply that the following vehicle is slowing down. Thus, 
the distribution with the mean deceleration of −2𝑚𝑠−2 and the 

standard deviation of 
43𝑚𝑠−2 is considered as non-aggressive 

(when the deceleration is higher than the mean). With 
deceleration less than −2𝑚𝑠−2, the following vehicle will 
always be considered non-aggressive. For time headway, a 1 

second time headway is considered to be the mean of aggressive 
behavior, while a 2 seconds time headway represents a safe or 
non-aggressive behavior [47]. 

 
Fig. 5. Probability of non-aggressiveness based on acceleration and headway 
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B. Prediction of Future Vehicle State of Opposite Traffic 
Stream 

Once a CAV identifies the intent of the following vehicle, it 
will look for an appropriate gap in the opposite through traffic 
stream. The information about the opposite through traffic 
stream will be provided by the connected roadside unit, 
installed at the intersection via Dedicated Short-Range 
Communication, or DSRC. We have assumed a perfect 
communication channel for V2I communication in this study. 
This analysis can be extended to include communication delay 
and reliability following previous research on this topic. For 
vehicular communication, there are several options such as 
DSRC, 5G, LTE, and WiFi [19]. DSRC is a popular 
communication option as it has a dedicated spectrum for 
vehicular communication. From previous studies on the 
performance of DSRC for vehicular networking, it has been 
observed that DSRC has very low communication delay (~2ms) 
and high reliability within a short-range (~300m), which is 
sufficient for covering any size of signalized intersection with 

line-of-sight conditions [49]–[51]. For non-line-of-sight 
(NLOS) conditions, DSRC suffers from high path loss because 
of its high operating frequency (~5.9 GHz). For longer range 
and NLOS conditions, LTE offers a better alternative of 
increased coverage [50], but has a higher delay than DSRC. 5G 
is an emerging technology that offers a use case called ultra-
reliable low-latency communication (URLLC), which would be 
appropriate for V2V and V2I applications [52], [53]. However, 
it is difficult to ensure communication reliability using one 
communication method. Heterogeneous wireless networking 
(HetNet) offers a solution to this problem, in which a CV 
automatically scans for available networking resources and 
performs horizontal or vertical handover when one 
communication channel is not available [54].  

A camera installed at the intersection can be used to identify 
the gaps in the opposite through traffic and send them to the 
connected roadside unit for it to transmit to CAVs. In the future, 
when all vehicles will be connected, the gap information can be 
derived from the connected vehicle data using Vehicle-to-
Vehicle communication. The roadside unit estimates the 

 

(a) Speed profiles for CAV making left-turn 
 
 

                                                                                                              

(b) Conflict area for left-turn maneuver          (c) CAV speed adjustment to reach the initial point of deceleration 
Fig. 6. Movement of CAV making a left-turn 
 

𝑑 𝑤𝑙 

𝑤𝑐𝑎𝑟 

𝑑𝑓 

𝑑𝑙 

Non-CAV 

CAV 

𝑑𝑖𝑠 

𝐿1 

σ+t σ 

𝐿2 

Second 

Lane 

First 

Lane 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9 

opposite traffic arrival time assuming that the opposite through 
traffic stream will maintain a constant speed while reaching the 
intersection. However, this assumption is not valid where 
human drivers can take different actions (i.e., accelerate, lane 
change) at any given time when they are close to the 
intersection. Thus, when the CAV is at the intersection with an 
intent to initiate the left-turn, the gap may not be there. To 
ensure a safe left-turn, the CAV will assess the intersection 
condition after reaching the intersection, in real-time, and make 
a final decision whether to turn left based on the data from the 
CAV’s cameras about the approaching opposite through traffic 
stream. Whenever the required gap is available, the CAV will 
initiate the left turn to safely cross the intersection and clear the 
path for the following vehicle. 

 

C. Opposite Traffic Stream Gap Estimation 

While taking a left-turn manoeuver, two scenarios may exist. 
In the first one CAVs may not need to stop after reaching the 
intersection if there is a gap in the opposite through traffic 
stream right at that moment. CAV can take a left-turn without 
conflicting with any other vehicle after reaching the intersection 
at a minimum speed. This scenario can be handled by the CAV 
uninterrupted inflow and outflow speed profile, as shown in 
Fig. 6(a). In the second scenario, the interrupted inflow and 
outflow speed profile will be active as the CAV will have to 
stop at the intersection due to the presence of approaching 
vehicles in the opposing through traffic stream. CAV will wait 
for the required gap to make a left-turn based on the arriving 
pattern of the opposing through vehicles and start the left-turn 
right away when the required gap is available.    

For any two way corridor with ‘m’ number of opposite lanes 
and ‘n’ number of vehicles on the opposing lanes at a certain 
time period, we have defined the vehicle sets based on the 
vehicles’ current lane and state (App for vehicles approaching 
the conflict area, and Pass or P for vehicles that will pass the 
conflict area). 𝑁𝐴, 𝑃 and 𝑁𝐵, 𝑃 are the sets of opposing through 
vehicles in lane 1 and 2, respectfully, that will pass the conflict 
area when CAV will reach the conflict area. 𝑁𝐴, 𝐴𝑝𝑝 and 𝑁𝐵, 𝐴𝑝𝑝 

are the sets of opposing through vehicles in lane 1 and 2, 
respectfully, that will approach the conflict area when CAV will 
reach the conflict area.  

Fig. 6(b) shows the conflict areas at the intersection for the 
left-turn maneuver with red bounding boxes. We assume that 
the CAV will follow a parabolic path while taking the left turn 
at the intersection [55], [56]. For a typical two-lane corridor, the 
distance to the conflict area of the opposite first lane from the 
intersection stop line is 𝐿2, and the distance from the 
intersection stop line to the conflict area of the opposite first 
lane is (𝐿1 + 𝐿2), as shown in Fig. 6(b). These distances can be 
computed with the Arc Length (AL) equation of the parabolic 
path, as shown in (7). 𝐴𝐿 = 12√𝑏2 + 16𝑎2 + 𝑏28𝑎 𝑙𝑛 (4𝑎+√𝑏2+16𝑎2𝑏 ).  (7) 

For a left-turn parabolic path at the intersection, the length 
along the parabola axis (a) and perpendicular chord length (b) 
can be calculated as 𝑎 = 2.5𝑤𝑙  and 𝑏 = 3𝑤𝑙  for a typical 

corridor with two lanes in each direction of the major road. 𝑤𝑙  
is the lane width, and 𝑤𝑐𝑎𝑟  is the vehicle width. Here 𝑑𝑙 is the 
distance between the CAV direction stop line and the end of the 
conflict area. We have defined 𝑑𝑓 as the distance between the 

stop line at lanes from which a CAV will start the left turn 
maneuver and the start of the conflict area. We have defined a 
distance threshold for both sides of the conflict area compared 
to the parabolic path of the CAV. For the start and end of the 
conflict points, the distance thresholds beyond the CAV’s 
projected path are σ and σ+t, as shown in Fig. 6(b). Considering 
a two-lane-two-way corridor, both 𝑑𝑙 and 𝑑𝑓 from Fig. 6(b) for 

any CAV i can be calculated from the following (8), to (11). 
Here the first lane means the closest opposite lane for the left-
turning CAV, and the second lane means the farthest opposite 
lane, as shown in Fig. 6(b). 𝑑𝑙−𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑛𝑒,𝑖 = 1.41√𝑤𝑙  - 𝑤𝑐𝑎𝑟,𝑖2  -  σ, i𝜖𝑁𝐵, 𝑃. (8) 𝑑𝑓−𝑠𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑛𝑒,𝑖 = 1.41√𝑤𝑙+𝑤𝑐𝑎𝑟,𝑖2  + σ+t, i𝜖𝑁𝐵, 𝐴𝑝𝑝. (9) 𝑑𝑙−𝑓𝑖𝑟𝑠𝑡 𝑙𝑎𝑛𝑒,𝑖 = √𝑤𝑙 - 𝑤𝑐𝑎𝑟,𝑖2  - σ, i𝜖𝑁𝐴, 𝑃. (10) 𝑑𝑓−𝑓𝑖𝑟𝑠𝑡 𝑙𝑎𝑛𝑒,𝑖 = √𝑤𝑙+𝑤𝑐𝑎𝑟,𝑖2  + σ+t, i𝜖𝑁𝐴, 𝐴𝑝𝑝. (11) 

D. Optimization of CAV Movement while Avoiding Conflict 

Once the following vehicle intention is known and gaps from 
the opposite through traffic stream are identified, the CAV 
controller module needs to estimate its speed profile for the 
remaining distance. The CAV will follow the speed profile, 
shown in Fig. 6(a), to clear the path for the following vehicles, 
or at least to minimize the waiting time for the following 
aggressive vehicle. The speed of the turning vehicle can be 
modeled as a function of time with the polynomial of third-
degree as discussed in [13]. The slope of a speed profile means 
acceleration, and the slope of the acceleration profile is called a 
jerk. For an initial time, 𝑡𝑜 we express the speed, acceleration 
and jerk values as 𝑣𝑜, 𝑎𝑜 and 𝐽𝑜. We have defined the slopes of 
the vehicle jerk as 𝒿. The value of 𝑎𝑜 is zero. For any time t, the 
jerk, acceleration and speed can be calculated using the 
following (12), (13), and (14), respectively. The same equations 
can be applied to both inflow and outflow speed profiles. 𝐽𝑡 = 𝐽𝑜 + 𝒿𝑡. (12) 𝑎𝑡 = 𝑎𝑜 + 𝐽0𝑡 + 12 𝒿𝑡2. (13) 𝑣𝑡 = 𝑣𝑜 + 𝑎0𝑡 + 12 𝐽𝑜𝑡2 + 16 𝒿𝑡3. (14) 

 To get the optimal speed profile, the optimization is 
computed in two steps. In the first step, the inflow speed profile 
is optimized using the optimized 𝒿 for the inflow. We minimize 
jerk at which the CAV will reach the intersection (i.e., 𝐽𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤  (𝑚𝑠−3)). In the second step, based on the output 

of the inflow optimization model, the outflow speed profile is 
optimized. Here we minimize the jerk at which the CAV will 
enter the minor street (i.e., 𝐽𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤  (𝑚𝑠−3)). The input of 

the optimization model is the initial inflow speed, 𝑣𝑜−𝑖𝑛𝑓𝑙𝑜𝑤  

(𝑚𝑠−1). The speed at which the CAV will reach the intersection 
needs to be close to zero, so the target speed range is considered 
to be within 0.1 𝑚𝑠−1 to 2.5 𝑚𝑠−1. 𝑎𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤 (𝑚𝑠−2) is the 

acceleration of CAV after reaching the intersection, which is 0. 
The initial jerk (𝐽𝑜−𝑖𝑛𝑓𝑙𝑜𝑤  (𝑚𝑠−3)) at the initial point of 
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deceleration is confined within the boundary of 1.5𝑚𝑠−3, as 
that is defined as the limit of the comfortable jerk [57]. The 
boundary values for the slope of jerk (𝒿𝑖𝑛𝑓𝑙𝑜𝑤  (𝑚𝑠−4)) are 

derived from [13]. The optimization objective, constraints and 
decision variables are given below.   

Optimization objective for inflow: 𝑚𝑖𝑛  (𝐽𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤).  (15) 

 
Subject to,   

0.1 < 𝑣𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤 <2.5, 

-1.5 < 𝐽𝑜−𝑖𝑛𝑓𝑙𝑜𝑤  < 1.5, 

0.1 < 𝒿𝑖𝑛𝑓𝑙𝑜𝑤 < 0.8, 

0 < 𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤 < 𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤,𝑚𝑎𝑥 , 𝑎𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤=0. 

 
Decision variables, 𝒿𝑖𝑛𝑓𝑙𝑜𝑤  , 𝐽𝑜−𝑖𝑛𝑓𝑙𝑜𝑤 , 𝑣𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤 , 𝑇min−𝑖𝑛𝑓𝑙𝑜𝑤 . 

 
The maximum available time to reach the intersection stop 

line (𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤,𝑚𝑎𝑥  (sec)) can vary based on the traffic 

conditions and geometric characteristics of the corridor. Once 
the desired target speed (𝑣𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤  (𝑚𝑠−1)) from the initial 

optimization is available, the second optimization is conducted 
for the outflow model. For this outflow, the optimization model 
is provided in the following (16).  
 

Optimization objective for outflow: min  (𝐽𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤).  (16) 

 
Subject to,  𝑣𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤,𝑚𝑖𝑛 < 𝑣𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤 < 𝑣𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤,𝑚𝑎𝑥, 

-1.5  < 𝐽𝑜−𝑜𝑢𝑡𝑓𝑙𝑜𝑤  < 1.5, 

-0.2  < 𝒿𝑜𝑢𝑡𝑓𝑙𝑜𝑤  < -0.6, 

5 < 𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤 < 𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤,𝑚𝑎𝑥, 𝑎𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤=0. 

 
Decision variables, 𝒿𝑜𝑢𝑡𝑓𝑙𝑜𝑤 , 𝐽𝑜−𝑜𝑢𝑡𝑓𝑙𝑜𝑤, 𝑣𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤 , 𝑇min−𝑜𝑢𝑡𝑓𝑙𝑜𝑤. 

 
The maximum and minimum boundary values of the speed 

(after entering the side street) to be achieved by the CAVs 
(𝑣𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤,𝑚𝑖𝑛 (𝑚𝑠−1) and 𝑣𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤,𝑚𝑎𝑥(𝑚𝑠−1)) and 

the upper limit of time (𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤,𝑚𝑎𝑥  (sec)) depend on the 

minor street corridor. The initial jerk (𝐽𝑜−𝑜𝑢𝑡𝑓𝑙𝑜𝑤  (𝑚𝑠−3)) at 

the beginning of the lest-turn is confined within the boundary 
of 1.5𝑚𝑠−3 [57]. The boundary values for the slope of jerk 
(𝒿𝑜𝑢𝑡𝑓𝑙𝑜𝑤) are derived from [13].  𝑎𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤 (𝑚𝑠−2) is the 

acceleration of CAV after entering the minor street, which is 0. 
Once the optimization is done, the distance required to initiate 
CAV deceleration to reach the intersection stop line 
(𝑑𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤) can be estimated with the following (17), where 𝑑𝑜 is zero. 𝑑𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤 = 𝑑𝑜 + 𝑣0𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤 + 12 𝑎𝑜𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤2 +

16 𝐽0𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤3 + 124 𝒿𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤4.  (17) 

The point from which the CAV needs to slow down is shown 
as ‘Initial Point of Deceleration’ in Fig. 6(a). The distance 
between this initial point of deceleration and the intersection 
stop line is 𝑑𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤 . To reach the initial point of 

deceleration, the CAV adjusts its speed to reach the point soon. 
The desired speed (𝑣𝑑𝑒𝑠) to reach the slow down point can be 
calculated simply by dividing the current distance from the 
CAV to the initial point of deceleration with the available time. 
However, 𝑣𝑚𝑎𝑥 is calculated to create a trapezoidal shape so 
that the CAV can smoothly increase its speed and slow down, 
as shown in Fig. 6(c). The CAV chooses the appropriate gap 
which it can utilize so that the speed to reach the initial point of 
deceleration, 𝑣𝑚𝑎𝑥 does not exceed the speed threshold (i.e., 
speed limit + 2.24 ms-1 (5 mph)).  

IV. BASE LEFT-TURNING AV OPERATION  

Traditionally, the AV does not have any communication 
capabilities and it does not have to consider the following 
vehicle’s intent (to yield or not yield) to make a left turn at the 
intersection. The AV uses the front camera to detect the 
opposite approaching vehicle, and based on the distance 
between the AV and the opposing vehicles, the AV calculates 
the gap and evaluates if the gap is acceptable. In a study 
conducted in California, the authors studied the left-turn gap 
acceptance value from 1573 observations [58]. For human 
drivers, the authors found that the 15%, 50%, and 80% of the 
accepted gap lengths were 4.1, 6, and 8.6 seconds, respectively. 
For this study, after trial-and-error with the simulated scenario, 
we have found 5 seconds is the accepted gap for the AV left-
turn maneuver. For gaps less than 5 seconds, a collision occurs 
between AVs and the opposite through non-AVs. In this 
scenario, the following vehicle starts the journey after 8 seconds 
of the leader AV. In this study, two base AV operations are 
considered, one operating with the objective of travel time 
minimization, and the other following the speed limit of the 
road without having any performing any travel time 
optimization.  

A. Base AV Operation #1 without travel time minimization 

In this method, the AV does not perform any optimization, 
rather it strictly follows the posted speed limit of the corridor 
while approaching the signalized intersection. After entering 
the corridor, the AV speeds up to the posted speed limit, if there 
is no obstacle at front. AVs use in-vehicle sensors to detect 
objects in the surrounding environment while approaching the 
intersection and to find a gap in the opposite through vehicle 
stream while making a left-turn.   

B. Base AV Operation #2 with travel time minimization 

We have adopted the AV operation developed by Fayazi and 
Vahidi (2018), where the AV travel time for a signalized 
corridor is optimized in a mixed traffic environment [59]. We 
have modified the AV operation formulation as our study is 
specifically for a left-turning AV. Our study assumes that AVs 
will strictly follow the posted speed limit while travel time is 
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optimized. To clear the intersection area while making the left-
turn, AVs solely rely on their sensors.   

As shown in Fig. 7, a stopping distance (𝑑𝑠𝑡𝑜𝑝) is required by 

the AVs approaching the intersection to stop the vehicle if any 
conflicting vehicle is present at the intersection. It is calculated 
using (18), where 𝑡𝑟 is the reaction time of AV (i.e., 0.5 second), 𝑣𝑚𝑎𝑥  (𝑚𝑠−1) is the maximum posted speed to be followed by 
the AV and 𝑎𝑑𝑒𝑐  is the deceleration of AV (i.e., -1.5𝑚𝑠−2).  𝑑𝑠𝑡𝑜𝑝 = 𝑡𝑟𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑎𝑥22𝑎𝑑𝑒𝑐. (18) 

While at the intersection, the AV may or may not need to stop 
at the intersection stop bar based on the left-turning gap 
availability (shown with speed profile a, and b in Fig. 7). 
However, the speed of AV can be influenced by the front 
vehicles in the same direction (shown with speed profile c in 
Fig. 7), and AV will need to apply emergency brake to stop and 
accelerate to achieve the recommended speed.  

The travel time optimization formulation, as discussed in  [59] 
reduces the travel time required to reach the initial point of 𝑑𝑠𝑡𝑜𝑝, which is 𝑇𝑛 (sec). At a certain timestamp 𝑇𝑂, when the 

AV has just entered the corridor, the following optimization 
initiates. 𝑑𝑖𝑛 is the distance between the AV’s initial position 
(where the optimization occurs) to the initial location of 𝑑𝑠𝑡𝑜𝑝. ∆𝑇𝑡𝑎𝑟𝑔𝑒𝑡  (sec) is the time required by the AV to cross the 

distance  𝑑𝑖𝑛 which is equal to 𝑇𝑛 − 𝑇0. 
Optimization objective for AV: 𝑚𝑖𝑛  ∆𝑇𝑡𝑎𝑟𝑔𝑒𝑡.                 (19) 

 
Subject to,  𝑇𝑛 ≥ 𝑇0 + ∆𝑇𝑡𝑎𝑟𝑔𝑒𝑡 , ≥ 𝑇0 + ∆𝑇1 + ∆𝑇2, ∆𝑇2 ≥ 0, ∆𝑇1 = 𝑣𝑚𝑎𝑥−𝑣𝑖𝑛𝑎𝑖𝑛 , ∆𝑇2 = 𝑑𝑖𝑛𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑎𝑥2 −𝑣𝑖𝑛22𝑎𝑖𝑛𝑣𝑚𝑎𝑥,  𝑣𝑖𝑛−𝑚𝑖𝑛 < 𝑣𝑖𝑛 < 𝑣𝑖𝑛−𝑚𝑎𝑥 , 

0.5 < 𝑎𝑖𝑛  < 1.5, 
0  < 𝑇𝑛 < 𝑇𝑚𝑎𝑥 . 
 

Decision variables, 𝑇𝑠𝑡𝑜𝑝 , 𝑣𝑖𝑛, 𝑎𝑖𝑛. 
Here 𝑣𝑖𝑛 (𝑚𝑠−1) and 𝑎𝑖𝑛 (𝑚𝑠−2) are the initial speed and 

acceleration to be followed by AV. The boundary values of 
initial speed (𝑣𝑖𝑛) and the upper limit of time (𝑇𝑚𝑎𝑥) depend on 
the corridor. 𝑎𝑖𝑛 is confined to ensure the acceleration is within 
a comfortable range. Once the optimization is solved, the AV 
proceeds forward with 𝑣𝑖 (𝑚𝑠−1) and achieve 𝑣𝑚𝑎𝑥  (𝑚𝑠−1) by ∆𝑇1 (sec) time interval, and maintains  𝑣𝑚𝑎𝑥 for the ∆𝑇2 (sec) 
time interval. ∆𝑇𝑡𝑎𝑟𝑔𝑒𝑡 is the summation of ∆𝑇1 and ∆𝑇2. After 
reaching the intersection, the AV relies on the in-vehicle 
sensors to make the left turn. In this operation, AVs do not have 
any wireless connectivity with the outside world. 

V. CASE STUDY 

We have evaluated the situation-aware left-turning module 
for CAVs using a case study within a simulated environment. 
The following subsections discuss the case study area, base 
scenario, and situation-aware CAV module.  

A. Study Area  

A case study is conducted with a simulated intersection from 
Perimeter Road, Clemson to evaluate the performance of the 
situation-aware CAV controller module. To simulate the non-
CAVs of the mixed traffic stream, we have used Simulation of 
Urban Mobility (SUMO) software, while to simulate CAVs 
(including in-vehicle sensors), the following aggressive 
vehicle, and communication infrastructure, we have used a 
robot simulator, Webots [60]. The simulation parameters are 
listed in Table I. The aggressive human driver is simulated in a 
way that it will follow the posted speed limit, and will not 
decelerate properly following the leading CAV. The wireless 
communication range is considered to be 300 m [61]. It will 
apply hard brake only when it is very close to the leading CAV, 
while the CAV is waiting to make a left turn at the intersection. 
The major corridor of this intersection has two lanes, while the 
minor corridor has one lane. We have evaluated the simulated 
network with multiple scenarios while varying the opposite 
direction traffic. The traffic signal phase for the shared lane is 
considered to be permissive green, meaning left-turning 
vehicles need to wait for the appropriate gaps in the opposite 
through traffic stream. In this experiment, we have restricted 
the lane-changing capability of the following vehicle. This 
scenario simply means that due to the presence of heavy traffic 
in the same direction, the following aggressive vehicle cannot 
make any lane change. The author has considered 600, 800, and 
1000 vehicle per hour per lane (vphpln) opposite through 
traffic. For the non-CAVs, the speed distribution is set up in 
such a way so that 95% of the vehicles drive within 70%-110% 
of the speed limit. The speed limit of the corridor is 13.4 ms-1 
(30 mph). The comparison of the base scenario and situation-
aware CAV is conducted based on 30 simulation runs for each 
scenario with different approaching through traffic volume 
from the opposite direction. 

B. Base Scenario with Autonomous Vehicle 

In both AV scenarios (operating without and with travel time 

 
Fig. 7. Base #2 AV operation with minimized travel time 
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minimization), the following vehicle starts the journey after 8 
seconds of the leader AV. For our case study, the boundary 
values of speed, 𝑣𝑖𝑛−𝑚𝑖𝑛 and 𝑣𝑖𝑛−𝑚𝑎𝑥  in the base #2 AV 
operation (with travel time minimization), are considered to be 
11.5 and 12.5 ms-1, respectively. The upper limit of time (𝑇𝑚𝑎𝑥) 
is considered to be 60s. The maximum posted speed to be 
followed by the AV (𝑣𝑚𝑎𝑥) is 30 mph. 

 

C. Situation-aware CAV  

The goal of the situation-aware CAV controller module is to 
clear the path from the shared lane for an aggressive through 
vehicle, so that the aggressive driver does not need to apply a 
hard brake. If no safe gap is available, the CAV will try to clear 
the path of the aggressive following vehicle by making a left-
turn as soon as possible. We have considered the maximum 
available time to reach the intersection stop line 
(𝑇𝑚𝑖𝑛−𝑖𝑛𝑓𝑙𝑜𝑤,𝑚𝑎𝑥) as 60 seconds for this analysis, and the 

maximum and minimum boundary values of the target speed 
(after entering the side street) to be achieved by the CAVs 
(𝑣𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤,𝑚𝑖𝑛 and 𝑣𝑇𝑚𝑖𝑛−𝑜𝑢𝑡𝑓𝑙𝑜𝑤,𝑚𝑎𝑥) as 6 𝑚𝑠−1 and  

7𝑚𝑠−1, respectively, based on the minor street speed limit from 
the study area. In this research, we have used the acceleration 
of the following vehicle and time headway between the CAV 
and following vehicle to identify the aggressiveness or non-
aggressiveness of the following vehicle. The CAV uses a back 
view camera to capture data related to the following vehicles, 

using (1), to (4). The range of cameras currently used in AVs 
can be up to 250 meters [62]. In this research, we have 
considered the range to be 200 meters. As the in-vehicle camera 
sensor is used to capture in real-time the following vehicle’s 
movement, there is no delay in data collection. Also, the 
computational delay is negligible as the CAV will detect an 
aggressive vehicle which is 200 meters in the upstream 
location, leaving CAV with sufficient time to react. Fig. 8 
shows the rear camera window of a situation-aware CAV while 
tracking the following vehicle. Similar to the base scenario, 
here the following vehicle starts the journey after 8 seconds of 
the leader CAV. The author has used MIDACO solver to solve 
the optimization function in real-time [63]. 

The arrival time of the vehicles approaching from the opposite 
through needs to be estimated. Here, one assumption is that a 
video camera will be installed at the intersection, and it will be 
used to estimate arrival times of the opposite through vehicles. 
To identify the start and end of the conflict points in the 
opposing through traffic stream, σ and t values are considered 
to be 0.6 meter (2 ft.) and 1.2 meter (4 ft.) [64]. These small 
distance thresholds were considered as they provide more gaps 
for a CAV’s left-turning maneuver that would avoid rear-end 
crash likelihood with a following aggressive driver. The 
roadside units, installed at the intersection, will share the 
camera captured data with the CAV using the V2I 
communication. The intersection video camera will use V2I 
communication only to share the information about the 
approaching through vehicle stream with the CAV. In a 
previous study, the authors implemented a real-world TCPS 
application for pedestrian movement detection using a video 
camera-enabled connected roadside unit [65]. The same 
experimental setup can be used to detect gaps between 
approaching vehicles on the opposing through lanes. Similar 
data can be captured through V2V communication if all of the 
approaching vehicles at the intersection are connected vehicles. 
After reaching the intersection, a CAV utilizes data from the 
intersection camera/RSU about the location of the approaching 
vehicles from the opposite through direction.  

TABLE I 
CASE STUDY SIMULATION PARAMETERS  

Simulation Parameters VALUES 

Opposite through traffic 
(SUMO) 

600, 800 and 1000 vehicle 
per hour per lane 

Speed distribution of 
opposite through vehicle 
(SUMO) 

95% of the vehicles drive 
within 70%-110% of the 
speed limit 

Major road speed limit 13.4 ms-1 (30 mph) 

Minor road speed limit 7 ms-1 (15 mph) 

Major road length  337m (0.2 mile) 

Intersection roadside 
unit (Webots [60]) 

emitter radio node, range 
300m (0.19 mile) [61] 

CAV model (Webots 
[60]) 

BMWX5 Robot  

CAV sensors (Webots 
[60]) 

 Back camera node (with 
recognition mode on, max 
range 200m) [62] 

 Distance sensor node 
(generic) 

 GPS node 
 Gyro node 
 Receiver radio node 

Base AV sensors 
(Webots [60]) 

 Front camera node (with 
recognition mode on, max 
range 200m) [62] 

 Distance sensor node 
(generic) 

 GPS node 
 Gyro node 

 

 
Fig. 8. Situation-aware CAV tracking following vehicle 
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VI. ANALYSIS AND FINDINGS 

The following subsections discuss the findings for both leader 
CAV and the following vehicle. 

A. Real-time computational performance of situation-aware 
CAVs 

While operating in a mixed traffic condition, the situation-
aware CAV needs to perform specific computations in real-
time, which include estimating the following aggressive 
vehicle’s speed, and optimizing the inflow and outflow speed 
profiles. We estimated the mean computation time for 
estimating the following aggressive vehicle’s speed, and 
optimizing the inflow and outflow speed profiles to be 0.04, 
47.3, and 34.2 milliseconds, respectively. In this study, the 
computation time is estimated using an Intel Core i7-7700 CPU 
processor with 16 GB RAM. 

B. Abrupt Braking of Aggressive Following Vehicle  

In this study, the abrupt braking of the aggressive driver is 
characterized by a sudden reduction of speed. We have 
quantified the number of abrupt braking event reduction by the 
situation-aware CAVs. As shown in Fig. 9, among the 30 cases, 
the vehicle following the situation-aware CAV faces 16, 21, and 
19 abrupt braking events for 600, 800, and 1000 vphpln 

opposing through traffic, respectively. None of the base 
scenarios with an AV without situation-awareness (i.e., with 
and without travel time optimization) reduces the abrupt 
braking events in the total 30 simulation runs. The situation-
aware CAV controller reduces 47%, 30%, and 37% of the 
abrupt braking of the following vehicle for the 600, 800, and 
1000 vphpln opposing  through traffic, respectively, compared 
to both base scenarios with an  AV without situation-awareness 
(i.e., with and without travel time optimization).  

C. Travel Time for CAV and Following Vehicle 

 We have estimated the travel time for the subject vehicle 
from the start point of the  corridor from which the vehicle starts 

to move to the intersection to the start point of the target 
corridor after taking the left turn. The mean values shown in 
box plots in Fig. 10 (a) signifies that the Base #2 AV operation 
with travel time minimization objective has a lower travel time 
compared to the scenario without any optimization (i.e., Base 
#1). However, compared to both Base #1 and #2 AV operations, 
the situation-aware CAV controller module decreases the travel 
time for the vehicle itself for each scenario. Fig. 10 (b) shows 
the percent reduction of average travel time by the situation-
aware CAV compared to both base AV scenarios (with and 
without travel time minimization). Compared to the base #2 AV 
operation (with travel time minimization), the situation-aware 
CAV module offers average travel time reductions of 51%, 
47%, and 57%, for the 600, 800, and 1000 vphpln scenarios, 
respectively. 

Similar results are derived by observing the following vehicle, 
as shown in Fig. 11 (a) and Fig. 11 (b). Examining the mean 
values of box plots in Fig. 11 (a), Base #2 AV operation with 
travel time minimization objective reduces the travel time of the 
following vehicle compared to the scenario without any 
optimization (i.e., Base #1). However, the following aggressive 
vehicle’s travel time is further reduced by the situation-aware 
CAV controller module for each scenario with different 

opposite through traffic volumes. In the situation-aware CAV 
scenario, the average travel time savings for the following 
vehicle, compared to the base #2 AV operation (with travel time 
minimization), are 57%, 51%, and 61% for the 600, 800, and 
1000 vphpln opposite through vehicle stream, respectively.  

D. Aggressive Following Vehicle Progression 

One of the purposes of the situation-aware CAV controller 
module is to clear the path for the following aggressive vehicle 
driver so that the following vehicle does not need to wait for a 
long time. The progression profile (i.e., vehicle location with 
respect to time) of the aggressive vehicle, following a CAV, 
provides a clear picture of the impact of the situation-aware 

 
Fig. 9. Abrupt braking events caused by situation-aware CAV 
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CAV controller module. Fig. 12 shows the progression of the 
vehicle following an AV/CAV in base #1 AV, base #2 AV, and 

situation-aware CAV scenario with time. The study corridor 
length is 337m, and the horizontal line after 300m in Fig. 12 
means that the vehicle following an AV/CAV is stopped close 
to the intersection because of the front AV/CAV. The length of 
the horizontal lines is proportional to the waiting time of the 
vehicle following an AV/CAV. As shown with the blue dotted 

lines in Fig. 12, the waiting time of the following vehicle is the 
lowest while the aggressive human driver is operating behind a 

situation-aware CAVs (regardless of the opposing through 
traffic volume) compared to the vehicle following an AV (base 
#1 and #2 AV). It is evident from the progressions that the V2I 
communication enabled situation-aware CAV helps the 
aggressive vehicle following a CAV to quickly progress 
through the intersection compared to the base scenario with AV 

 

(a) Travel time variations of the leader AV/CAV 

 
(b) Travel time saving of the CAV 

Fig. 10. Travel time findings for the leader CAV 
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without V2I communication and situational awareness. 

VII. CONCLUSIONS 

The presence of aggressive human drivers in a mixed traffic 
stream makes the operation of CAVs challenging, as aggressive 
drivers tend to follow the leader vehicle very closely. Any 

sudden movement change by a leader CAV has the potential to 
cause abrupt behavior by the following vehicle, which may 
result in road rage and/or a rear-end crash. Also, human drivers 
often could take unethical advantages of the defensive driving 
behavior of AVs. If CAVs can act based on surrounding 
situations, they can mimic human behavior more closely, which 

 

 
(a) Travel time variations of the vehicle following an AV\CAV 

 
(b) Travel time saving of the vehicle following an AV\CAV 

Fig. 11. Travel time findings of the vehicle following an AV\CAV 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

16 

will reduce the confusion among the surrounding human drivers 
about any future actions of CAVs. In this study, the situation-
aware CAV uses its own rear camera sensor to identify the 
following vehicle’s intent. Once the CAV determines that the 
following vehicle is aggressive, it determines the appropriate 

gap in the opposite through traffic stream, optimizes the speed 
profile, and increases its speed to reach the initial point of 
deceleration to initiate the left-turn. If a safe gap is not available 
when the CAV reaches the approach intersection stop line, the 
CAV evaluates data from the roadside units about available 
gaps on the opposing through lanes and prepares to make a left-
turn immediately when the required gap is available. The 
overall decision-making module helps to clear the intersection 
as soon as possible to reduce the travel time of the following 
aggressive vehicle. 

Based on the analysis conducted in this research, we have 
found that the situation-aware CAV improves the operational 
condition compared to the base scenario with only AV (without 
any V2I communication) for different flow rates in the opposite 
through vehicle stream. The situation-aware CAV controller 
module reduces the number of abrupt braking by 47%, 30%, 
and 37% for opposing through traffic stream with 600, 800, and 
1000 vphpln, respectively, compared to the base scenario 
without situational awareness of AVs. While assessing the 
travel time reduction, the situation-aware CAV scenario 
reduces travel time for a CAV, compared to the base scenario 
with AV (operating with travel time optimization), as much as 
51%, 47%, and 57% for the 600, 800, and 1000 vphpln 
opposing through vehicles, respectively. Similar improvements 
are found for the following vehicles with 57%, 51%, and 61% 
travel time savings for the 600, 800, and 1000 vphpln opposing 
through vehicles, respectively. 

The desired benefit may not be achieved if CAVs cannot be 
proactive to reduce potential conflicts due to responding to an 
aggressive following non-CAV. With an increasing penetration 
level of CAVs, a cooperative movement can be enabled with 
CAVs in the opposing traffic stream to help a left-turning CAV 
find a gap if a following aggressive vehicle is present. Also, the 
human driver's aggressiveness level can vary from person to 
person. Developing the situation-aware CAV module for a wide 
range of driver aggressiveness can help CAV take actions based 
on the characteristics of the specific following driver. A 
situation-aware CAV operation will be influenced by external 
factors (e.g., congested traffic condition, extreme weather, etc.) 
where front vehicles may need to do sudden lane change. 
Having the capability of dynamic speed profile optimization 
can help the CAV operation in such scenarios, which can be 
studied in the future. Future studies should also be conducted to 
evaluate the impacts of wireless communication options on the 
situation-aware CAV controller operation. Finally, a real-world 
evaluation of the situation-aware CAV controller module 
presented in this paper should be conducted to validate the 
operational benefits in real-life. 
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