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Situation Aware Rescue Robots
A. Carbone, A. Finzi, A. Orlandini, F.Pirri, G. Ugazio,

DIS, University of Roma La Sapienza-DIA University of Roma-3

Abstract— We present a model-based approach to the execu-
tion and control of an autonomous system, based on flexible
behaviours, and supporting a novel view of human-robot in-
teraction. The well-known RoboCup Rescue competition is also
discussed and presented as a special case for testing human-robot
interaction architectures. The activities of the system, according
to the components performing them, are modeled as flexible
behaviours and are executed according to different modalities,
such as fully operated, supervised, fully autonomous. We finally
discuss the implementation and tests done both during the
contests and in the laboratory, to show performances according
to the different modalities.

I. I NTRODUCTION

Urban search and rescue (USAR) deals with response
capabilities for facing urban emergencies, and it involves the
location and rescue of people trapped because of a structural
collapse. Starting in 2000, the National Institute of Standard
Technology (NIST), together with the Japan National Special
Project for Earthquake Disaster Mitigation in Urban Areas
([1], [2], [3], [4]), has initiated the USAR robot competitions.
NIST, in particular, features future standards of robotics infras-
tructures, pioneering robotics participation to rescue missions.
RoboCup Rescue contests are a test-bed of the technology
development of NIST project, and are becoming a central
international event for rescue robots, and a real challenge
for the robotics community. Rescue robots uphold human
operators exploring dangerous and hazardous environments
and searching for survivors. A crucial aspect of rescue environ-
ments, discussed in [5] and [6] concerns the operator situation
awareness and human-robot interaction. In [6] the difficulties
in forming a mental model of the ’robot eye’ are endorsed,
pointing out the role of the team. Differently from real tests,
like the one in Miami (see [5]), during rescue competitions
the operator is forced to be alone while coordinating the
robot activities, since any additional team member supporting
the operator would penalize the mission. The operator can
follow the robot activities only through the robot perception
of the environment, and its internal states. In this sense the
overall control framework has to capture the operator attention
towards “what is important”, so as to make the correct choices:
following a path, enter a covert way, turn around an unvisited
corner, check whether a visible victim is really reachable,
according to some specific knowledge acquired during the
exploration. In this setting, a fully manual control over a robot
rescue is not effective [7]: the operator attention has to be
focused over a wide range of activities, losing concentration
on the real rescue mission objective, i.e. locating victims.
Moreover, a significant level of training is needed to tele-
operate a rescue rover. On the other hand, fully autonomous

Fig. 1. The mobile robot DORO, in a yellow arena built in the ALCOR
Laboratory.

control systems are not feasible in a rescue domain where
too many capabilities are needed. Therefore, the integration
of autonomous and teleoperated activities is a central issue
in rescue scenarios and has been widely investigated [8], [9],
[10], [11], [9].

In this work we describe a model-based approach to flexible
behaviours (i.e. behaviours spanning over flexible elapse of
time) and describe the main functionalities of a rescue robot
system1, together with their interleaving and concurrent pro-
cesses. We show how this model supports human-robot inter-
action for the execution and control of the diverse activities
needed during a complex competition such as the rescue one.
The advantage and novelty of this approach can be appreciated
considering the HRI awareness discussed in [10]:
• robot-human interaction: the system is “self-aware” about

the current situation, at different levels of abstraction, complex
and not nominal interactions among activities can be detected
and displayed to the operator;
• human-robot interaction: the operator can take advantage

of basic functionalities like mapping, localization, learning
vantage points for good observation, victim detection, and
victim localization; these functionalities purposely draw her
attention toward the current state of exploration, while she
interacts with a mixed initiative reactive planner [12].
Finally, the humans’ overall mission can take advantage of
the model, that keeps track of the robot/operator execution
history, goals, and subgoals. Indeed, the proposed control
system provides the operator with a better perception of the
mission status.

II. T HE RESCUESCENARIO

NIST has developed physical test scenarios for RoboCup
Rescue competitions. There are three NIST arenas, denoted

1Doro is the third award winner in Lisbon contest (2004)



by yellow, orange, and red of varying degrees of difficulty.
Yellow arena represents an indoor flat environment with minor
structural damage (e.g. overturned furniture), the orange arena
is multilevel and have more rubble (e.g. bricks), the red one
represents a very damaged environment, unstructured: multi-
level, large holes, rubber tubing etc. The arenas are accessible
only by mobile robots controlled by one or more operators
from a separated place. The main task is to locate as many
victims as possible in the whole arena. Victims are dummies
or thermal/audio identifications. In order to play the game the
operator-robot has to coordinate several activities: explore and
map the environment, avoiding obstacles (bumping is severely
penalized) localize itself, search for victims, correctly locate
them on the map, identify them through a numbered tag,
and finally describe her status and conditions. For each game
session there is a time limit of 20 minutes, to simulate the time
pressure in a real rescue environment. In this contest human-
robot interaction has a direct impact on the effectiveness of
the rescue team performance.

III. C ONTROL ARCHITECTURE

Several activities need to be coordinated and controlled
during a mission, and the interface is one of them. A model of
execution is thus a formal framework allowing for a consistent
description of the correct timing of any kind of behaviour
the system has to perform to successfully conclude a mission.
However as the domain is uncertain, the result of any action
can be unexpected, and the time and resources needed cannot
be rigidly scheduled, it is necessary to account for flexible
behaviours, which means managing dynamic change of time
and resource allocation. In this section we describe the model
underlying the flexible behaviours approach, mentioning the
coordination and control of processes that are described in
more details in the next sections, to give implementation
concreteness to our formal framework.

A model-based executive control system [13], [14] super-
vises and integrates both the robot modules activities and
the operator interventions. Following this approach, the main
robot and operator processes (e.g. mapping, laser scanning,
navigation etc.) are explicitly represented by a declarative
temporal model (see Section IV) which permits a global
interpretation of the execution context. Given this model, a
reactive planner can monitor the system status and generate
the control on the fly continuously performing sense-plan-
act cycles. At each cycle the reactive planner is to: generate
the robot activities up to a planning horizon, and monitor
the consistency of the running activities (w.r.t. the declarative
model) managing failures. The short-range planning activity
can balance reactivity and goal-oriented behaviour: short-term
goals/tasks and external/internal events can be combined while
the reactive planner tries to solve conflicts. In this setting,
also the human operator can interact with the control system
influencing the planning activity in a mixed initiative manner
(analogously to [12]). Figure 2 illustrates the overall control
architecture designed for DORO.

The physical layer, composed by the robot and all the effec-
tors and sensors, is controlled by a set of functional modules.
These modules devise to thedecision daemonsinformations
that are processed in order to perform different tasks, e.g.
construct the map or calculate an exploration path. Thestate
managerand task dispatcherin the figure are designed to
manages the communication between the executive and the
other layers.
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Fig. 2. Control architecture

The state manager gets from each single daemon its current
status so that it is possible query the state manager about
the status of any daemons. The state manager updates its
information every 200 msec. The task dispatcher sends tasks
activation signals to the daemons (e.g.start map) upon
receiving requests from the planner. The overall computational
cycle works as follows: the planner gets the daemons status
querying the state manager. Once the state manager provides
the execution context, the planner is to produce a plan of
actions (planning phase about 0.5 sec.) and yields the first set
of commands to the task dispatcher. In the execution phase
(about 0.5 sec.), each daemons reads the signals and starts its
task modifying its state and using the functional modules data.
When the next cycle starts, the planner reads the updated status
through the state manager and checks whether the tasks were
correctly delivered. If the status is not updated as expected a
failure is detected, the current plan is aborted and a suitable
recovery procedure is called.

IV. M ODEL-BASED MONITORING

A model-based monitoring system is to enhance the sit-
uation awareness of the whole system. Flexible executive
control is provided by a reactive planning engine which is to
harmonize the operator activity (commands, tasks, etc.) with



the mission goals and the reactive activity of the functional
modules. The reactive planner was developed following an
high level programming approach, deploying the Temporal
Concurrent Golog [15]: temporally flexible plans are produced
by a Golog interpreter which completes partially specified
behaviours (Golog programs) selected from a plan library.

Since the execution state of the robot is continuously
compared with a declarative model of the system, all the main
parallel activities are integrated into a global view and subtle
resources and time constraints violations can be detected.
In this case the planner can also start or suggest recovery
procedures the operator can modify, neglect, or respect.

a) Declarative Model:The main processes and states of
DORO are explicitly represented by a declarative dynamic-
temporal model specified in the Temporal Concurrent Situation
Calculus [15]. The model represents cause-effect relationships
and temporal constraints among the activities: the system is
modeled as a set ofcomponentswhose state changes over time
(analogously to Constraints Based Interval Planning paradigm
[16]). Each component is a concurrent thread, describing its
history over time as a sequence of states and activities. For
example, in the rescue domain some components are:pant-
tilt , rangeFinder, slam, navigation, visualPerception, etc. Both
states and activities are represented by temporal intervals. Each
of these is associated with a set of processes, e.g.navigation
can be going at speeds or stop:Nav stop, Nv moving(s);
pan-tilt can either be idling in position~θ (pt idle(~θ)), moving
toward~θ (pt moving(~θ)), or scanning (pt scanning(~θ)). The
history of states for a component over a period of time is a
timeline (see Figure 3).

Fig. 3. Timeline evolution

Hard time constraints among the activities can be defined by
a temporal model using Allen-like temporal relations, e.g.:
Pt moving(~θ) precedesPt scanning(~θ), Pt scanning(~θ)
during Nv stop, etc..

b) Flexible behaviours:Each component will be asso-
ciated with a library of flexible Golog scripts representing
possible behaviours which are selected by the monitoring
system considering the execution context and the goals. For

example, given thePTU state variable, a possible behaviour
can be written as follows:

proc(plan Pt, π(t, π(t′, (∃x.Md map(x, t))?|
(∃x.Md search(x, t))? : wait location :

Ptscan : PtIdle : (time = t′ ∧ t− t′ ≤ d)?)),

wherewait location : Ptscan : PtIdle are three Golog
procedures defining the expected pant-tilt behaviours during
the search mode. The final test enforces a maximald time
duration for the whole procedure execution.

c) Reactive Planner/Interpreter:As illustrated in Section
III, for each execution cycle, once the status is updated (sens-
ing phase), the Golog interpreter (planning phase) is called to
extend the current control sequence up to the planning horizon.
When some task ends or fails, new tasks are selected from the
task library and compiled into flexible temporal plans filling
the timelines. Under nominal control, the robot’s activities are
scheduled according to a closed-loop similar to the LOVR
(Localize, Observe general surroundings, look specially for
Victims, Report) sequence in [6].

d) Failure detection and management:Any system mal-
functioning or bad behaviour can be detected by the reactive
planner when world inconsistencies have to be handled. After
an idle cycle a recovery task has to be selected and compiled
w.r.t the new execution status. Each component is associated
with a class of relevant failures and appropriate flexible (high-
level) recovery behaviours. For example, in the visual model,
if the scanning processes fails because of a timeout, in the
recovery task the pan-tilt unit must be reset taking into account
the constraints imposed by the current system status. This can
be defined by a very abstract Golog procedure, e.g.

proc(planToPtuInit,
π(t)[plan(t, 2) : (∃t1.P tu idle(t1))? ∧ t1 − t < 3]).

In this case, the Golog interpreter is to find a way to compile
this procedure getting the pan-tilt idle in less than two steps
and three seconds. The planner/Golog interpreter can fail itself,
that is, its plan generation task, in case of aplanner timeout.
Since the reactive planner is the engine of our control archi-
tecture, this failure is critical. We identified three classes of
recoveries depending on the priority level of the execution. If
the priority is high, a safe mode has to be immediately reached
by means of fast reactive procedures (e.g.goToStandBy).
In medium priority, some extra time for planning is obtained
by interleaving planning and execution: a greedy action is
executed so that the interpreter can use the next time-slot to
end its work. In the case of low priority, the failure is handled
by replanning: a new task is selected and compiled.

V. PROCESSES AND COMPONENTS

The goal of the rescue mission is victim finding, identifica-
tion and positioning. Identification means 1. Find the victim
and the associated numbered label; 2. possibly identify the
victim state and condition. The first task is relatively doable
autonomously, as it requires to suitably explore the arena to
find a victim either with the camera (the victim is visible) or
with sound (the victim can be heard) or infrared (detect heat),



Fig. 4. Interface with the path highlighted, in blue the whole path-history,
and in yellow the most recent path. An indication of the nearest unexplored
(NU) zone appears on the panel as an arrow pointing towards this direction
(see the dark red arrow on the map; the red ribbon indicates the UP).

find the label and identify, possibly with an OCR, the number,
and finally project the victim position on the map. As far as the
second task is involved, the system should report on whether
the victim is on surface, trapped, or entombed, and whether
her state is conscious or not, emitting sounds or silent, moving
or not, and also the type of mouvement: thrilling, waving etc..
Some of these tasks can be autonomously performed, but most
need an accurate robot-operator interaction for coordinating
sensor data interpretation. Actually, the second task is not
completely achievable autonomously, and definitely needs the
operator to look at the victim through the camera and verify
which parts are occluded (the head, the legs, the whole body
etc..). In this section we shall therefore describe only the
first component of victim identification, and the extent to
which it can be successfully achieved. Since the exploration
has to be achieved in a specified lapse of time, namely 20
minutes, given that the arena is about 40 square meters, with
several paths and choices, a good strategy is to solicit the
operator attention toward a given direction, leaving to her a
more accurate analysis, e.g. about the victim condition. Note
that identification is rather involved for light conditions (see
Figure 5, taken at the Lisbon rescue); in the last competition
(Lisbon 2004) covered areas, were mainly built in the yellow
and orange arenas. In this section we detail the components
and the processes controlled by the system, to support the
operator choices for victim identification.

A. Interactive exploration and nearest unexplored position

We conceive two maps theGlobal MapGM and theLocal
Map (LM), this last is obtained at each SLAM-cycle, via
sonar sensor fusion; the LM is incrementally integrated into
the GM, exploiting the well known Bayesian approach (see
[17]). Integration follows a correct alignment of the robot
with the map, suitably reviewing odometric errors. To make
the map worth for the operator, so that she can follow the
path pursued so far, and verify whether some region has not
yet been visited, we introduce two concepts the History Path
(HP) and the Exploration Path (EP), the first (see the blue
ribbon in Figure 4) illustrates the whole path threaded from
the very beginning, and the latter (look at the yellow ribbon)

highlights the last steps taken. A typical scenario where the
paths are useful is when it is necessary to draw conclusions
like “this area has already been visited”, “the victim currently
observed is inaccessible from this path, take a snapshot and
try to reach it from another way”, and so on.

e) End of Exploration Test:EP is also useful to deter-
mine the end of the exploration phase in the LOVR sequence:
we define anEnd of Exploration Testas a function of time
and the data cumulated fromt0 to tn (current time), where
t0 is the starting time of the current exploration phase. In this
way exploration might stop according to: i. time elapsed since
exploration start; ii. area explored during current exploration;
iii. exploration path length. Given thatA(tn) is the number
of cells (the area) explored at timetn during the current
exploration phase, the amount of work done at timetn is
definable as:W(tn) = α |EP (tn)|+ β A(tn) + γ tn, where
α, β and γ are normalization parameters. WhenW(tn) > τ
(τ is the learning rate) the exploration phase is over, EP is
collected in RP (and cleaned) and time is set tot0.

f) Nearest Unexplored Position:While W (t) < τ the
nearest unexploredregion is evaluated assigning a score to
each cell of the current GM, and then by an optimized version
of Value Iteration Algorithm[18], [19] the minimum cost path
(Unexplored Path or UP) toward the unexplored cell is found.
An indication of the nearest unexplored (NU) zone appears
on the panel as an arrow pointing towards this direction
(see Figure 4). Our optimized version of the Value Iteration
Algorithm is based on updating on-line cell values using yet-
updated neighbour values. So value propagation gently follows
a cell index cycle. To avoid counter-current value propagation
(when a cell value needs to be updated using cells that has to
be scanned) map cells are cycled from all eight planar wind
directions, and only a rectangular box, containing all modified
value and their neighbors, is updated each cycle.

g) View Point: WhenW (t) > τ , the exploration is over
and then the search looks for an optimal vantage point, i.e.
the spot to reach and the direction of sight. We will call
this position View Point (VP). The View Point is obtained
maximizing a functionalJ (s) defined over the map cell of the
last explored area (the map cells that has changed occupancy
value in last exploration phase):

J(s) =

4X
i=1

λiφi(s), V P = arg maxs J(s).

The above four components, w.r.t. theV P to be found, are:
1. Distance from the gravity center: theV P distance from
the center of gravity of the area explored so far, is to be
minimized (motivation: robot shouldn’t forget to analyze the
whole explored area).

2. Distances in a view path: theV P distance from each point
in the view path (i.e. the set ofV P found previously) is to
be maximal (motivation: robot shouldn’t lose time to watch
where it has yet watched).

3. Distance from the current position: theV P distance from
the current robot position is to be minimal (motivation: robot
shouldn’t spend so much energy and time to go to the VP).



Fig. 5. Victim recognition. Skin textures particles obtained by on-line re-
sampling for mixture models, are clusterized and a skin region is highlighted.
Picture from the Lisbon red arena

4. Quality: the area to whichV P belongs is to be free from
obstacles and with a wide visual angle (motivation: robot
shouldn’t place itself in a rough or hidden area).

The coefficientsλi can be supposed constant for this simple
analysis. One of our goals is to make them adaptive as a func-
tion of specific contextual properties, or learned. Maximization
is obtained by Hill Climbing, with random restart. Given the
VP, the robot primary objective is to reach it. So, while it has
not yet reached its goal, the View Point Path (VPP) is obtained
using Optimized Value Iteration. The black arrows in Figure 4
illustrate the View Point and the red ribbon indicates the View
Point Path. In both cases (View Point and Nearest Unexplored)
a partial goal, called Desired Position (DP), is computed (the
light red arrow in Figure 4) to drive the robot through the right
position.

B. Victim perception and positioning

The activity of the camera (and the microphones) are
controlled by the executor and it is launched when a seemingly
good position is found, according to the previously described
exploration strategy. The result of theperceptual process
(described in this and the next paragraphs) is published to the
PTU-positioning, which – in terms of the processes timing
and interaction – means that the Camera and Sound processes
must be concurrent and both must meet the PTU-process.

h) Skin classification: In this paragraph we briefly
overview the algorithm for skin recognition. We have chosen
to segment the image according to the presence of skin
features, and to represent skin-features in the RGB color
space, augmented with the gradient over the three channels.
The recognition process is based upon the construction of
a multivariate Gaussian mixture, using the well known EM
algorithm (off-line trained while missions are suspended) and
on a particular adaptation process that can cope with extreme
light conditions. To complete its training activity the robot
can visit the arenas before “earthquake”, so it can take several
shots of the victims. On the basis of the shots, pieces of
skin from the pictures are collected all together to form a

skin map, note that several skin maps can be built during
a whole competition. In general, by our experience mixing
the maps do not improve recognition performance. The skin
map is then used for building a multivariate Gaussian, using
the the well known iterative expectation maximization (EM)
algorithm [20], based on the implementation in Netlab [21].
Multivariate Gaussian mixture for modeling human skin has
been shown to give nice results (e.g. see [22]). Features
are modeled by a multivariate Gaussian mixture (GMM):

gskin(x) =
M∑

k=1

f(k)p(x|k). Herex ∈ R6 is the6-dimensional

feature, and thef(k), 0 ≤ f(k) ≤ 1, ∀k, are all mixing
coefficients. Depending on light conditions the mixture number
can substantially vary, therefore two steps have to be taken: 1.
Build a skin map for interiors, one for pseudo-exteriors etc.
2. Define an adaptation procedure, so that the same map can
be used. Since the two methods are not exclusive (the first is
rather boring because is not completely autonomous), we have
experienced both, build a skin map as soon as possible, and
rely on adaptation. Given the multivariate Gaussian mixture
built on the current map, the feature classification process
needs to be further separated into two steps, the first step
requires an on-line training to model the multivariate mixture
generating the current observationY = {y1, . . . ,yn}, y ∈
R6; here the number of components are decided according to
the number of peaks found in the image histogram, according
to a suitable threshold. In the second step those parameters are
chosen, from the on-line mixture, maximizing the expectation
to see some components of the known mixturegskin. The basic
idea is that if skin features are observed in the current image,
then some of the components in the previously learned model
of the skin, must be more likely, given the image. Namely,
let I be the GMM modeling the image, withH components,
and S the GMM modeling the skin (withM components),
then the log-likelihood of thek-th component ofS, givenI is∑

j logN (µk−µj ,Σj), whereµj andΣj , j = 1, ..,H, are the
mean and covariance of thej-th component ofI. Maximizing
the log-likelihood (i.e. minimizing the error):

L(Θi,Θj) = arg max
(i, j)

M∑
i=1

H∑
j=1

logN (µi − µj ,Σj)

We obtain the new set of parametersΘi and Θ′
j for the i-

th component ofS and the j-th component ofI. Taking
the components maximizing the log-likelihood up to a given
threshold (max− 2), the final classification is achieved using
Bayes decision rule, i.e.x ∈ Skin iff π(Skin|x, Θc) >
π(C|x,Θ′

j),∀j = 1, ...,H−c, hereSkin is the class modeled
by S, C is the class modeled byI, Θc are the parameters
chosen forS, andΘ′

j are the parameters of thej-th component
of I, and excluding those that have been selected as “similar”,
to build Θc. On-line classification is really needed when the
mission starts, and whenever there are drastic changes in
lighting condition, to induce adaptation. Therefore to make
features classification effective, unless the above mentioned
circumstances occur (which are devised comparing the image



histograms), then the parameters for classification are set to
those used in the previous step, i.e. for allθ ∈ Θ, θi,t = θi,t−1,
given that t0 is the first observation in the arena, after the
mission started. The results of this post-conditioned classifi-
cation, modeled by a multivariate Gaussian mixture, is quite
satisfying (see the results on a quite difficult lighting condition
as illustrated in Figure 5), but still needs improvements: on
image with a resolution of 72dpi and dimension320 × 240,
it takes 6.607 cpu time. False positives constitute the20%
of the total number of pixels classified, and false negatives,
i.e. the number of pixel that should have belonged toSkin
but where not classified is around45% of the total number
of image pixels, that would be classified as belonging to the
Skin class.

i) Sound Interface:The perceptual framework also incor-
porates sound source information, which is essential because
some victim is entombed or hidden in unreachable corners.
The two Sony far-field microphones are processed by the
Matlab functions designed for acquiring and recording sound,
trying to detect close signals emerging from background noise.

j) Positioning the victims on the map:According to
the described processes, as soon as a victim is found, her
position must be determined to incorporate it into the GM.
The available information concerns: the robot position and
orientation, the head position (pan and tilt angle) and range
finder measurements, and the robot height. If the recognized
victim head is not in the center of the map, a step of ”pointing”
is required to calculate the desired pan/tilt position.

VI. SUPERVISEDCONTROL AT WORK IN RESCUEARENAS

We implemented our architecture on our robotic platform
(DORO) and tested it in the yellow Rescue Arenas.

A. DORO platform

The hardware platform for DORO is a two wheeled differen-
tial drive Pioneer 3DX from ActivMedia with an on-board low
consuming laptop that hosts navigation, map building, reactive
planning routines, and the on-board sensors control and for
sound processing. An additional PC for remote control is also
used for image processing. The two PCs running Windows
XP are linked with a Ethernet wireless LAN (802.11a) to
enable remote control and monitoring of the mobile robot. Two
color cameras are mounted on top of the robot on a pant-tilt
head, images are acquired with a frame grabber through a fire-
wire IEEE1394. Two far-field microphones are located at the
front of the platform to detect victim’s sound. A laser range
finder DISTO pro, is mounted on the pan-tilt between the two
cameras. An inertial platform MT9 from XSense is positioned
at the geometric center of rotation and delivers high precision
acceleration and heading values that are used to enhance the
dead-reckoning.

The robot motion control (speed and heading) and sonar
readings are provided by a serial connection to the Pioneer
controller using the Aria API facilities. Video streaming and
single frames are acquired through the Image Acquisition

Toolbox from Matlab (TM). Inertial data and laser mea-
surements are acquired through dedicated C++ modules that
manage the low level serial connections.

B. Experiences in the Rescue Competition

We deployed our architecture (enabling only a subset of the
functionalities described above, depending on the context) at
the RoboCup Real Rescue 2004 competition. We performed
six missions: two preliminary rounds, two semi finals, and two
final contests. Following the analysis schema in [23] here we
discuss the following points:

k) Global Navigation: The mapping and localization
system was a very effective support for exploration. Except for
the first round (where we encountered a warm up problem),
for all the other missions we could explore and map more than
the80% of the arena’s environments (rooms, niches, ails etc.).

l) Local Navigation and obstacle encountered:We had
just one minor incident (obstacle encountered) during the
first round. In this context, we found the 2DOF pan-tilt unit
very effective for navigation in difficult environments (this is
observed also in [23]), since it allows a visual inspection of
the robot attitude w.r.t. the surrounding environment enhancing
the overall operator perception of the vehicle volume.

m) Vehicle State:During the rescue rounds, the planning
activity was reduced and used only to monitor the nominal
control execution. In the case of misalignments, the operator
was warned, but no recovery process was enabled. Even in this
minimal setting, the monitoring activity supported the operator
awareness of the vehicle executive status. E.g., a simple but
frequent problem signaled by the monitoring system was the
following: many times the user manually disabled the mapping
system while searching for victims, forgetting to restart it once
the victim was discovered.

n) Victim Identification:We found an average of2.3 vic-
tims for each round (where the number of victims detectable
by our sensors ranged over4−5 for each round). We deployed
visual analysis only during the first contest, and audio sensors
only during the finals. Using audio sensing, because of the
noisy environment, we encountered a false-positive victim
detection just in the last mission.

C. Experiences in our domestic arenas

We tested the control architecture and the interface effective-
ness in our domestic arenas comparing three possible settings:
i. fully teleoperated: navigation, slam, and vision disabled;
ii. supervisioned control: the monitoring system was enabled
and the operator could supervise the rover status and take the
control whenever this was needed (mixed initiative control);
iii. autonomous control. During the supervised control tests,
we considered also the percentage of time spent by the
operator in teleoperation mode (seeoperator in the table
below). We deployed these three settings on three kind of
arenas, considering increasing surface areas, namely,20 m2,
30 m2, 40 m2 (seesurface in the table below), associated
with increasingly complex topologies. For each test, there
were 4 victims to be discovered. We limited the exploration



time to 10 minutes. We performed10 tests for each of these
modalities. For each test class we considered: i. the percentage
of the arena surface explored; ii. the number of topological
environments (rooms, corridors, etc.) visited and inspected
w.r.t. the total number; iii. the overall number of obstacles
encountered (bumps); iv. the number of victims found; v. the
operator activity (percentage w.r.t. the mission duration). The
(average) results are summarized in the following table.

Fully Teleop SupervisedAutonomous
Surface (m2) 20 30 40 20 30 40 20 30 40

Explored (%) 85 78 82 85 82 79 49 80 75
Visited env. 5/6 7/9 7/9 6/6 8/9 7/9 3/6 7/9 6/9
Bumps (tot.) 11 7 9 3 2 2 2 1 2
Victims (x/4) 3.0 2.1 2.2 2.5 2.6 2.1 1.3 1.4 1.2
Operator (%) 100100 100 10 15 15 0 0 0

Concerningglobal exploration, the performance of the super-
vised setting are quite stable while the autonomous system
performs poorly in small arenas because narrow environments
challenge the navigation system which is to find how to escape
from them. In greater and more complex arenas the GM
and NU tools start to be effective while the fully teleoper-
ated behaviour degrades: the operator gets disoriented and
often happens that already visited locations and victims are
considered as new one, instead, we never experienced this
in the supervised and autonomous modes. The effectiveness
of the control system forlocal navigationand vehicle state
awareness can be read on thebumpsrow; indeed the bumps
are significantly reduced enabling the monitoring system. In
particular, we experienced the recovery procedures effective-
ness in warning the operator about the vehicle attitude. E.g.
a typical source of bumping in teleoperation is the following:
the visual scanning process is interrupted (timeout) and the
operator decides to go in one direction forgetting the pan-
tilt in a non-idle position. Enabling the monitor, a recovery
procedure interacts with the operator suggesting to reset the
pan-tilt position. The victim identification effectiveness can
be assessed considering the victims found in the autonomous
mode, considering that visual processing was deployed without
any supervision, these results seem quite good (we experienced
some rare false-positive).

VII. C ONCLUSION

We presented a model-based approach to the execution and
control of an rescue robotic system. We also showed how
this model supports human-robot interaction during the rescue
competition. In fact, the system improves the operator situation
awareness providing a better perception of the mission status.

We briefly detailed some system’s components in order to
highlight the support given to the rescue operator and we
reported some positive experimental results obtained during
the last RoboCup rescue competition missions and missions
performed in our domestic arena.
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