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Abstract—Situation awareness may be inferred from user context such as5

body posture transition and location data. Smartphones and smart homes6

incorporate sensors that can record this information without significant7

inconvenience to the user. Algorithms were developed to classify activity8

postures to infer current situations; and to measure user’s physical location,9

in order to provide context that assists such interpretation. Location was10

detected using a subarea-mapping algorithm; activity classification was11

performed using a hierarchical algorithm with backward reasoning; and12

falls were detected using fused multiple contexts (current posture, posture13

transition, location, and heart rate) based on two models: “certain fall” and14

“possible fall.” The approaches were evaluated on nine volunteers using a15

smartphone, which provided accelerometer and orientation data, and a16

radio frequency identification network deployed at an indoor environment.17

Experimental results illustrated falls detection sensitivity of 94.7% and18

specificity of 85.7%. By providing appropriate context the robustness of19

situation recognition algorithms can be enhanced.20

Index Terms—Assisted living, body sensor networks (BSNs), context21

awareness, wearable computers.22

I. INTRODUCTION23

Many studies have utilized intelligent environments to assist elderly24

or vulnerable people to live independently at home and to potentially25

maintain their quality of life. One goal of smart homes is to moni-26

tor lifestyle (such as activities and locations) of the occupant in order27

to promote autonomy and independent living and to increase feelings28

of security and safety. Sensing technology of various forms has been29

employed to track the activities and locations within the home envi-30

ronment. Derived information can be used as input to control domestic31

devices such as lighting, heater, television, and cooker based on a user’s32

current activity and location [1]. Radio frequency (RF) identification33

(RFID), body sensor networks (BSNs), and wireless sensor networks34

(WSNs) are complementary technologies used in this research envi-35

ronment. RFID can identify and track the location of tagged occupants,36

BSNs can record movement, orientation, and biosignals, and WSNs37

can discover and record attributes within and about the environment38
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(e.g., temperature, status of doors and windows). All components have 39

the capacity to communicate wirelessly and be connected as an “Inter- 40

net of Things,” providing an associated “big data” resource, usually of 41

unstructured data yielding a potential interpretation and understanding 42

problem for the researcher. If this problem can be successfully ad- 43

dressed, then knowledge regarding identity, activity, location, and en- 44

vironmental conditions can be derived by integrating data from RFID 45

with BSNs and WSNs. This vision drives an area of significant re- 46

search effort, which may be classified as “situation awareness” leading 47

to situation recognition. The research poses challenges for communi- 48

cations infrastructure, connected health monitoring, and acceptance 49

of technology by the user; much of which relies upon computing 50

advances. 51

The World Health Organization estimated that 424 000 fatal falls 52

occur each year, making falls a leading cause of accidental deaths. 53

Elderly people over 70 years have the highest risk of fatal falls, more 54

than 32% of older persons have experienced a fall at least once a year 55

with 24% encountering serious injuries [2], [3]. Approximately 3% of 56

people who experience a fall remain on the ground or floor for more than 57

20 min prior to receiving assistance [4]. A serious fall decreases an older 58

person’s self-confidence and motivation for independence and even 59

for remaining in his/her own home. Therefore, a situation awareness 60

system can assist frail people living at home and potentially sustain a 61

good quality of life for longer. 62

The aim of this work is to combine smartphone and smart home 63

technology to provide context on posture transition and location. This 64

research developed a monitoring system to identify users’ activities, 65

locations, and hence to infer users’ current situations; should an abnor- 66

mal situation be classified then an alert may be delivered to the user or 67

to a guardian, if necessary. In particular, we attempt to detect falls and 68

posture transitions using BSNs and an RFID-enabled smart home. 69

The paper is organized as follows. Related work is dis- 70

cussed in Section II, and methodologies for the system configu- 71

ration and current situation detection algorithms are described in 72

Section III. The experiments undertaken and results obtained are pre- 73

sented in Section IV. Section V focuses on discussion, limitations of 74

the approach, and future work. 75

II. RELATED WORK 76

A. Detection of Falls 77

Falls may be detected by using devices such as environment- 78

embedded sensors and wearable sensors. Wireless optical cameras 79

can be embedded in a tracking environment [5]; however, they can 80

only monitor fixed places and there can be privacy protection issues 81

to resolve for smart home occupants [6]. Depth-based sensors such 82

as Kinect [7] do not reproduce images and can overcome acceptance 83

issues. Such devices are feasible and maybe useful at high-risk 84
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locations for falls. Wearable sensors comprising gyroscopes, tilt85

sensors, and accelerometers allow users to be monitored within and86

outside of their home environment. Such sensors can be integrated87

into existing community-based alarm and emergency systems [8].88

For example, the MCT-241MD PERS [9] is a commercial product89

that detects falls. A built-in tilt sensor and a manual emergency90

alert button can trigger a call to a remote monitoring station for91

help, when tilts of more than 60° lasting more than a minute are92

detected.93

Kangas et al. [10] investigated acceleration of falls from sensors94

attached to the waist, wrist, and head, and demonstrated that mea-95

surements from the waist and head were more useful for fall de-96

tection. Lindemann et al. [11] quantified fall detection using two97

head-worn accelerometers that offer sensitive impact detection for98

heavy falls based on three predefined thresholds. Smartphone sen-99

sors also face usability and acceptance issues, particularly if required100

to be worn in a predetermined position (e.g., waist) and orienta-101

tion [12]. Whilst they may not yet provide a “real living” solution,102

a system based on a smartphone does not suffer the same obsta-103

cles of setup time and stigmatization as dedicated laboratory sen-104

sors systems such as XSENS [13]. Hence, it is worthwhile deter-105

mining whether using a phone can be beneficial for inferring “situ-106

ations.” Their pervasive nature, computational power, connectedness,107

and multifunction capability are clearly advantageous as the phone108

can deliver real-time feedback and/or alert messages across the full109

range of communication platforms (telephone, internet, and social110

media).111

Methods that use only the accelerometer with some empirical thresh-112

old can lead to many false positives from other “fall-like” activi-113

ties such as sitting down quickly and jumping, which feature a large114

change in vertical acceleration. In order to improve the reliability of115

fall detection, studies combined accelerometers with other sensors.116

Bianchi et al. [14] integrated an accelerometer with a barometric pres-117

sure sensor into a wearable device, and demonstrated that fall detec-118

tion accuracy improved in comparison to using accelerometer data119

alone (96.9% versus 85.3%). Li et al. [15] combined two accelerom-120

eters with gyroscopes on the chest and thigh, respectively, and con-121

cluded that fall detection accuracy improved. Machine learning tech-122

niques have also been used to improve falls detection and recognition123

[16], [17].124

B. Location Tracking125

Location tracking systems are varied in their accuracy, range, and126

infrastructure costs. The challenges are how to achieve more accurate127

fine-grained subarea-position estimation while minimizing equipment128

costs. For localization outdoors, the global positioning system (GPS)129

works well in most environments. However, the signal from satellites130

cannot penetrate most buildings, so GPS cannot be used reliably in131

indoor locations.132

Schemes envisioned for indoor localization are mostly based on ma-133

chine vision, laser range-finding, or cell network localization [18]. The134

“Ubiquitous Home” [19] was equipped with a variety of sensors, such135

as cameras, microphones, floor pressure sensors, RFID, and accelerom-136

eters to monitor human activities and their location.137

There are many challenges associated with RFID deployment in a138

smart home environment. For example, deployment should consider the139

facilities arrangement, to deal with missing data caused by interfering,140

absorbing, or distorting factors, and to ensure best coverage using the141

minimum number of readers. RFID reader deployment can be assessed142

by practice in experimental trials or by calculation using mathematical143

algorithms [20], [21]. The practical approach arranges the readers using144

Fig. 1. System configuration; datasets acquired from the phone’s sensors,
smartwatch’s sensors, and RFID networks at indoor: (a) acceleration with heart
rate, (b) orientation angles, (c) geocoordinate (latitude, longitude), and (d) RFID
networks (ID, RSS ).

personal experience [22]. The mathematical approach formulates the 145

sensor deployment as a search algorithm. Algorithms investigated in- 146

clude generic search and simulated annealing [23]. Reza and Geok [24] 147

introduced a geometric grid-covering algorithm for reader deployment 148

inside buildings and achieved an average accuracy of 0.6 m. 149

RFID localization methods can be classified into two categories: 1) 150

position is estimated by using distances calculated based on a signal 151

propagation model; 2) position is estimated by using RF signal strength 152

(RSS ) directly. In 1), the position of a target subject is triangulated in 153

the form of coordinates (distances between the tag and each of the fixed 154

readers), based on an empirical RF propagation model [25], [26]. In 155

2), the RSS values are mapped onto a defined physical area based on 156

a number of reference nodes using their known positions. Using this 157

method, it is possible to reduce the errors caused by the translation from 158

RSS to distance, as it avoids use of the RF signal propagation model. 159

Learning approaches have been based upon the k-NN algorithm [27], 160

[28] or a kernel-based algorithm [29]. 161

The research discussed in this paper detects falls based on integrated 162

multiple contexts, e.g., activity postures, location, and heart rate. 163

III. METHODOLOGY 164

We developed and subsequently evaluated a situation-aware system 165

using a smartphone, which could infer activity from a users’ posture, 166

posture transition, and their current position. Detection of falls provides 167

an exemplar but other activities can be inferred. 168

A. System Configuration 169

The hardware comprised an HTC802w smartphone connected with a 170

HiCling smartwatch and an RFID network. The system configuration is 171

shown in Fig. 1. The phone connects with the watch via Bluetooth, and 172

communicates with the RFID reader via WiFi. Feedback was delivered 173

via the phone using voice and text messages. 174

The phone’s processor operated at 1.7 GHz, the memory capacity 175

was 2 GB with an additional 32 GB memory card and the operating 176

system was Android 4.4.3. The phone embedded ten types of sensors, 177

but only GPS, 3-axis accelerometer, and the orientation sensors were 178

used. 179

The phone was belt-worn on the left side of the waist in a horizontal 180

orientation. In this case, the accelerometer coordinate system is that the 181
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Fig. 2. Heart rate measurement compared to walk and run steps. The heart
rate intensity zone can be used for physical activity intensity analysis.

Fig. 3. Six 3-D coordinate systems based on the phone’s orientation.

X-axis is vertical, the Y-axis is horizontal, and the Z-axis is orthogonal182

to the screen, as shown in Fig. 1(a). The phone’s orientation can be183

monitored using the orientation sensor. This sensor provides three-184

dimensional (3-D) rotation angles along the three axes (pitch, roll,185

azimuth), denoted as (θX , θY , θZ ), as depicted in Fig. 1(b).186

Fig. 2 shows a user’s daily steps of walk and run as well as instanta-187

neous heart rate, obtained from the smartwatch.188

The smartwatch was embedded with optical sensor, 3-D accelerom-189

eter, captive skin touch sensor, and Bluetooth 4.0. The minute-based190

dataset accessed from the watch provides a parameter set (t, wSteps,191

rSteps, heartrate, isWear). The parameter isWear indicates whether the192

user has watch on, wSteps is walking steps, rSteps is run steps.193

The outdoor localization is determined via GPS using the194

geocoordinate (latitude, longitude) as shown in Fig. 1(c). The195

indoor localization is recognized via a predeployed RFID196

network. The position (where?) is determined by received RF signal197

strength (RSS ); identity (who?) is provided by RFID tag ID, as shown198

in Fig. 1(d). The RFID reader/active tag frequency was 868 MHz, with199

a theoretical detection range of up to 8 m.200

B. Data Acquisition201

Five datasets: 3-D acceleration (t, Ax, Ay, Az), 3-D orientation angles202

(t, θX , θY , θZ ), vital signs signal (t, heartrate, isWear), geocoordi-203

nates (t, latitude, longitude), and RFID data series of (t, ID, RSS )204

were obtained. Subsequently, the datasets were used for the evalua-205

tion of the posture classification, location recognition, and by further206

processing to infer fall detection.207

1) Acceleration: For a tri-axis accelerometer, six 3-D coordinate208

systems are apparent (vertical axis is X, Y, or Z in upward or downward209

directions) according to the phone’s orientation, as shown in Fig. 3210

(1)–(6).211

Fig. 3 illustrates the tri-axis directions determined by the phone’s212

orientation. The absolute value of vertical acceleration is equal to the213

maximum stationary value among (|Ax |, |Ay |, |Az |) as shown in the214

following equation:215

|Avertica l | = Max (|Ax | , |Ay | , |Az |) . (1)

Equation (1) declares that the vertical-axis acceleration216

depends on the orientation, so postures (such as lying)217

can be inferred according to the vertical-axis shifts among218

Fig. 4. Relationship between the body postures and maximum value of (|Ax|,
|Ay|, |Az|).

TABLE I
BODY POSTURES WITH 3-D ROTATION ANGLES (θx, θy, θz)

Tilted angles (θX , θY ) Body Orientation angle θZ Orientation

postures [0°, 360°]

θX [–180°, 180°] θY [–90°, 90°]

≤ 0 + θc a l iX ≥ 90 − θc a l iY Upright 0 or 360 North

≤ 0 + θc a l iX ≤ 90 − θc a l iY Tilted right 90 East

θc a l iX ≤ |θX | ≤ 90 ≤ 90 − θc a l iY Tilted back 180 South

≥ 180 − θc a l iX ≥ 90 − θc a l iY Tilted left 270 West

Here θC a l iX = 10 , θC a l iY = 20 are empirical calibration values.

(Ax, Ay, Az), as shown in the acceleration patterns in 219

Fig. 4. 220

If the upper body posture is upright (stand, sit, or walk), then the 221

maximum absolute acceleration is Ax, and the X-axis is vertical, since 222

the phone has horizontal orientation. If the body posture is lying right, 223

lying back, lying left, or lying face down, then the vertical axis is the 224

Y- or Z-axis, so the maximum value of (|Ax|, |Ay|, |Az|) must be Ay 225

or Az. In theory, one axis may indicate the influence of acceleration 226

due to gravity (±9.81 m/s2) and the other two should be zero. In 227

practice, orientation somewhat between states, transition in orientation, 228

movement, and artifact impose relative noise making transitions less 229

precise. Further details on methodology and heuristic classification 230

rules to infer posture by accelerometry are provided in [30]. 231

2) Orientation Angles: The orientation sensor provides 3-D ro- 232

tation angles along the three axes (pitch, roll, azimuth) are denoted as 233

(θX ,θY , θZ ). 234

1) Pitch (θX ), degrees of rotation around the X-axis, the range of 235

values is [–180°, 180°], with positive values when the positive 236

Z-axis moves toward the positive Y-axis. 237

2) Roll (θY ), degrees of rotation around the Y-axis, −90◦ <= 238

θY <= 90◦, with positive values when the positive Z-axis moves 239

towards the positive X-axis. 240

3) Azimuth (θZ ), degrees of rotation around the Z-axis, θZ = 241

[0◦, 360◦]. It is used to detect the compass direction. 242

θZ = 0◦ or 360°, north; θZ = 180◦, south; θZ = 90◦, east; 243

θZ = 270◦, west. 244

The relationship between the the body posture with angles (θX , θY ) 245

and body orientation with θZ , based on a belt-worn horizontal phone, 246

is described in Table I. 247

Table I shows that angles (θx, θy) can be used to recognize the 248

upright and tilted postures. For example, when the posture is stand or sit 249

upright (Sit-U), the X-axis is vertical, then θx ≍ 0◦ and θy ≍ ±90°; 250

otherwise, when the body posture is sit-tilted forward (Sit-F), back 251

(Sit-B), right (Sit-R), or left (Sit-L), then |θX | > 0◦, or |θY | < 90◦, 252

in theory. The values need to be calibrated in the practice, as shown 253

in Fig. 5. Hence, it is possible to classify the lying, tilted and upright 254

postures by combining the acceleration and orientation angles. 255
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TABLE II
EXPERIMENTAL RESULTS FOR INDOOR USING THE MULFUSION ALGORITHM

True: f-lyi. f-sitT p-fall n-lyi. bend sit stand sitT sitS

f-lyi. 122 12 25 2

f-sitT 119

p-fall 9

n-lyi. 4 2 72

bend 69

sit 6 1 128 23

stand 1 7 20 137

sitT 18

sitS 18

total 126 126 12 84 101 150 160 18 18

Acc.% 96.8 94.4 75 85.7 68.3 85.3 85.6 100 100

Cohen’s Kappa 83.8%

Fig. 5. Dataset (θX , θY ) measured from different tilted postures. If |θX | >
(0◦ + θCaliX ) or |θY | < (90◦ − θCaliY ), then the posture must be tilted. Here
θCaliX or θCaliY is the empirical calibration value.

C. Fine-Grained Indoor and Outdoor Localization256

For the indoor localization, a predeployed RFID network was used257

to identify the users’ ID and their position [31], [32]. The tracking258

environment (E) was divided into several subareas based on the user’s259

daily activities. The RSS sensed by the reader network and the subarea260

structure of the environment are symbolized as261

RSS =

q
⋃

r=1

RSSr ; E =

m
⋃

j=1

Lj

{

q = 1, 2, 3, . . .

m = 1, 2, 3, . . .
(2)

where Rssr RSS r is the RF signal strength sensed by each of the262

readers R1 , R2 , . . . , Rq , q is the number of readers, Lj denotes the263

location name of each of the subareas in the environment E, such as264

E (L1 , L2 , . . . , Lm ) = {bed1, sofa, dining, . . .}, and m is the number265

of subareas.266

The collected training set from each of the subareas is organized as267

follows:268

(RSS (i) , L (i)) = (RSS1 (i) , RSS2 (i) , . . . , RSSq (i) , L (i))

{i = 1, 2, . . . , n & L (i) ∈ E(L1 , L2 , . . . , Lm } (3)

where n is the total number of samples in the training set,269

Rss(i)RSS (i) is the set of signal strengths sensed by several270

readers at the ithith training point, L(i) is a manually la-271

beled location name of the subareas for the ithith training point,272

where L(i) ∈ E(L1 , L2 , . . . , Lm ), and m is the total number of273

subareas.274

A function f (Rss , E) for the relationship between the RSS and each275

of the subareas in the tracking environment E is learned by a support276

vector machine (SVM) classifier with a radial basis function (RBF)277

Fig. 6. Fine-grained radio map for outdoor (left) and indoor (right) environ-
ments.

from the training set as shown in the following equation: 278

f (RSS , E) =

n
∑

i=1

ωik (RSS (i) , L (i)) (4)

where ωi is a set of weighted parameters, k is a function relating to the 279

relationship between RSS (i) and L(i) Rss(i) and L(i). Both weights 280

ωi and function k need to be automatically learned using the SVM 281

classifier. A software package LibSVM [33], which supports multi- 282

class classification, was used to implement the algorithms. The SVM 283

classifier has very good classification ability for previously unseen 284

data [34]. The RBF kernel has less parameters than other nonlinear 285

kernels. Further details about an optimal SVM model selection have 286

been introduced in [34]. 287

After the training model function f (Rss , E) has been obtained dur- 288

ing the offline learning phase, the trained model can be used, in an 289

online fashion, to classify the location of a tagged subject. In this 290

phase, the sensed RSS union at each time t will be an input value of 291

the function. The output for each time t will be a subarea name au- 292

tomatically translated by the training model function as shown in the 293

following equation: 294

(t, tagID , RSS1 (t) , RSS2 (t) , . . . , RSSq (t))
f (R S S ,E )

→

(t, tagID , L (t)) (5)

where RSS (t) Rss(t) is the RF signal strength sensed by the reader 295

network at time t, tagID is the tag identity number and also stands for 296

the tagged person , and L(t) is a corresponding subarea name to the 297

input at time t. 298

For outdoor localization, GPS embedded in the smartphone was 299

used as the outdoor location provider. A fine-grained radio map for a 300

given subarea-structured environment can be created using radio fin- 301

gerprinting, based on data acquired from GPS [35]. This map generates 302

probability distribution geocoordinate values of GPS (t, latitude, lon- 303

gitude) for a predefined subarea name. Live GPS values are compared 304

to the fingerprint to find the closest match and generate a predicted 305

subarea. 306

In the initial stage, the outdoor enviroment included six areas (home, 307

garden, park, campus, shop, and hospital) as shown in Fig. 6(left). For 308

the indoor environment, each of the six rooms was divided into two 309

or three functional subareas as shown in Fig. 6(right). For efficiency, 310

we did not get the location name from a GPS map, since it slowed the 311

system speed. Hence, one subject walked around these six areas and 312

recorded the dataset (latitude, longitude, position) as the training set to 313

obtain the initial small fine-grained model for outdoor localization. 314

C. Falls Detection 315

The identification of motion and motionless postures classification 316

has been presented in our previous work [34], [36], [37]. In this paper, 317

we focus at a higher algorithmic level, on how to recognize falls based 318
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on fused heterogeneous contexts (current posture, posture transition,319

position, heart rate), to improve the reliability and accuracy of fall320

detection. All data were saved in an SQLite Database within the phone321

that comprises four tables named as: posture, location, minutData, and322

fusion, respectively.323

The posture table was derived from the posture classification based324

on the dataset (t, Ax, Ay, Az, θX , θY , θZ ) sensed from the phone.325

The sampling frequency from the phone was set at 5 Hz, and postures326

classification was performed point by point, but the classification results327

(t, posture) were saved into the posture table every 2 s using a majority328

voting mechanism for every classified period of time [33].329

The location table is derived from the location classification based330

on the dataset (t, tagID , RSS1 , RSS2 , RSS3 ) sensed from the RFID331

network (sampling rate for three readers is 2.5 Hz in this study), the lo-332

cation detection results (t, tagID , location) were saved into the location333

table every 30 s.334

The minutData table was derived from the smartwatch based on335

the HiCling software development kit, which included (t, heartrate,336

isWear). The dataset was saved into minutData every minute.337

The fusion table was derived from the above three tables. Items (t,338

tagID , currPosture, prePosture, location, heartrate) were selected and339

inserted into the fusion table every 2 s. Since the three tables have340

different sampling frequency as described previously (2 s versus 30 s341

versus 60 s), the items will repeat the previous value if a new sample342

value has not been acquired.343

The falls detection is performed based on the fusion table, comprising344

the heterogeneous, multimodal data. So for example, if a lying or sit-345

tilted posture was detected, then a backward reasoning algorithm was346

used to check the saved previous posture, current position, and heart347

rate to infer whether a certain fall or a possible fall can be inferred based348

on two models: certain fall model and possible fall model, defined next.349

certainFall ≡ IsCurrentPosture (∃lying||sitTilt, yes)
∧ IsPrePosture (∃walk ||run|| stand, yes )∧

{IsLocatedIn (∄bed||sofa, yes )∨
IsHeatrate (∃higher||lower, yes)}

→ fall alert to a caregiver immediately

possibleFall ≡ IsCurrentPosture (∃lying||sitTilt, yes)
∧ IsPrePosture (∃sit, yes )∧

{IsLocatedIn (∄bed||sofa, yes )∨
IsHeartrate (∃higher||lower, yes)}

→ possible alert music with stop button

where the higher or lower heart rate means the measured current heart350

rate is more than the user’s maximum resting heart rate (RHR), or less351

than the user’s minimum RHR, which was tested and saved when the352

user first began wearing the smartwatch. Zhang et al. [38] reported that353

a healthy RHR for adults is 60–80 bpm and an average adult RHR range354

is 60–100 bpm. An elevated RHR can be an indicator of increased risk355

of cardiovascular disease.Certain falls model: Lying or sit tilted from356

a wrong posture transition (such as from run to lying directly) while357

located in an inappropriate place (i.e., not the bed or sofa), or sudden358

change in heart rate.Possible falls model: Lying or sit tilted from a359

right posture transition (such as from sit to lying), however, located360

in an inappropriate place (i.e., not the bed or sofa), or sudden change361

in heart rate. The procedure of the proposed fall detection algorithm362

(named mulFusion) is shown in Fig. 7. The models demonstrate that the363

difference between a certain fall (wrong posture transition) and possible364

fall (right posture transition) is determined by the posture transition.365

Meanwhile, both models have similar features, e.g., lying or sit tilted366

at an inappropriate location, or abnormal vital signs, e.g., higher/lower367

heart rate. If a certain fall is detected, then a fall alert can be delivered to368

Fig. 7. Fall detection algorithm (mulFusion) based on fused multiple dataset
and a certain fall model as well as a possible fall model.

caregivers immediately. Otherwise, alert music with a stop button will 369

play if a possible fall is detected; finally, a fall or a normal lying/sit-tilted 370

activity will be determined according to whether the user stops the alert 371

music. 372

IV. EXPERIMENTS 373

In order to evaluate the different situation-awareness outcomes, nine 374

healthy people (four female and five male, aged 25–55) simulated vari- 375

ous falls and a set of different daily activities at indoor and outdoor loca- 376

tions. For safety purposes, three mats were distributed on the ground in 377

three different rooms. The experimental results were validated against 378

observation notes recorded by two independent observers. 379

The experimental results for falls detection were compared with an 380

accelerometer with a predefined threshold method described in our 381

previous work [39]. The algorithms were named as mulFusion and 382

accThresh: 383

mulFusion: Falls were detected based on the multiple fusion contexts 384

including current posture, posture transition, location, and heart rate, 385

as proposed in this paper. 386

accThresh: Only using the acceleration change with predefined 387

threshold to detect falls, as described in [39]. 388

A. Indoor Experiments 389

In the indoor environment, each of the nine subjects performed a 390

series of normal and abnormal activities, described ahead, in a ran- 391

dom order for three times, and five of the subjects performed the same 392

activities in prescribed order for another three times, respectively. Ad- 393

ditionally, three of the subjects then performed the possible falls using 394

approach1 for three times, and using approach2 once, respectively. 395

1) Fall-lying (f-lyi): From walk to lying quickly or slowly on the 396

bed, sofa, and ground (mat), respectively. 397

2) Fall-sitTilted (f-sitT): From walk to sit-tilted quickly or slowly 398

on the bed, sofa, and ground (mat), respectively. 399

3) Possible falls (p-fall) approach1: From walk to sit on the ground 400

(mat) for more than 2 s, then lying on the ground (mat). 401

4) Possible falls (p-fall) approach2: In order to simulate the elderly 402

falls that may cause the higher heart rate in a case, required run 403
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Fig. 8. Interface of the situation-aware system on the phone. Top of the left
figure is the phone connecting the watch when using it firstime; bottom of the
left figure is a subject wearing the phone and watch at the same time. The
right-hand side illustrates the user interface.

on a treadmill for 15 min first, get the heart rate is more than404

90 bpm, then sit tilted on the sofa for a while.405

5) Normal lying (n-lyi) approach1: From walk to sit on the bed for406

more than 2 s and then lying on the bed normally.407

6) Normal lying (n-lyi) approach2: From walk to sit on the bed for408

less than 2 s, and then lying on the bed very quickly.409

7) Bend: Do some bending (>30°) activity during the walking.410

8) Sit tilted (sitT): Sit tilted right/left at the sofa for 6 min.411

9) Sit still (sitS): Sit on a chair and watch television for 65 min.412

Following these experiments, there were 126 f-lyi and 126 f-sitT413

in total (42 on the ground, 42 on the bed, 42 on the sofa); 12 p-fall414

in total (nine lying on the ground and three sit tilted on the sofa with415

higher heart rate); 42 normal lying using approach1; 42 normal lying416

using approach2; 101 Bend, 18 sitT, 18 sitS and a number of standing,417

walking, as well as sitting activities recorded and analyzed, indoors.418

B. Outdoor Experiments419

In the outdoor environment, each of the nine subjects walked from420

home to a park and then adopted the following postures: sit upright or421

sit back on the park bench for a period of time, and then walk around422

and bend two times during the walk; finally, sit on the bench again423

for a while. Thus, there were 18 normal sitting postures and 18 bend424

postures as well as a number of walking and stand activities recorded.425

The outdoors localization was based on the coarse-grained subareas,426

for instance, GPS location may recognize the park area correctly, but it427

cannot recognize the bench area within the park. In this case, a possible428

fall can be raised if the user is sit tilted at the park (bench), since the429

system deems that the user is sit tilted on the ground outdoors.430

C. Experimental Results431

The postures data collected from the nine subjects were classified in432

real time and a voice reminder was delivered in real time. The interface433

of the system is shown in Fig. 8.434

The experimental results based on the mulFusion algorithm are435

shown in Table II.436

Table II demonstrates that the level of agreement is very good using437

the proposed mulFusion algorithm, since its Cohen’s Kappa is 83.8%.438

For example, the accuracy of f-lyi and f-sitT detection were higher439

(96.8% and 94.4%, respectively). Some instances of f-lyi were classi-440

fied as normal-lying when the user transitioned from walk to lying on441

the bed slowly, since in this case, the posture transition was recognized442

as from standing to lying, rather than from walk to lying.443

The accuracy of possible falls (p-fall) classification was 75%. One444

of the 12 p-fall was classified as sit, since the ending “sit tilted” posture445

was recognized as sit. Another two of the 12 p-fall were classified as446

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS FOR THREE TYPES OF FALLS WITH

NORMAL LYING CLASSIFICATION, USING THE MULFUSION AND ACCTHRESH

ALGORITHMS, RESPECTIVELY

mulFusion algorithm accThresh algorithm

f-lyi. f-sitT p-fall n-lyi. total f-lyi. f-sitT p-fall n-lyi. total

TP 122 119 9 250 126 0 9 135

FN 4 7 3 14 0 126 3 129

TN 72 72 0 0

FP 12 12 84 84

total 126 126 12 84 348 126 126 12 84 348

Positive predictive 95.4% 61.6%

Negative predictive 83.7% 0%

Sensitivity 94.7% 51.1%

Specificity 85.7% 0%

normal lying, since the lying location ground was misclassified as bed 447

(one of the three mats was located near to the bed). The accuracy of 448

normal-lying (n-lyi) classification was 85.7%. Instances of of normal- 449

lying were classified as f-lyi when the sitting period of time was less 450

than 2 s before the normal lying, since in this case, the sitting posture 451

was ignored, thus the posture transition was analyzed as from walk to 452

lying directly. The accuracy of bend classification was lower (68.3%). 453

Since the “deep waist bend” (more than 70°) has similar features (ac- 454

celeration and phone’s orientation angles) with lying when the phone 455

was belt-worn on the waist, therefore, instances of bend were classified 456

as f-lyi. In fact, bend classification accuracy is problematic, since it 457

depends on dexterity and how much deep bending the users have done. 458

The classification accuracy for normal sit and stand were similar 459

around 85%. Sit and stand were confused on occassion. The classifica- 460

tion accuracy for unhealthy postures sit tilted (sitT) for more than 5 min 461

and sit-still (sitS) for more than one hour all were 100%. For compari- 462

son, three types of falls with normal lying activity were classified using 463

the mulThresh algorithm and accThresh algorithm, respectively. The 464

experimental results (see Table III) were compared between both algo- 465

rithms from four aspects: recognize real falls correctly (TP); recognize 466

real falls as nonfall (FN); recognize nonfall activities correctly (TN); 467

recognize nonfalls as a fall (FP). 468

Table III illustrates that the algorithm mulFusion can improve the 469

falls detection accuracy and reliability significantly compared to the 470

algorithm accThresh. The classification results for the three types of 471

falls with normal lying, compared to accThresh, mulFusion had positive 472

predictive value of 95.4% versus 61.6%, negative predictive value of 473

83.7% versus 0%, sensitivity of 94.7% versus 51.1%, and specificity 474

of 85.7% versus 0%. The accThresh algorithm was able to detect all 475

the falls ending with lying (f-lyi) correctly, neverthless, it recognized 476

0/126 falls ending with sit tilted (f-sitT) and 0/84 of normal lying (n- 477

lyi), since the normal lying posture also caused a large acceleration 478

changing. For the 12 p-fall, it also only recognized the 9/12 correctly, 479

which was ending with lying. Therefore, this threshold only algorithm 480

was limited for the falls ending with sit-tilted situations. 481

In general the participants deemed the system helpful and easy to 482

use. It is appareent that the “possible” fall music with a stop button can 483

reduce the delivery of incorrect alerts. 484

V. CONCLUSION AND FUTURE WORK 485

The accuracy of falls detection algorithms reported in the literature is 486

good. However, most of the accelerometer-based experiments involved 487

typical falls with a high acceleration upon the impact with the ground. 488
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Slow falls and normal lying are more difficult to detect. Fall-like events,489

which trigger false alarms, limit users’ acceptance. The contribution490

of this paper is the development of a real-time situation-aware system491

for falls alert and unhealthy postures reminder, based on integrated492

multiple contexts (e.g., postures, transition, location, and heart rate)493

acquired from sensors embedded in a smartphone, in a smartwatch and494

using a deployed RFID network in an indoor environment.495

Fall detection algorithms based on integrated multiple contexts can496

improve the accuracy of detection of certain falls distinguishing them497

from normal daily activities. Gjoreski et al. [17] studied a combination498

of body-worn inertial and location sensors for fall detection. They499

illustrated that the two types of sensors combined with context-based500

reasoning can significantly improve the performance. Compared to501

their study, this research combined four modalities (accelerometers,502

orientation, location, and heart rate). It is potentially more robust. This503

context-based work can be extended beyond determining falls. The504

postures sit tilted and sit still may, under certain circumstances, be505

defined as unhealthy postures. We know that back pain, neck pain,506

or shoulder pain can be avoided or managed by correcting posture;507

however, it can be difficult to maintain appropriate postures throughout508

the day. One of the most common causes of low back pain is poor509

sitting posture (e.g., sit tilted for a long time) [40]. Hence, it may be510

possible using this approach to remind people to correct poor postures511

in real time.512

The accuracy of falls detection depends on the accuracy of pos-513

ture classification and location detection. There are many sources of514

potential interference in a real living environment, such as electrical515

and magnetic interference (from electricity and fluorescent devices and516

even home-based networks). These are much harder to control than in a517

laboratory situation. In addition, there will be errors introduced by arte-518

fact, and absence of GPS signal outdoors. Such issues can be addressed519

in a longer study, once the technical feasibility, usability, and potential520

acceptance issues have been overcome or at least better understood.521

Services could be implemented in two ways: 1) alert can be delivered522

to caregivers immediately if a certain fall is detected; 2) music with a523

stop button can play if a possible fall is raised. A fall or a normal lying524

activity will be determined according to whether the user stops the alert525

music.526

A study by van Hees et al. [41] has suggested that the classifier527

performance can be overestimated using controlled datasets. In fu-528

ture, we will study how to improve classification accuracy for an array529

of postures and transitions, and inferred situations in real-life condi-530

tions, especially for elderly at their home environments. In addition,531

smartphone-based solutions may have usability issues, since it is a re-532

quirement for the user to keep a smartphone at the fixed position [12].533

As sensing technology continues to evolve, the use of a smartwatch for534

an additional channel of accelerometer data is worthy of further inves-535

tigation. The phone can then be used for data analysis and reminders536

delivery, which may improve acceptance. The use of such technology537

for influencing longer term behavior change using real-time reminders538

requires further study of a longer period.539
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Situation Awareness Inferred From Posture Transition and Location: Derived
From Smartphone and Smart home Sensors

2

3

Shumei Zhang, Paul McCullagh, Huiru Zheng, and Chris Nugent4

Abstract—Situation awareness may be inferred from user context such as5

body posture transition and location data. Smartphones and smart homes6

incorporate sensors that can record this information without significant7

inconvenience to the user. Algorithms were developed to classify activity8

postures to infer current situations; and to measure user’s physical location,9

in order to provide context that assists such interpretation. Location was10

detected using a subarea-mapping algorithm; activity classification was11

performed using a hierarchical algorithm with backward reasoning; and12

falls were detected using fused multiple contexts (current posture, posture13

transition, location, and heart rate) based on two models: “certain fall” and14

“possible fall.” The approaches were evaluated on nine volunteers using a15

smartphone, which provided accelerometer and orientation data, and a16

radio frequency identification network deployed at an indoor environment.17

Experimental results illustrated falls detection sensitivity of 94.7% and18

specificity of 85.7%. By providing appropriate context the robustness of19

situation recognition algorithms can be enhanced.20

Index Terms—Assisted living, body sensor networks (BSNs), context21

awareness, wearable computers.22

I. INTRODUCTION23

Many studies have utilized intelligent environments to assist elderly24

or vulnerable people to live independently at home and to potentially25

maintain their quality of life. One goal of smart homes is to moni-26

tor lifestyle (such as activities and locations) of the occupant in order27

to promote autonomy and independent living and to increase feelings28

of security and safety. Sensing technology of various forms has been29

employed to track the activities and locations within the home envi-30

ronment. Derived information can be used as input to control domestic31

devices such as lighting, heater, television, and cooker based on a user’s32

current activity and location [1]. Radio frequency (RF) identification33

(RFID), body sensor networks (BSNs), and wireless sensor networks34

(WSNs) are complementary technologies used in this research envi-35

ronment. RFID can identify and track the location of tagged occupants,36

BSNs can record movement, orientation, and biosignals, and WSNs37

can discover and record attributes within and about the environment38
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(e.g., temperature, status of doors and windows). All components have 39

the capacity to communicate wirelessly and be connected as an “Inter- 40

net of Things,” providing an associated “big data” resource, usually of 41

unstructured data yielding a potential interpretation and understanding 42

problem for the researcher. If this problem can be successfully ad- 43

dressed, then knowledge regarding identity, activity, location, and en- 44

vironmental conditions can be derived by integrating data from RFID 45

with BSNs and WSNs. This vision drives an area of significant re- 46

search effort, which may be classified as “situation awareness” leading 47

to situation recognition. The research poses challenges for communi- 48

cations infrastructure, connected health monitoring, and acceptance 49

of technology by the user; much of which relies upon computing 50

advances. 51

The World Health Organization estimated that 424 000 fatal falls 52

occur each year, making falls a leading cause of accidental deaths. 53

Elderly people over 70 years have the highest risk of fatal falls, more 54

than 32% of older persons have experienced a fall at least once a year 55

with 24% encountering serious injuries [2], [3]. Approximately 3% of 56

people who experience a fall remain on the ground or floor for more than 57

20 min prior to receiving assistance [4]. A serious fall decreases an older 58

person’s self-confidence and motivation for independence and even 59

for remaining in his/her own home. Therefore, a situation awareness 60

system can assist frail people living at home and potentially sustain a 61

good quality of life for longer. 62

The aim of this work is to combine smartphone and smart home 63

technology to provide context on posture transition and location. This 64

research developed a monitoring system to identify users’ activities, 65

locations, and hence to infer users’ current situations; should an abnor- 66

mal situation be classified then an alert may be delivered to the user or 67

to a guardian, if necessary. In particular, we attempt to detect falls and 68

posture transitions using BSNs and an RFID-enabled smart home. 69

The paper is organized as follows. Related work is dis- 70

cussed in Section II, and methodologies for the system configu- 71

ration and current situation detection algorithms are described in 72

Section III. The experiments undertaken and results obtained are pre- 73

sented in Section IV. Section V focuses on discussion, limitations of 74

the approach, and future work. 75

II. RELATED WORK 76

A. Detection of Falls 77

Falls may be detected by using devices such as environment- 78

embedded sensors and wearable sensors. Wireless optical cameras 79

can be embedded in a tracking environment [5]; however, they can 80

only monitor fixed places and there can be privacy protection issues 81

to resolve for smart home occupants [6]. Depth-based sensors such 82

as Kinect [7] do not reproduce images and can overcome acceptance 83

issues. Such devices are feasible and maybe useful at high-risk 84

2168-2291 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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locations for falls. Wearable sensors comprising gyroscopes, tilt85

sensors, and accelerometers allow users to be monitored within and86

outside of their home environment. Such sensors can be integrated87

into existing community-based alarm and emergency systems [8].88

For example, the MCT-241MD PERS [9] is a commercial product89

that detects falls. A built-in tilt sensor and a manual emergency90

alert button can trigger a call to a remote monitoring station for91

help, when tilts of more than 60° lasting more than a minute are92

detected.93

Kangas et al. [10] investigated acceleration of falls from sensors94

attached to the waist, wrist, and head, and demonstrated that mea-95

surements from the waist and head were more useful for fall de-96

tection. Lindemann et al. [11] quantified fall detection using two97

head-worn accelerometers that offer sensitive impact detection for98

heavy falls based on three predefined thresholds. Smartphone sen-99

sors also face usability and acceptance issues, particularly if required100

to be worn in a predetermined position (e.g., waist) and orienta-101

tion [12]. Whilst they may not yet provide a “real living” solution,102

a system based on a smartphone does not suffer the same obsta-103

cles of setup time and stigmatization as dedicated laboratory sen-104

sors systems such as XSENS [13]. Hence, it is worthwhile deter-105

mining whether using a phone can be beneficial for inferring “situ-106

ations.” Their pervasive nature, computational power, connectedness,107

and multifunction capability are clearly advantageous as the phone108

can deliver real-time feedback and/or alert messages across the full109

range of communication platforms (telephone, internet, and social110

media).111

Methods that use only the accelerometer with some empirical thresh-112

old can lead to many false positives from other “fall-like” activi-113

ties such as sitting down quickly and jumping, which feature a large114

change in vertical acceleration. In order to improve the reliability of115

fall detection, studies combined accelerometers with other sensors.116

Bianchi et al. [14] integrated an accelerometer with a barometric pres-117

sure sensor into a wearable device, and demonstrated that fall detec-118

tion accuracy improved in comparison to using accelerometer data119

alone (96.9% versus 85.3%). Li et al. [15] combined two accelerom-120

eters with gyroscopes on the chest and thigh, respectively, and con-121

cluded that fall detection accuracy improved. Machine learning tech-122

niques have also been used to improve falls detection and recognition123

[16], [17].124

B. Location Tracking125

Location tracking systems are varied in their accuracy, range, and126

infrastructure costs. The challenges are how to achieve more accurate127

fine-grained subarea-position estimation while minimizing equipment128

costs. For localization outdoors, the global positioning system (GPS)129

works well in most environments. However, the signal from satellites130

cannot penetrate most buildings, so GPS cannot be used reliably in131

indoor locations.132

Schemes envisioned for indoor localization are mostly based on ma-133

chine vision, laser range-finding, or cell network localization [18]. The134

“Ubiquitous Home” [19] was equipped with a variety of sensors, such135

as cameras, microphones, floor pressure sensors, RFID, and accelerom-136

eters to monitor human activities and their location.137

There are many challenges associated with RFID deployment in a138

smart home environment. For example, deployment should consider the139

facilities arrangement, to deal with missing data caused by interfering,140

absorbing, or distorting factors, and to ensure best coverage using the141

minimum number of readers. RFID reader deployment can be assessed142

by practice in experimental trials or by calculation using mathematical143

algorithms [20], [21]. The practical approach arranges the readers using144

Fig. 1. System configuration; datasets acquired from the phone’s sensors,
smartwatch’s sensors, and RFID networks at indoor: (a) acceleration with heart
rate, (b) orientation angles, (c) geocoordinate (latitude, longitude), and (d) RFID
networks (ID, RSS ).

personal experience [22]. The mathematical approach formulates the 145

sensor deployment as a search algorithm. Algorithms investigated in- 146

clude generic search and simulated annealing [23]. Reza and Geok [24] 147

introduced a geometric grid-covering algorithm for reader deployment 148

inside buildings and achieved an average accuracy of 0.6 m. 149

RFID localization methods can be classified into two categories: 1) 150

position is estimated by using distances calculated based on a signal 151

propagation model; 2) position is estimated by using RF signal strength 152

(RSS ) directly. In 1), the position of a target subject is triangulated in 153

the form of coordinates (distances between the tag and each of the fixed 154

readers), based on an empirical RF propagation model [25], [26]. In 155

2), the RSS values are mapped onto a defined physical area based on 156

a number of reference nodes using their known positions. Using this 157

method, it is possible to reduce the errors caused by the translation from 158

RSS to distance, as it avoids use of the RF signal propagation model. 159

Learning approaches have been based upon the k-NN algorithm [27], 160

[28] or a kernel-based algorithm [29]. 161

The research discussed in this paper detects falls based on integrated 162

multiple contexts, e.g., activity postures, location, and heart rate. 163

III. METHODOLOGY 164

We developed and subsequently evaluated a situation-aware system 165

using a smartphone, which could infer activity from a users’ posture, 166

posture transition, and their current position. Detection of falls provides 167

an exemplar but other activities can be inferred. 168

A. System Configuration 169

The hardware comprised an HTC802w smartphone connected with a 170

HiCling smartwatch and an RFID network. The system configuration is 171

shown in Fig. 1. The phone connects with the watch via Bluetooth, and 172

communicates with the RFID reader via WiFi. Feedback was delivered 173

via the phone using voice and text messages. 174

The phone’s processor operated at 1.7 GHz, the memory capacity 175

was 2 GB with an additional 32 GB memory card and the operating 176

system was Android 4.4.3. The phone embedded ten types of sensors, 177

but only GPS, 3-axis accelerometer, and the orientation sensors were 178

used. 179

The phone was belt-worn on the left side of the waist in a horizontal 180

orientation. In this case, the accelerometer coordinate system is that the 181
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Fig. 2. Heart rate measurement compared to walk and run steps. The heart
rate intensity zone can be used for physical activity intensity analysis.

Fig. 3. Six 3-D coordinate systems based on the phone’s orientation.

X-axis is vertical, the Y-axis is horizontal, and the Z-axis is orthogonal182

to the screen, as shown in Fig. 1(a). The phone’s orientation can be183

monitored using the orientation sensor. This sensor provides three-184

dimensional (3-D) rotation angles along the three axes (pitch, roll,185

azimuth), denoted as (θX , θY , θZ ), as depicted in Fig. 1(b).186

Fig. 2 shows a user’s daily steps of walk and run as well as instanta-187

neous heart rate, obtained from the smartwatch.188

The smartwatch was embedded with optical sensor, 3-D accelerom-189

eter, captive skin touch sensor, and Bluetooth 4.0. The minute-based190

dataset accessed from the watch provides a parameter set (t, wSteps,191

rSteps, heartrate, isWear). The parameter isWear indicates whether the192

user has watch on, wSteps is walking steps, rSteps is run steps.193

The outdoor localization is determined via GPS using the194

geocoordinate (latitude, longitude) as shown in Fig. 1(c). The195

indoor localization is recognized via a predeployed RFID196

network. The position (where?) is determined by received RF signal197

strength (RSS ); identity (who?) is provided by RFID tag ID, as shown198

in Fig. 1(d). The RFID reader/active tag frequency was 868 MHz, with199

a theoretical detection range of up to 8 m.200

B. Data Acquisition201

Five datasets: 3-D acceleration (t, Ax, Ay, Az), 3-D orientation angles202

(t, θX , θY , θZ ), vital signs signal (t, heartrate, isWear), geocoordi-203

nates (t, latitude, longitude), and RFID data series of (t, ID, RSS )204

were obtained. Subsequently, the datasets were used for the evalua-205

tion of the posture classification, location recognition, and by further206

processing to infer fall detection.207

1) Acceleration: For a tri-axis accelerometer, six 3-D coordinate208

systems are apparent (vertical axis is X, Y, or Z in upward or downward209

directions) according to the phone’s orientation, as shown in Fig. 3210

(1)–(6).211

Fig. 3 illustrates the tri-axis directions determined by the phone’s212

orientation. The absolute value of vertical acceleration is equal to the213

maximum stationary value among (|Ax |, |Ay |, |Az |) as shown in the214

following equation:215

|Avertica l | = Max (|Ax | , |Ay | , |Az |) . (1)

Equation (1) declares that the vertical-axis acceleration216

depends on the orientation, so postures (such as lying)217

can be inferred according to the vertical-axis shifts among218

Fig. 4. Relationship between the body postures and maximum value of (|Ax|,
|Ay|, |Az|).

TABLE I
BODY POSTURES WITH 3-D ROTATION ANGLES (θx, θy, θz)

Tilted angles (θX , θY ) Body Orientation angle θZ Orientation

postures [0°, 360°]

θX [–180°, 180°] θY [–90°, 90°]

≤ 0 + θc a l iX ≥ 90 − θc a l iY Upright 0 or 360 North

≤ 0 + θc a l iX ≤ 90 − θc a l iY Tilted right 90 East

θc a l iX ≤ |θX | ≤ 90 ≤ 90 − θc a l iY Tilted back 180 South

≥ 180 − θc a l iX ≥ 90 − θc a l iY Tilted left 270 West

Here θC a l iX = 10 , θC a l iY = 20 are empirical calibration values.

(Ax, Ay, Az), as shown in the acceleration patterns in 219

Fig. 4. 220

If the upper body posture is upright (stand, sit, or walk), then the 221

maximum absolute acceleration is Ax, and the X-axis is vertical, since 222

the phone has horizontal orientation. If the body posture is lying right, 223

lying back, lying left, or lying face down, then the vertical axis is the 224

Y- or Z-axis, so the maximum value of (|Ax|, |Ay|, |Az|) must be Ay 225

or Az. In theory, one axis may indicate the influence of acceleration 226

due to gravity (±9.81 m/s2) and the other two should be zero. In 227

practice, orientation somewhat between states, transition in orientation, 228

movement, and artifact impose relative noise making transitions less 229

precise. Further details on methodology and heuristic classification 230

rules to infer posture by accelerometry are provided in [30]. 231

2) Orientation Angles: The orientation sensor provides 3-D ro- 232

tation angles along the three axes (pitch, roll, azimuth) are denoted as 233

(θX ,θY , θZ ). 234

1) Pitch (θX ), degrees of rotation around the X-axis, the range of 235

values is [–180°, 180°], with positive values when the positive 236

Z-axis moves toward the positive Y-axis. 237

2) Roll (θY ), degrees of rotation around the Y-axis, −90◦ <= 238

θY <= 90◦, with positive values when the positive Z-axis moves 239

towards the positive X-axis. 240

3) Azimuth (θZ ), degrees of rotation around the Z-axis, θZ = 241

[0◦, 360◦]. It is used to detect the compass direction. 242

θZ = 0◦ or 360°, north; θZ = 180◦, south; θZ = 90◦, east; 243

θZ = 270◦, west. 244

The relationship between the the body posture with angles (θX , θY ) 245

and body orientation with θZ , based on a belt-worn horizontal phone, 246

is described in Table I. 247

Table I shows that angles (θx, θy) can be used to recognize the 248

upright and tilted postures. For example, when the posture is stand or sit 249

upright (Sit-U), the X-axis is vertical, then θx ≍ 0◦ and θy ≍ ±90°; 250

otherwise, when the body posture is sit-tilted forward (Sit-F), back 251

(Sit-B), right (Sit-R), or left (Sit-L), then |θX | > 0◦, or |θY | < 90◦, 252

in theory. The values need to be calibrated in the practice, as shown 253

in Fig. 5. Hence, it is possible to classify the lying, tilted and upright 254

postures by combining the acceleration and orientation angles. 255
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TABLE II
EXPERIMENTAL RESULTS FOR INDOOR USING THE MULFUSION ALGORITHM

True: f-lyi. f-sitT p-fall n-lyi. bend sit stand sitT sitS

f-lyi. 122 12 25 2

f-sitT 119

p-fall 9

n-lyi. 4 2 72

bend 69

sit 6 1 128 23

stand 1 7 20 137

sitT 18

sitS 18

total 126 126 12 84 101 150 160 18 18

Acc.% 96.8 94.4 75 85.7 68.3 85.3 85.6 100 100

Cohen’s Kappa 83.8%

Fig. 5. Dataset (θX , θY ) measured from different tilted postures. If |θX | >
(0◦ + θCaliX ) or |θY | < (90◦ − θCaliY ), then the posture must be tilted. Here
θCaliX or θCaliY is the empirical calibration value.

C. Fine-Grained Indoor and Outdoor Localization256

For the indoor localization, a predeployed RFID network was used257

to identify the users’ ID and their position [31], [32]. The tracking258

environment (E) was divided into several subareas based on the user’s259

daily activities. The RSS sensed by the reader network and the subarea260

structure of the environment are symbolized as261

RSS =

q
⋃

r=1

RSSr ; E =

m
⋃

j=1

Lj

{

q = 1, 2, 3, . . .

m = 1, 2, 3, . . .
(2)

where Rssr RSS r is the RF signal strength sensed by each of the262

readers R1 , R2 , . . . , Rq , q is the number of readers, Lj denotes the263

location name of each of the subareas in the environment E, such as264

E (L1 , L2 , . . . , Lm ) = {bed1, sofa, dining, . . .}, and m is the number265

of subareas.266

The collected training set from each of the subareas is organized as267

follows:268

(RSS (i) , L (i)) = (RSS1 (i) , RSS2 (i) , . . . , RSSq (i) , L (i))

{i = 1, 2, . . . , n & L (i) ∈ E(L1 , L2 , . . . , Lm } (3)

where n is the total number of samples in the training set,269

Rss(i)RSS (i) is the set of signal strengths sensed by several270

readers at the ithith training point, L(i) is a manually la-271

beled location name of the subareas for the ithith training point,272

where L(i) ∈ E(L1 , L2 , . . . , Lm ), and m is the total number of273

subareas.274

A function f (Rss , E) for the relationship between the RSS and each275

of the subareas in the tracking environment E is learned by a support276

vector machine (SVM) classifier with a radial basis function (RBF)277

Fig. 6. Fine-grained radio map for outdoor (left) and indoor (right) environ-
ments.

from the training set as shown in the following equation: 278

f (RSS , E) =

n
∑

i=1

ωik (RSS (i) , L (i)) (4)

where ωi is a set of weighted parameters, k is a function relating to the 279

relationship between RSS (i) and L(i) Rss(i) and L(i). Both weights 280

ωi and function k need to be automatically learned using the SVM 281

classifier. A software package LibSVM [33], which supports multi- 282

class classification, was used to implement the algorithms. The SVM 283

classifier has very good classification ability for previously unseen 284

data [34]. The RBF kernel has less parameters than other nonlinear 285

kernels. Further details about an optimal SVM model selection have 286

been introduced in [34]. 287

After the training model function f (Rss , E) has been obtained dur- 288

ing the offline learning phase, the trained model can be used, in an 289

online fashion, to classify the location of a tagged subject. In this 290

phase, the sensed RSS union at each time t will be an input value of 291

the function. The output for each time t will be a subarea name au- 292

tomatically translated by the training model function as shown in the 293

following equation: 294

(t, tagID , RSS1 (t) , RSS2 (t) , . . . , RSSq (t))
f (R S S ,E )

→

(t, tagID , L (t)) (5)

where RSS (t) Rss(t) is the RF signal strength sensed by the reader 295

network at time t, tagID is the tag identity number and also stands for 296

the tagged person , and L(t) is a corresponding subarea name to the 297

input at time t. 298

For outdoor localization, GPS embedded in the smartphone was 299

used as the outdoor location provider. A fine-grained radio map for a 300

given subarea-structured environment can be created using radio fin- 301

gerprinting, based on data acquired from GPS [35]. This map generates 302

probability distribution geocoordinate values of GPS (t, latitude, lon- 303

gitude) for a predefined subarea name. Live GPS values are compared 304

to the fingerprint to find the closest match and generate a predicted 305

subarea. 306

In the initial stage, the outdoor enviroment included six areas (home, 307

garden, park, campus, shop, and hospital) as shown in Fig. 6(left). For 308

the indoor environment, each of the six rooms was divided into two 309

or three functional subareas as shown in Fig. 6(right). For efficiency, 310

we did not get the location name from a GPS map, since it slowed the 311

system speed. Hence, one subject walked around these six areas and 312

recorded the dataset (latitude, longitude, position) as the training set to 313

obtain the initial small fine-grained model for outdoor localization. 314

C. Falls Detection 315

The identification of motion and motionless postures classification 316

has been presented in our previous work [34], [36], [37]. In this paper, 317

we focus at a higher algorithmic level, on how to recognize falls based 318
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on fused heterogeneous contexts (current posture, posture transition,319

position, heart rate), to improve the reliability and accuracy of fall320

detection. All data were saved in an SQLite Database within the phone321

that comprises four tables named as: posture, location, minutData, and322

fusion, respectively.323

The posture table was derived from the posture classification based324

on the dataset (t, Ax, Ay, Az, θX , θY , θZ ) sensed from the phone.325

The sampling frequency from the phone was set at 5 Hz, and postures326

classification was performed point by point, but the classification results327

(t, posture) were saved into the posture table every 2 s using a majority328

voting mechanism for every classified period of time [33].329

The location table is derived from the location classification based330

on the dataset (t, tagID , RSS1 , RSS2 , RSS3 ) sensed from the RFID331

network (sampling rate for three readers is 2.5 Hz in this study), the lo-332

cation detection results (t, tagID , location) were saved into the location333

table every 30 s.334

The minutData table was derived from the smartwatch based on335

the HiCling software development kit, which included (t, heartrate,336

isWear). The dataset was saved into minutData every minute.337

The fusion table was derived from the above three tables. Items (t,338

tagID , currPosture, prePosture, location, heartrate) were selected and339

inserted into the fusion table every 2 s. Since the three tables have340

different sampling frequency as described previously (2 s versus 30 s341

versus 60 s), the items will repeat the previous value if a new sample342

value has not been acquired.343

The falls detection is performed based on the fusion table, comprising344

the heterogeneous, multimodal data. So for example, if a lying or sit-345

tilted posture was detected, then a backward reasoning algorithm was346

used to check the saved previous posture, current position, and heart347

rate to infer whether a certain fall or a possible fall can be inferred based348

on two models: certain fall model and possible fall model, defined next.349

certainFall ≡ IsCurrentPosture (∃lying||sitTilt, yes)
∧ IsPrePosture (∃walk ||run|| stand, yes )∧

{IsLocatedIn (∄bed||sofa, yes )∨
IsHeatrate (∃higher||lower, yes)}

→ fall alert to a caregiver immediately

possibleFall ≡ IsCurrentPosture (∃lying||sitTilt, yes)
∧ IsPrePosture (∃sit, yes )∧

{IsLocatedIn (∄bed||sofa, yes )∨
IsHeartrate (∃higher||lower, yes)}

→ possible alert music with stop button

where the higher or lower heart rate means the measured current heart350

rate is more than the user’s maximum resting heart rate (RHR), or less351

than the user’s minimum RHR, which was tested and saved when the352

user first began wearing the smartwatch. Zhang et al. [38] reported that353

a healthy RHR for adults is 60–80 bpm and an average adult RHR range354

is 60–100 bpm. An elevated RHR can be an indicator of increased risk355

of cardiovascular disease.Certain falls model: Lying or sit tilted from356

a wrong posture transition (such as from run to lying directly) while357

located in an inappropriate place (i.e., not the bed or sofa), or sudden358

change in heart rate.Possible falls model: Lying or sit tilted from a359

right posture transition (such as from sit to lying), however, located360

in an inappropriate place (i.e., not the bed or sofa), or sudden change361

in heart rate. The procedure of the proposed fall detection algorithm362

(named mulFusion) is shown in Fig. 7. The models demonstrate that the363

difference between a certain fall (wrong posture transition) and possible364

fall (right posture transition) is determined by the posture transition.365

Meanwhile, both models have similar features, e.g., lying or sit tilted366

at an inappropriate location, or abnormal vital signs, e.g., higher/lower367

heart rate. If a certain fall is detected, then a fall alert can be delivered to368

Fig. 7. Fall detection algorithm (mulFusion) based on fused multiple dataset
and a certain fall model as well as a possible fall model.

caregivers immediately. Otherwise, alert music with a stop button will 369

play if a possible fall is detected; finally, a fall or a normal lying/sit-tilted 370

activity will be determined according to whether the user stops the alert 371

music. 372

IV. EXPERIMENTS 373

In order to evaluate the different situation-awareness outcomes, nine 374

healthy people (four female and five male, aged 25–55) simulated vari- 375

ous falls and a set of different daily activities at indoor and outdoor loca- 376

tions. For safety purposes, three mats were distributed on the ground in 377

three different rooms. The experimental results were validated against 378

observation notes recorded by two independent observers. 379

The experimental results for falls detection were compared with an 380

accelerometer with a predefined threshold method described in our 381

previous work [39]. The algorithms were named as mulFusion and 382

accThresh: 383

mulFusion: Falls were detected based on the multiple fusion contexts 384

including current posture, posture transition, location, and heart rate, 385

as proposed in this paper. 386

accThresh: Only using the acceleration change with predefined 387

threshold to detect falls, as described in [39]. 388

A. Indoor Experiments 389

In the indoor environment, each of the nine subjects performed a 390

series of normal and abnormal activities, described ahead, in a ran- 391

dom order for three times, and five of the subjects performed the same 392

activities in prescribed order for another three times, respectively. Ad- 393

ditionally, three of the subjects then performed the possible falls using 394

approach1 for three times, and using approach2 once, respectively. 395

1) Fall-lying (f-lyi): From walk to lying quickly or slowly on the 396

bed, sofa, and ground (mat), respectively. 397

2) Fall-sitTilted (f-sitT): From walk to sit-tilted quickly or slowly 398

on the bed, sofa, and ground (mat), respectively. 399

3) Possible falls (p-fall) approach1: From walk to sit on the ground 400

(mat) for more than 2 s, then lying on the ground (mat). 401

4) Possible falls (p-fall) approach2: In order to simulate the elderly 402

falls that may cause the higher heart rate in a case, required run 403
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Fig. 8. Interface of the situation-aware system on the phone. Top of the left
figure is the phone connecting the watch when using it firstime; bottom of the
left figure is a subject wearing the phone and watch at the same time. The
right-hand side illustrates the user interface.

on a treadmill for 15 min first, get the heart rate is more than404

90 bpm, then sit tilted on the sofa for a while.405

5) Normal lying (n-lyi) approach1: From walk to sit on the bed for406

more than 2 s and then lying on the bed normally.407

6) Normal lying (n-lyi) approach2: From walk to sit on the bed for408

less than 2 s, and then lying on the bed very quickly.409

7) Bend: Do some bending (>30°) activity during the walking.410

8) Sit tilted (sitT): Sit tilted right/left at the sofa for 6 min.411

9) Sit still (sitS): Sit on a chair and watch television for 65 min.412

Following these experiments, there were 126 f-lyi and 126 f-sitT413

in total (42 on the ground, 42 on the bed, 42 on the sofa); 12 p-fall414

in total (nine lying on the ground and three sit tilted on the sofa with415

higher heart rate); 42 normal lying using approach1; 42 normal lying416

using approach2; 101 Bend, 18 sitT, 18 sitS and a number of standing,417

walking, as well as sitting activities recorded and analyzed, indoors.418

B. Outdoor Experiments419

In the outdoor environment, each of the nine subjects walked from420

home to a park and then adopted the following postures: sit upright or421

sit back on the park bench for a period of time, and then walk around422

and bend two times during the walk; finally, sit on the bench again423

for a while. Thus, there were 18 normal sitting postures and 18 bend424

postures as well as a number of walking and stand activities recorded.425

The outdoors localization was based on the coarse-grained subareas,426

for instance, GPS location may recognize the park area correctly, but it427

cannot recognize the bench area within the park. In this case, a possible428

fall can be raised if the user is sit tilted at the park (bench), since the429

system deems that the user is sit tilted on the ground outdoors.430

C. Experimental Results431

The postures data collected from the nine subjects were classified in432

real time and a voice reminder was delivered in real time. The interface433

of the system is shown in Fig. 8.434

The experimental results based on the mulFusion algorithm are435

shown in Table II.436

Table II demonstrates that the level of agreement is very good using437

the proposed mulFusion algorithm, since its Cohen’s Kappa is 83.8%.438

For example, the accuracy of f-lyi and f-sitT detection were higher439

(96.8% and 94.4%, respectively). Some instances of f-lyi were classi-440

fied as normal-lying when the user transitioned from walk to lying on441

the bed slowly, since in this case, the posture transition was recognized442

as from standing to lying, rather than from walk to lying.443

The accuracy of possible falls (p-fall) classification was 75%. One444

of the 12 p-fall was classified as sit, since the ending “sit tilted” posture445

was recognized as sit. Another two of the 12 p-fall were classified as446

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS FOR THREE TYPES OF FALLS WITH

NORMAL LYING CLASSIFICATION, USING THE MULFUSION AND ACCTHRESH

ALGORITHMS, RESPECTIVELY

mulFusion algorithm accThresh algorithm

f-lyi. f-sitT p-fall n-lyi. total f-lyi. f-sitT p-fall n-lyi. total

TP 122 119 9 250 126 0 9 135

FN 4 7 3 14 0 126 3 129

TN 72 72 0 0

FP 12 12 84 84

total 126 126 12 84 348 126 126 12 84 348

Positive predictive 95.4% 61.6%

Negative predictive 83.7% 0%

Sensitivity 94.7% 51.1%

Specificity 85.7% 0%

normal lying, since the lying location ground was misclassified as bed 447

(one of the three mats was located near to the bed). The accuracy of 448

normal-lying (n-lyi) classification was 85.7%. Instances of of normal- 449

lying were classified as f-lyi when the sitting period of time was less 450

than 2 s before the normal lying, since in this case, the sitting posture 451

was ignored, thus the posture transition was analyzed as from walk to 452

lying directly. The accuracy of bend classification was lower (68.3%). 453

Since the “deep waist bend” (more than 70°) has similar features (ac- 454

celeration and phone’s orientation angles) with lying when the phone 455

was belt-worn on the waist, therefore, instances of bend were classified 456

as f-lyi. In fact, bend classification accuracy is problematic, since it 457

depends on dexterity and how much deep bending the users have done. 458

The classification accuracy for normal sit and stand were similar 459

around 85%. Sit and stand were confused on occassion. The classifica- 460

tion accuracy for unhealthy postures sit tilted (sitT) for more than 5 min 461

and sit-still (sitS) for more than one hour all were 100%. For compari- 462

son, three types of falls with normal lying activity were classified using 463

the mulThresh algorithm and accThresh algorithm, respectively. The 464

experimental results (see Table III) were compared between both algo- 465

rithms from four aspects: recognize real falls correctly (TP); recognize 466

real falls as nonfall (FN); recognize nonfall activities correctly (TN); 467

recognize nonfalls as a fall (FP). 468

Table III illustrates that the algorithm mulFusion can improve the 469

falls detection accuracy and reliability significantly compared to the 470

algorithm accThresh. The classification results for the three types of 471

falls with normal lying, compared to accThresh, mulFusion had positive 472

predictive value of 95.4% versus 61.6%, negative predictive value of 473

83.7% versus 0%, sensitivity of 94.7% versus 51.1%, and specificity 474

of 85.7% versus 0%. The accThresh algorithm was able to detect all 475

the falls ending with lying (f-lyi) correctly, neverthless, it recognized 476

0/126 falls ending with sit tilted (f-sitT) and 0/84 of normal lying (n- 477

lyi), since the normal lying posture also caused a large acceleration 478

changing. For the 12 p-fall, it also only recognized the 9/12 correctly, 479

which was ending with lying. Therefore, this threshold only algorithm 480

was limited for the falls ending with sit-tilted situations. 481

In general the participants deemed the system helpful and easy to 482

use. It is appareent that the “possible” fall music with a stop button can 483

reduce the delivery of incorrect alerts. 484

V. CONCLUSION AND FUTURE WORK 485

The accuracy of falls detection algorithms reported in the literature is 486

good. However, most of the accelerometer-based experiments involved 487

typical falls with a high acceleration upon the impact with the ground. 488
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Slow falls and normal lying are more difficult to detect. Fall-like events,489

which trigger false alarms, limit users’ acceptance. The contribution490

of this paper is the development of a real-time situation-aware system491

for falls alert and unhealthy postures reminder, based on integrated492

multiple contexts (e.g., postures, transition, location, and heart rate)493

acquired from sensors embedded in a smartphone, in a smartwatch and494

using a deployed RFID network in an indoor environment.495

Fall detection algorithms based on integrated multiple contexts can496

improve the accuracy of detection of certain falls distinguishing them497

from normal daily activities. Gjoreski et al. [17] studied a combination498

of body-worn inertial and location sensors for fall detection. They499

illustrated that the two types of sensors combined with context-based500

reasoning can significantly improve the performance. Compared to501

their study, this research combined four modalities (accelerometers,502

orientation, location, and heart rate). It is potentially more robust. This503

context-based work can be extended beyond determining falls. The504

postures sit tilted and sit still may, under certain circumstances, be505

defined as unhealthy postures. We know that back pain, neck pain,506

or shoulder pain can be avoided or managed by correcting posture;507

however, it can be difficult to maintain appropriate postures throughout508

the day. One of the most common causes of low back pain is poor509

sitting posture (e.g., sit tilted for a long time) [40]. Hence, it may be510

possible using this approach to remind people to correct poor postures511

in real time.512

The accuracy of falls detection depends on the accuracy of pos-513

ture classification and location detection. There are many sources of514

potential interference in a real living environment, such as electrical515

and magnetic interference (from electricity and fluorescent devices and516

even home-based networks). These are much harder to control than in a517

laboratory situation. In addition, there will be errors introduced by arte-518

fact, and absence of GPS signal outdoors. Such issues can be addressed519

in a longer study, once the technical feasibility, usability, and potential520

acceptance issues have been overcome or at least better understood.521

Services could be implemented in two ways: 1) alert can be delivered522

to caregivers immediately if a certain fall is detected; 2) music with a523

stop button can play if a possible fall is raised. A fall or a normal lying524

activity will be determined according to whether the user stops the alert525

music.526

A study by van Hees et al. [41] has suggested that the classifier527

performance can be overestimated using controlled datasets. In fu-528

ture, we will study how to improve classification accuracy for an array529

of postures and transitions, and inferred situations in real-life condi-530

tions, especially for elderly at their home environments. In addition,531

smartphone-based solutions may have usability issues, since it is a re-532

quirement for the user to keep a smartphone at the fixed position [12].533

As sensing technology continues to evolve, the use of a smartwatch for534

an additional channel of accelerometer data is worthy of further inves-535

tigation. The phone can then be used for data analysis and reminders536

delivery, which may improve acceptance. The use of such technology537

for influencing longer term behavior change using real-time reminders538

requires further study of a longer period.539
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