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Introduction

The present work proposes a model based on Markov Logic Network (MLN) [16] for 

representing emergency situations involving smoke and fire on offshore petroleum plat-

forms. The model is tested for two important situations, FIRE and EVACUATE. In the 

FIRE situation, fire is observed due to smoke at some place on the platform, and all 

workers need to muster to their primary muster station. In the EVACUATE situation, the 

fire is escalated so that some escape routes to the primary muster station are blocked 

and all personnel needs to muster at the lifeboat or alternative muster station. The pur-

pose of this work is to have a model that can be used by a software agent so that the 

agent can exhibit human-like situation awareness (SA). Such agents can subsequently be 

used, for example, in training simulators to enrich trainees’ experience by showing them 

various scenarios in which the agent shows recognition of different situations (to makes 

various decisions). A participant can learn from the agent what information is important 

in a given scenario for correct SA.

Representing the emergency response of agents operating in a virtual environment 

(VE) is a challenging and active research area. Emergencies on board can arise from 
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several factors, among which accidents are on top [28]. The Cullen Report [10] follow-

ing the Piper Alpha disaster has clear recommendations for operators to perform a risk 

assessment of ingress of smoke or gas into the accommodation areas. Klein [31] says that 

VE training is important for the crew in many respects, for example, because trainees 

get opportunities to learn from and about each other as a team, and also to learn about 

the cues that unfold in an evolving training scenario. Thus, a VE has an essential role as a 

training environment, and agents are important elements of VE fidelity [36].

Situations are highly structured parts of the world that span a limited space and time, 

and people talk about them using language. They are composed of objects having prop-

erties such that the objects stand in relations with one another [4]. An agent’s world can 

be considered as a collection of situations, and the agent should be able to discriminate 

among them. Devlin [14] extends Barwise and Perry’s Situation Theory [3, 5] and pro-

poses a representation using a concept called infon, which is an informational item of 

the form “objects a1,…, an do/do not stand in the relation P”. A situation, formally, is then 

some part of the world that is supported by a set of infons.

This work considers SA as being a phenomenon that refers to the information flow [13] 

from a situation to a subject such that the subject can reason about the situation. End-

sley’s [17] model of human SA describes this information flow as a process with three 

successive levels. Level-1 begins when a person starts perceiving information as envi-

ronmental cues. This part of Endsley’s SA model has a direct resemblance with acquiring 

information about the presence of object a1…an for developing relevant infons in a situa-

tion. Level-2 in Endsley’s model explains that the person should be able to extract mean-

ing from what has already been perceived. Level-3 of the model says that the meaning 

of cues should enable a person to foresee something shortly. Kokar et al. [32] developed 

an ontology, called situation theory ontology (STO), that defines semantics for situation 

theory by including a meta-class describing the types of things (individuals, individual’s 

properties and relations among them) that constitute a situation as a type in accord with 

Barwise and Devlin’s situation semantics. Inference on the available facts (infons) with 

some background knowledge about the objects and their relations within the ontolog-

ical framework not only supports level-2 of Endsley’s SA model but also gives poten-

tial to achieve level-3 SA. For example, if an agent knows that fire lit in an oil container 

should not be put out with water, only then can the agent preempt somebody from doing 

so. For that, the agent should project the current information about the position of the 

fire and the water source approaching the oil container into a future state using a rule 

that exploits some predicate like fireEscalates(oil, water). STO satisfies many 

characteristics of Endsley’s SA model, and it was implemented in the Web Ontology 

Language (OWL) using the full profile (OWL-Full). Now that OWL changed in 2009 and 

the support for OWL-Full, which is required to fulfill the theoretical requirements of 

Barwise and Devlin’s approach to situation modeling, is unavailable, STO is difficult for 

use as a platform for modeling SA.

The concept of context in the literature related to artificial intelligence (AI) is similar to 

the situation in the SA literature. Sowa [60, 61] uses conceptual graphs (CG) to represent 

context or situations. CGs are an extension of Peirce’s existential graphs (c. 1882) with 

features taken from semantic networks of AI and linguistics. CGs are bipartite graphs 

where boxes are used to represent concepts, and circles are used to show relations. As 



Page 3 of 26Danial et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:37 

a simple example, a situation “Cat is on mat” can be represented in a CG using a linear 

notation as: [Cat] → (On) → [Mat], where Cat and Mat are two concepts (each for 

one object/individual in the real world) related to each other by the relation On. Sowa 

[61], and Akman and Surav [1] say that both context and situation are the same notions. 

Kokar et al. [32] report that contexts (situations) in AI are dealt with using predicates 

such as isa(c, p) to mean that the proposition p holds true in the context c.

Predicates in First-Order-Logic (FOL) are building blocks of the system based on it. 

CG is computationally equivalent to FOL [61]. Rules in FOL are considered as hard con-

straints in that a world is thought to exist only when the rules are valid. This is contrary 

to situations in real life. A rule like smoke causes cancer in FOL is always valid, so an 

agent that smokes certainly has cancer. But this is not the situation in the real world 

where rules are violated, and the violation is only a matter of limitation regarding the 

frequency of cases where the rule is not observed.

Domingos and Lowd [15] consider FOL rules as hard constraints that limit the pro-

gress in AI research, and offer a method to describe soft rules using MLNs. Soft rules 

are formed by assigning weights to the FOL rules in MLNs. The weights determine how 

likely the entities of the world might follow a rule. The higher the value of the weight, 

the harder the rule becomes. The present work uses MLNs to construct a model for 

situations in emergency scenarios, particularly those arising on offshore petroleum 

platforms. The purpose is to create software agents for training in VEs, where an agent 

exploits environmental cues to understand different emergency situations. This way, the 

agent can be given an ability to construct a repertoire of situations that it observes. Such 

agents can be expected to make experience-based decisions when exposed to emergen-

cies in a solo or a group training environment. Applications of such agent models can be 

found in many fields, including pilot behavior modeling [24] during midair encounter, 

game programming, and so on.

Being aware of a situation is not merely an outcome of a typical feature matching 

mechanism, as some authors suggest [43]. Awareness helps categorization of things 

according to certain common grounds. In other words, recognition of a situation, should 

mean first, to model a situation using a knowledge representation schema, and second, 

to devise a mechanism whereby inference can be performed on the stored knowledge to 

extract new knowledge. Since MLNs support inference—even on incomplete data—the 

resulting model of SA has some resemblance to Endsley’s SA model. Moreover, as MLNs 

allow conflicting rules, it is a more natural choice for modeling situations in which cues 

at different times and space could take different meanings.

Social agents can interact with human participants during an emergency egress sce-

nario to form a group-training situation to learn from human responses and then to 

guide other computing modules for evaluation of human responses. Participants can 

also learn from these agents to respond in a scenario. The use of these agents in training 

exercises reduces the necessity of having a large number of real people in a large-scale 

group training [40]. Also, the rehearsals with agents are more effective than with human 

counterparts because of the consistent, usually scripted, agent behavior. A more realistic 

approach is to replace the scripted agent’s behavior to more natural, human-like behav-

ior so that a participant can trust the agent responses and may consider it a colleague, 

rather than a robot. The works in [11, 12] focus on route learning for agents and propose 
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a model where an agent can exhibit behavior that is similar to a human participant while 

learning a new escape route. Risks associated with human responses during an evolv-

ing emergency are assessed in [42]. The authors assert that hazards (like fires, smoke), 

weather condition, malfunctioning equipment, and inadequate emergency preparedness 

such as that related with the recognition of platform alarms are important factors that 

affect the human response. Musharraf et al. [38] propose a methodology to account for 

individual differences in agent modeling for emergency response training. The problem 

of modeling SA for such agents is still another important area that has potential implica-

tions in the way agents make decisions in evolving emergencies. Chowdhury [8] explores 

various situations that occur on offshore rigs, platforms, and installations. The author 

explains how fire and evacuation situations are indicated on different platforms.

“Previous works” section describes some recent work in  situation awareness. “A 

method to model situation awareness” section describes the proposed methodology 

to model SA based on MLN. “Case studies: SA during offshore emergency scenarios” 

section describes a case study and experimental results that serve to assess the valid-

ity of the proposed model. “Results and discussion” section contains a discussion of the 

results, and “Conclusion” section presents concluding remarks and future directions.

Previous works

With the increasing demand of intelligence based systems, encompassing from smart 

cars to smart homes, the use of situation recognition has become a focal point in 

research because of its importance in enabling artificial intelligence. Récopé et al. [52] 

attempt to discover the reasons for interindividual differences in volleyball players’ 

defensive behavior during different identical situations. The authors raised an important 

question, “Might other dimensions of situation assessment, which have so far not been 

studied to any great extent, be involved?” Based on an experiment involving two vol-

leyball teams, the authors conclude that an individual’s activity is governed by a specific 

norm that organizes, orients and enhances understanding of the actions as a coherent 

totality. In other words, there is a subconscious sensemaking that individuals use in 

order to determine the relevance of cues corresponding to different situations.

In order to assess network security within an Internet of Things (IoT), Xu et al. [70] 

propose an ontology-based model for SA for network security of IoT. Again, ontologi-

cal knowledge helps identifying concepts and relations in order to understand what 

type of situation is currently being observed. An IoT security situation is described 

by employing knowledge about the context, attack, vulnerability, and network flow. 

A model of how SA spreads among agents in a multiagent system is presented in [6]. 

Nasar and Jaffry [41] study this work [6] and extend it, using Agent Based Modeling 

(ABM) and Population Based Modeling (PBM) techniques, by incorporating trust in 

the SA model. Thus, the resulting agents’ beliefs and decisions about the environ-

ment have been shown to be affected by their trust in other agents. Johnson et  al. 

[27] addressed the issue of decrease in SA when the flight control mode changes from 

automatic to manual mode. The authors proposed a cognitive model based on “per-

ceive-think-decide-do” scheme that estimates the effects of change in the flight mode 

on operator behavior. The primary contribution of the proposed model is an atten-

tion executive module, which is responsible to detect changes in attention on specific 
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control loops based on changes in priorities. The authors of [30] develop a model that 

uses social media posts and process them, by clustering consistent posts, in the way 

that a user can gain more better insights by reading different views (or world view) 

that the system has generated. This approach is not particular to model situation 

awareness for agents; however, people can assess a situation, described through posts, 

better by reading the world views about the posts on tweeter or any other social 

media platform that exploits the proposed technique.

Yang et al. [71] develop a probabilistic model for robots to decide about a role that 

otherwise would have been fulfilled by a human had there been the same situation. 

Situations are classified here as: easy, medium, and hard. The model takes input as 

2D and 3D images, and the robot model should get its role first, and then decides 

upon actions per role and the situation as recognized through the images. Roles are 

recognized by fusing the results of two indicators, the distance-based inference (DBI), 

and the knowledge-based inference (KBI). The DBI uses a relative distance between 

humans and mission critical objects to determine the probability of a possible role. 

The KBI uses a Bayesian network that integrates human actions and object existence 

to determine a possible role. The final role is determined as a fusion of DBI and KBI by 

using information entropy measure. The actions of a person that is detected as target, 

because he is carrying the mission critical object, is a major contributor of changes 

in the situation. Situation levels are determined by using the target person actions 

(moving, stationary) and the relative position of several mission related entities at 

some time t by using a Bayesian network. Actions are decided based on the situa-

tion level and the inferred role. The proposed approach is robust in recognizing roles 

because of the fusion of different inference results, it would be useful if situations to 

be encountered are of fundamentally the same type, so that they can be classified as 

easy, medium, and hard. For example, what would a robot do if the situation is com-

plex, as is the case of an offshore emergency where the environment is cluttered with 

many objects, crew, alarms, exit signs, announcements, and so on. In such conditions, 

different situations are possible, and the question of classifying a situation into easy, 

medium, and hard seems an idealistic assumption. Hu et al. [24] developed model for 

predicting pilot behavior during midair collision recognition-primed decision model. 

Features extracted from the environment are compared with the stored attributes of 

situations, and an already encoded situation is retrieved based on a Bayesian classifier 

as a similarity criterion.

Naderpour et al. [39] developed a cognition-driven SA support system for safety–

critical environments using Bayesian networks. The system consists of four major 

components to deal with (1) receiving cues from environments, (2) assessing situation 

based on dynamic Bayesian network and fuzzy risk estimation method, (3) recover-

ing from a situation, that advises measures to reduce the risk of a situation, and (4) an 

interface for better interaction with people. Another study [59] categorizes maritime 

anomalies, such as speeding of a vessel, according to the levels in the JDL data fusion 

model [35]. Szczerbak et  al. [63] use conceptual graphs to represent ordinary real-

world situations and introduce a method to reason about similar situations. Liu et al. 

[34] propose an information fusion model with three layers for event recognition in 

a smart space where sensory data is collected in the first layer, context is represented 
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as MLN in the second layer. The third layer maps the contextual information of the 

second layer to corresponding events. To fuse uncertain knowledge and evidence 

Snidaro et al. [58] develop an MLN based SA model for maritime events.

Gayathri et  al. [19] use MLN to develop an ontology that can be used to recognize 

activities in smart homes. The purpose is to detect an abnormal activity (or a situation) 

and inform the remote caretaker. Using a technique called Event Pattern Activity Mod-

eling [20], observations collected through sensors have been parsed into concepts in an 

ontology, and the relevant descriptive logic rules are generated. These rules are then 

converted into FOL equivalents, and weights are assigned to FOL rules to develop the 

MLN based activity model. Given the observations through sensors, the MLN activity 

model can be used to suggest different interpretations of the observed data in a proba-

bilistic sense. The use of MLNs enable representation of cyclic dependency among the 

rules, which is a major advantage of MLNs over Bayesian networks.

A method to model situation awareness

Take S to be a countable set and ℘(S) to define the set of all subsets of S, where the 

points of S are sites, each of which can either be empty or occupied by an object (such 

as a formula in a logical framework or a particle as it appears in the statistical mechan-

ics literature). The sites of S can be represented by binary variables X1, X2, …, Xn. The 

subset Λ ∈ ℘(S) is regarded as describing a situation when the points of Λ are occupied 

and the points of S − Λ are not. The elements of ℘(S) are sometimes called configura-

tions. The set S, representing the sites, may have some additional structure. As sites are 

connected, S can be considered as forming an undirected graph G [48], so the points of 

S are the vertices of some finite graph G(S, E), where E is the set of edges. The present 

work involves modeling a probability measure (defined in the following subsections), 

restricted to the sample space Σ = {0, 1}S, having a kind of spatial Markov property given 

in terms of neighbor relations of G [22], called a Markov random field [25, 29, 45].

Definition G(S, E) is countable and does not contain multiple edges and loops. If x, y ∈ 

S and there is an edge of the graph G between x and y, then x and y are considered neigh-

bors of each other [48]. Formally, the function f: S × S → {0, 1} is given by 

Definition If Λ ∈ ℘(S) then the boundary ∂Λ ∈ ℘(S) is defined as:

A Markov network (MN) is composed of G and a set of potential functions φk. G has a 

node for each variable, and MN has a potential function for each clique1 in G. A poten-

tial function is a non-negative real-valued function of the configuration or state of the 

variables in the corresponding clique. The joint distribution of the variables X1, X2, …, 

(1)f
(

x, y
)

=

{

1 if x and y are neighbors,
0 otherwise

(2)∂� = {y ∈ S − �|f
(

x, y
)

= 1, for some x ∈ �}

1 A clique of a graph G is a complete subgraph of G.
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Xn can be developed to understand the influence of a site, i.e., a variable, on its neighbors 

[50] as defined below:

where x[k] is the configuration of the kth clique, i.e., the values of the variables in the kth 

clique. Z is partition function for normalization, Z =

∑

x∈�

∏

k
φk

(

x[k]

)

.

Markov Logic Network

Because a random variable assigned with a value can be considered as a proposition [23], 

Domingos and Richardson [16] define MN by first considering the variables as rules/for-

mulas in FOL. Unlike FOL, a formula in MLN is assigned a weight (a real number), not 

just the Boolean true or false. Formally, an MLN L is defined as a set of pairs (Fi, wi) 

with Fis being the formulas and wis being the weights assigned to the formulas.

If C = {c1, c2, …, c|C|} is the set of constants or ground predicates (the facts), then L 

induces a Markov network ML,C such that the probability distribution over possible 

worlds x is given by:

where ni(x) is the number of true groundings of Fi in x, x[i] is the state or configuration 

(i.e., the truth assignments) of the predicates in Fi, and φi

(

x[i]

)

= e
wi.

The FIRE and EVACUATE emergency situations

Fire and evacuate are among the important types of emergencies that occur on offshore 

petroleum installations [62]. Chowdhury [8] describes various emergencies, such as fire/

blowout, evacuate,  H2S release, and the types of alarms used on different offshore rigs. A 

fire may erupt due to many reasons, such as a gas release near an igniting source, or an 

electrical spark near a fuel line. Explosions also result in fires. In any case, if a fire event 

occurs a fire alarm is raised, and people on board must leave their work and report to 

their designated muster station, which is usually their primary muster station. This type 

of situation is called a FIRE situation, and it will end when an all-clear alarm sounds, 

which means that the fire has been taken care of and the people can now return to their 

duties. In case a FIRE situation escalates, meaning that the fire spreads and blocks vari-

ous paths so that personnel’s safety could be further compromised, an EVACUATE situa-

tion may come into effect, and this new situation is communicated to people by another 

alarm, different from the fire alarm. In the EVACUATE situation, people must report 

to their designated secondary muster station, the lifeboat station, from where the final 

evacuation from the platform can proceed.

Knowledge representation of emergency situations

An interesting aspect of modeling a situation is to identify the factors that lead to the 

situation of interest. Typically, a situation involves preconditions or events, some of 

which are observable, and some are not directly visible [58]. Since MLNs are based 

(3)P(X = x) =

1

Z

∏

k

φk

(

x[k]

)

(4)P(X = x) =

1

Z
exp

(

∑

i

wini(x)

)

=

1

Z

∏

i

φi

(

x[i]

)ni(x)
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on FOL rules, the basic methodology as described in [15, 16], and followed here, 

requires developing FOL rules, followed by assigning the weights, and finally per-

forming the required inference. Nonetheless, there is no straightforward way of writ-

ing FOL rules for a knowledge domain. Writing FOL rules requires experience and 

thorough domain knowledge. Also, the developed FOL rules must fulfill some criteria 

of acceptance. For example, a rule like “smoke causes cancer” has been given serious 

attention among medical practitioners [9] since the constitution of a study group in 

S1: Identify situations for which awareness is a concern. Let these be S = {s1,s2,…sn}

S3: Identify factors that are potential direct or indirect pre-conditions for each of the situations in S.

S4: Develop rules Rj = {r1, r2, …, rj} in FOL where the preconditions should lead to intermediate 

factors or situations in S. Let k ≤ j soft-rules be made. h=j− k is the number of hard-constraints/rules.

S7: Using the training sample, compute weights Wk = {w1, w2, …, wk} for 

each of the soft rules r1, r2, …, rk. [NOTE: the present work uses 

discriminative learning]

S6: Partition the experimental data into training (Tr) and testing (Te) samples

Tr

S5: Analyze the rules to determine which predicates are evidence, which are query (by weighing 

if the query predicates match the questions in step S2), and which are non-evidence predicates.

S8:Weights 

make sense?

MLN L = (Rj, wk)

S9: Apply one or more of the following ways to improve the weights: 

(1) increase the training sample size, then go to step S5, 

(2) replace some rules with more robust rules, then go to S2,

(3) tweak the learning algorithm parameters, then go to S6,

(4) use a different learning algorithm, then go to S6.

No

S10: Following Domingos and Richardson (2007), if C = {c1, …, c|C|} are the facts against 

the predicates in Rjs, the Markov network, ML,C can be formed using the steps below:

(1) Create one binary node for each possible grounding of each rule  in L, set its value to 

true if the grounding predicate is true, otherwise set the node value to false.

(2) Create one feature for each possible grounding of each rule in L. Set the value of features 

to the corresponding values of the ground formulas. The weight of the feature is the wi

associated with Fi in L.

Yes

S2:What are the questions that we are interested to answer about/in situations S.

Frame these questions as , Q = {q1, q2, …, qm}

S11: Since a query in S2 is a formula in FOL, estimate the probability P(qm | Te, L, 

C) using an inference algorithm such as MCMC, where Te is a finite set of ground 

atoms with known truth-values (the evidence), L is the MLN, C is the set of 

constants as appeared in S10, including any constants that appeared in qm and Te. 

Te

Stop

Start

Fig. 1 The proposed methodology to develop a situationally aware agent model based on MLN
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1957 [56]. This group was appointed by several institutes, including the National Can-

cer Institute, and it concludes, by considering the scientific evidence, that cigarette 

smoking is a causative factor for a rapid increase in the incidence of human epider-

moid carcinoma of the lung.

Figure 1 proposes a methodology that incorporates the basic steps of constructing 

an MLN iteratively so that each rule could be judged against some heuristic crite-

ria of acceptance, for example, by assigning the weights to rules through empirical 

findings using a learning algorithm [53] and then seeing if the weights make sense. 

In any case, if many of the rules come up as negatively weighted, then such a knowl-

edgebase will have little practical value, and one must look into the training samples 

and/or the rules themselves. In the former case, it is possible that the training sample 

includes little evidence where the rules were successful. In the latter case, it is pos-

sible that the rules were not constituted correctly, regarding the specification of dif-

ferent predicates, their connections using logical connectives, and their implication 

into a consequent. In short, one must go back and update the rules and/or training–

testing data sample, as shown in Fig. 1 until the desired results are met. The choice 

of a learning algorithm is also a point to consider. Since discriminative learning does 

not model dependencies between inputs within the training sample, it often produces 

results [53] better than generative learning techniques. Using the testing samples as 

evidence, the probability that a query predicate holds is estimated by employing an 

inference mechanism, such as by using the MC-SAT algorithm [46].

Table 1 Variable/predicate names and description

Variables Predicate name Parameter types Description

Listens L (agent, alarm, time) An agent listens to an alarm during 
time interval time

Recognizes R (agent, alarm, time) An agent recognizes an alarm during 
time

HasIntentToReach HITR (agent, musterLoc, time) An agent has intention to reach a 
muster location during time

HasEmrgSit HES (agent, emgSitType, time) An agent has an emergency situation 
during time

SeesThreat ST (agent, threatType, time) An agent sees a threat during time

HasFocusOn HFO (agent, pa, time) An agent has focus on a PA during 
time

HasSomeEmrgSit HSES (agent) An agent gets a sense of some emer-
gency situation

FollowsPA FPA (agent, pa, time) An agent understands and follows a 
PA during time

KnowsEmrgTypeOfAlarm KETA (emgSitType, alarm) An agent knows which alarm is used 
in a given emergency type

KnowsEmrgTypeOfThreat KETT (threatType, emgSitType) An agent knows which threat type 
would give rise to a particular emer-
gency situation

KnowsEmrgTypeOfPA KETPA (pa, emgSitType) An agent knows what emergency 
situation is being announced in PA

BeforeSeeingThreat BST (agent, alarm, time) BST is paired with HITR with logical 
‘and’ connective to mean that HITR 
is true only when the agent has 
determined the muster location 
before seeing a threat
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Table 1 lists the variables studied in this work for SA about the situations discussed 

earlier in “The FIRE and EVACUATE emergency situations” section, the FIRE situation, 

which asks all personnel to move to the primary muster station, and the EVACUATE sit-

uation, which involves escalation of a fire into a larger fire that obstructs the primary 

escape-route leading to the primary muster station, thereby necessitating re-routing to 

the alternative or lifeboat station. A set of FOL rules are proposed in Table  2 so that 

an agent recognizes these situations like the way a human counterpart recognizes them. 

The preconditions (antecedents of FOL rules) used here are common among experts and 

have been suggested in earlier studies [8, 18, 49, 55, 57, 62, 64–66, 68]. The query pred-

icates determine the probability of recognizing alarms, having a FIRE situation, hav-

ing an EVACUATE situation, and having some (unknown) situation given the evidence 

predicates.

Reasoning

The variability in the emergency alarm systems and indicators used at different offshore 

installations is a source of confusion when a real emergency occurs, especially for per-

sonnel who frequently move from one to another platform for performing special tasks. 

Alarm recognition is considered a major contributor to the awareness of an emergency 

type [8]. Different alarms mean different situations requiring a different course of actions 

by the personnel onboard. The scope of the present work is limited to SA and does not 

extend to finding a suitable course of action in case of an emergency. Recognition of 

alarms is something that cannot directly be observed unless the person is asked, so a 

search for further factors that indicate that an alarm has been recognized is required. 

An alarm cannot be recognized if it was not heard, whereas listening needs attention 

towards the alarm signal [51]. Emergency alarm signals are so loud that it is hard not 

to hear them, but that does not mean that people will always recognize which situation 

the present alarm is for. An agent can exploit rule # 1 in Table 2 to express the behavior 

of not recognizing an alarm if, for any reason, such as the inertial tendency of people to 

keep doing what they are doing [69], the agent does not listen to it. Several studies [49, 

65] show that people do not start evacuating a building or moving to a muster location 

Table 2 The FOL rules that  are showing the  knowledge base for  basic emergency 

preparedness

# Rules

1 ¬L(ag,al,t) ⇒ ¬R(ag,al,t).
2 L(ag, + al,t)^HITR(ag, + mloc,t)^BST(ag, + al,t) ⇒R(ag, + al,t)
3 L(ag,al,t) ⇒HSES(ag)
4 ST(ag,thrt,t) ⇒HSES(ag)
5 (HFO(ag, + p_a,t)^FPA(ag, + p_a,t)^KETPA(+p_a, + eTyp)) v

(ST(ag, + thrt,t)^KETT(+thrt, + eTyp)) v
(L(ag, + al,t)^HITR(ag, + mloc,t)^KETA(+al, + eTyp)^BST(ag, + al,t))
⇒ HES(ag, +eTyp, t)

6 HES(ag,FIRE,t) ⇒ ¬HES(ag,EVACUATE,t)
7 HES(ag,EVACUATE,t) ⇒ ¬HES(ag,FIRE,t)
8 HES(ag,FIRE,t0)^HES(ag,EVACUATE,t1)^Gt(t1,t0) ⇒¬HES(ag,FIRE,t1)
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automatically when they hear alarms unless they are trained to do so, and there are some 

other factors or cues that lead them to act as needed in that situation.

Rule#2 uses two more factors to frame the conclusion of recognizing an alarm beside 

just listening. The first factor reflects a person’s ability to develop the intention of moving 

to the required muster station. The required muster station is referred to by the variable 

mloc that takes values from the set {MESSHALL, LIFEBOAT}. Literature shows that 

intention is an important cognitive state that affects one’s ability to participate in a deci-

sion-making process [7, 64]. Intention is modeled here as a predicate HITR that takes a 

value true if the agent develops the intention to move to mloc during a time interval t. 

An agent’s intention can be inferred by observing which route is taken up immediately 

after listening to the alarm. The agent can also be delayed in developing the intention 

to reach mloc and may require other cues for building up this intention. Therefore, to 

know if an alarm is recognized without the help of other cues, such as observing smoke, 

it is necessary to know when the agent develops the intention of moving to the required 

muster station after listening to an alarm. HITR is used in conjunction with the predi-

cate BST that ensures the intention of moving to the muster location is developed before 

seeing a threat because if an agent sees a threat, it would be unclear if its intention of 

moving to mloc is due to the threat or the alarm. The probability of recognizing the 

alarm is determined by using the conjunction of the three predicates. If any of the ante-

cedent predicates fail, the chances of recognizing the alarm will be reduced.

The variable ST (see Table 1) is used to indicate that the agent observes a threat. An 

agent who sees a threat (such as smoke or blowout) is highly likely to discover the type 

of emergencies involved (FIRE or EVACUATE). Rules # 3 and 4 say that an agent will be 

aware of ‘some’ emergency if it just listens to an alarm or observes a threat.

Public address (PA) announcements are also important cues for getting to know details 

about a developing situation [8, 18, 62, 68]. PAs are verbal announcements with clear 

words detailing the situation. The details include the location of a threat or hazard, what 

actions are needed, and what areas are affected. The agent can take advantage of the PA 

to learn about a developing emergency. However, this needs a focus on the words in the 

PA. The literature on distraction explains how people get distracted in different situa-

tions. Tutolo [66] says that children’s ability to listen without being distracted improves 

with age. Inattention to the available information has been studied for the offshore drill-

ing environment in [57]. The authors discuss other factors, such as stress, that influence 

focus of attention by producing a narrowing or tunneling effect so that a person is left 

focusing on only a limited number of cues under some stressors. Tversky and Kahneman 

[67] call this cognitive tunnel vision. The predicate HFO is true when the agent has a 

focus on a PA being uttered. An agent that is engaged in all activities except what is com-

municated in the PA is defined to have no focus, whereas one that suspends its current 

engagements and begins performing the actions according to the PA is considered to 

have focused on the PA. Similarly, if an agent, while moving, suddenly changes its course 

because of instructions given in the PA a moment before, this also considered to have 

exhibited a clear sign of responding to the PA. In general, gestures can be noticed to 

determine if an agent has a focus on an ongoing PA or not. The predicate FPA is used to 

demonstrate the requirement of following the PA. If HFO is true, but FPA is false, 

it means that, though the agent had focused on the PA’s words, it is confused or does 



Page 12 of 26Danial et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:37 

not have an understanding of the situation, and therefore, the agent is unable to follow 

the PA. Rule#5 is a disjunction of three different rules: the first determines SA about the 

emergency based on focus and understanding of PA, the second uses direct exposure to 

the threat/hazard, and the third is based on the recognition of alarms. This last disjunct 

in rule#5 uses the predicate KETA to link an alarm to the corresponding situation or 

emergency type because that is needed to conclude in the consequent predicate HSES. 

Rules # 6 & 7 are to ensure that FIRE and EVACUATE are two distinct types of situa-

tions, besides that EVACUATE may occur because of a fire [8, 62].

Rule # 8 says that if during some initial time interval t0 a FIRE situation is observed, 

and during some later interval t1 (where t0 ≺ t1) this situation escalates to EVACU-

ATE, then the FIRE situation will no longer exist during t1, although one may witness 

real fires during the EVACUATE situation.

Case studies: SA during offshore emergency scenarios

This work uses two case studies developed using the experiment performed in [55] to 

acquire training and testing data for SA during offshore platform egress scenarios so that 

the proposed model (in Table 2) can be judged against the empirical data. The objec-

tive of Smith’s experiment was to assess VE training effects on people’s ability to learn 

and respond during offshore egress scenarios involving fire hazards. The distribution of 

training of the participants and testing their performance is shown in Fig. 2. The experi-

ment targeted six learning objectives: (1) establish spatial awareness of the environment, 

(2) routes and mapping, (3) emergency alarm recognition, (4) continually assess situa-

tion and avoid hazards on route, (5) register at temporary refuge, and (6) general safe 

practices such as closing the doors when there is an emergency alarm in effect due to fire 

or smoke hazard. There were three sessions with increasing complexity. Session 1 (S1) 

involved training, practice, and testing for the learning objectives 1, 2, 5 & 6, session 2 

(S2) used scenarios involving the learning objectives 3, 5 & 6, and session 3 targeted the 

objectives 3, 4, 5 & 6. The experiment involved 36 participants divided into two groups: 

Group 1 contained 17, and Group 2 contained 19 participants. Group 1 was trained in 

several sessions, whereas Group 2 participants received only a single training session. 

The VE used in this experiment was All-hands Virtual Emergency Response Trainer 

(AVERT). AVERT is a research simulator of an offshore petroleum facility. It is used to 

train participants to improve their response should they face an emergency such as a fire 

S1: Basic 

training

Group 1 Practice Testing Feedback

Group 2 Testing Feedback
S2: 

Testing
Feedback

S3: 

Testing
Feedback

S2: Training, 

practice, testing and 

feedback sessions

S3: Training, 

practice, testing and 

feedback sessions

Fig. 2 Training exposure to participants. Sessions S1, S2, and S3. The datasets are obtained from S3 for both 

groups (Source: Adopted from [55])
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or an explosion. The present work uses only the third and the fourth learning objectives 

because they deal with the SA the participants exhibited during each scenario. The data 

was obtained by a careful reading of the log files and watching the replay videos of ses-

sion S3 recorded for each participant during the testing phase of the relevant scenarios.

Situations in experimental scenarios

Smith’s experiment [55] involves emergencies in which, initially, there is a fire in the 

galley. After some time, the fire escalates so that the primary muster station, which is 

the mess hall on deck A of the platform, becomes compromised. An audible fire alarm 

(the General Platform Alarm, GPA) followed by the relevant PA is made right after the 

initial fire event. The escalation of the fire in the galley to fire in the mess hall is then 

announced by a Prepare to Abandon Platform Alarm (PAPA), followed by another PA. 

Initially, a participant is situated in their cabin (see the floor map in Fig.  3-1) when a 

GPA alarm activates, followed by a platform announcement. The PA announcement 

directs the participant to muster at their designated muster station, which is the mess 

hall on A-deck for a FIRE situation. Upon hearing the GPA, the participant needs to 

Lifeboat sta�on

(Starboard side)

Mess hall

Floor map of C-Deck (Accommodation block)

Other cabins 

Smoke from Mess hall vent

Smoke in the stairwell

S
Cabin

(C-Deck)

2-levels down is A-Deck

Main stairwell

(C-deck)

Main stairwell

(A-deck)

Floor map of A-deck

External 

stairwell

F
ir

e
 E

xi
t

(2)

(1)

Fig. 3 Floor map for decks A and C in AVERT simulator. A participant starts from Cabin (S) in part (1) and ends 

either at the mess hall or the lifeboat station in part (2) using external stairwell or main stairwell. The dotted 

lines show the alternate route, and the solid lines refer to the primary route
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move out of the cabin and choose from the primary route (the solid lines, which goes 

through the main stairwell), or the secondary escape route (the dotted lines, which uses 

the external stairwell) to reach A-deck. The participants were trained to deal with these 

situations earlier using escape route training videos and instructions in the training ses-

sion S1. While moving toward the mess hall, after a fixed interval of time t0, the par-

ticipant receives a call to abandon the platform. This is the PAPA alarm, which indicates 

to the participants that they should immediately move to the secondary or alternative 

muster location, which is the lifeboat station at the starboard side of the platform (see 

Fig. 3-2). The time interval when PAPA is activated to the end of a scenario is termed 

t1. Thus, t0 is the time interval in which the participants get all cues related with the 

FIRE emergency, such as smoke in the stairwell, GPA alarm, and PA announcement that 

includes the words “fire in the galley”. Similarly, t1 is the time interval that starts when 

t0 expires and ends at the end of the scenario. During the t1 period, the participant 

receives cues related with an EVACUATE situation. The PAs use clear words as to what 

needs to be done in an emergency and what parts of the escape route are expected to be 

blocked due to fire or smoke. Although GPA and PAPA are activated at different times, 

indicating two different situations, the other environmental cues can be observed at any 

time during their lifetimes. For example, smoke in the main stairwell is considered as a 

cue for a FIRE situation. Some participants reached at this spot in the main stairwell 

after the PAPA was activated. Situations like these are complex because of confusion due 

to conflicting cues.

Data set for training and testing the model

Empirical data set (D1)

The empirical dataset D1 comprises the data collected from 17 participants in Group 

1. For brevity, the data from only two participants are shown in Table 3. Each predicate 

takes typed variables, so corresponding ground atoms are shown in the second and third 

columns of the table. The data set D1 is split into two parts. Based on the methodol-

ogy in Fig.  1, the model in Table  2 was trained with different sizes of training/testing 

ratios, like 50/50, 60/40, 80/20. Eventually, an 80/20 split of D1 was found to produce 

good results. That is, 80% of the data in D1 was used for training the rules in Table 2, and 

20% of the data was used here for testing the model.

Empirical dataset (D2)

The empirical dataset D2 comprises the data collected from all 19 participants in Group 

2. Again based on the methodology in Fig. 1, different samples sizes were tried for par-

titioning the dataset D2; the 80/20 ratio for training and testing samples was used here.

Setting up the model

We consider close world assumption for all predicates except KETA, KETT, and 

KETPA. The predicates KETA, KETT, and KETPA employ open world assumption 

because these predicates are designed to be present in the model as a container for 

the background knowledge. KETA is true when the agent has knowledge about 

which alarm is for which emergency situation type, i.e., the fact that the GPA alarm 

sounds for the FIRE type emergency, and the PAPA alarm is activated for EVACUATE 
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type. KETT is used to mean which type of threat is observed in an emergency. For 

example, a fire confined to a small area, at most, could mean to move to the primary 

muster station. Three types of threats are considered in this study. The threat smoke 

in the stairwell (SMK_STAI) should be recognized as a FIRE type emergency. If an 

agent sees smoke coming out of the mess hall vent (SMK_VENT), or the agent enters 

into the mess hall and sees smoke (SMK_MSHA) there, it means the situation is of type 

EVACUATE because the primary muster station is compromised. If KETT is true, 

it means that the agent knows the relationships between a threat and possible type 

of emergency situation that could originate from this threat. Similarly, the KETPA 

predicate is true if the agent knows which words in the PA would lead to a particular 

emergency type. For example, the sentences, “a fire in the galley” or “move to primary 

muster station” mean that the emergency type is FIRE. On the other hand, the words, 

“primary escape route is blocked” or “a fire has escalated” mean that the situation 

is EVACUATE. This knowledge was given to the participants of Smith’s experiment 

as part of the training curriculum. Therefore, during training of the model the truth 

Table 3 A sample of validation data for two participants, P1G1 and P2G1

A ‘Y’ before a list of parameter values means that the agent has observed these values, an ‘N’ means that these values have 

not been observed empirically. LFB stands for LIFEBOAT station

Predicates Parameters

P1G1 P2G1

L(agent, alarm, time) Y: P1G1, GPA,t0;
Y: P1G1, PAPA,t1;

Y: P2G1, GPA, t0
Y: P2G1, PAPA, t1

HML(alarm,musterlocation) Y: GPA, MSH;
Y: PAPA, LFB;

Y: GPA, MSH
Y: PAPA, LFB

HITR(agent,musterlocation,time) Y: P1G1,MSH, t0;
Y:P1G1, MSH, t1;
Y:P1G1, LFB, t1;
N: P1G1, LFB,t0;

Y: P2G1,MSH, t0
Y: P2G1,LFB, t1

R(agent,alarm,time) Y: P1G1, GPA, t0;
N: P1G1, PAPA, t1;

Y: P2G1, GPA, t0
Y: P2G1, PAPA, t1

HSES(agent) Y: P1G1; Y: P2G1
ST(agent,threat,time) Y: P1G1, SMK_MSHA, 

t1;
Y: P1G1, SMK_STAI, t1;
Y: P1G1, SMK_VENT, t1

Y:P2G1,SMK_VENT,t0

HES(agent,emergencyType,time) Y: P1G1, FIRE, t0;
Y: P1G1, FIRE, t1;
Y: P1G1, EVACUATE, t1

Y: P2G1,FIRE, t0
Y: P2G1,EVACUATE,t1

HFO(agent,PA,time) Y: P1G1, PA_GPA, t0;
N: P1G1, PA_PAPA, t1

Y: P2G1,PA_GPA,t0
Y: P2G1,PA_PAPA,t1

FPA(agent,PA,time) Y: P1G1, PA_GPA, t0;
Y: P1G1, PA_PAPA,t1;

Y:P2G1,PA_GPA,t0
Y: P2G1, PA_PAPA,t1

KETA(alarm,emergencyType) Y: GPA, FIRE;
Y: PAPA, EVACUATE;

Y: GPA, FIRE
Y: PAPA, EVACUATE

KETT(threat, emergencyType) Y: SMK_VENT,EVACUATE;
Y: SMK_STAI,FIRE;
Y: SMK_MSHA, EVACUATE;

Y: SMK_
VENT,EVACUATE

Y: SMK_STAI,FIRE
Y:SMK_MSHA,EVACUATE

KETPA(PA, emergencyType) Y: PA_GPA, FIRE;
Y: PA_PAPA,EVACUATE;

Y: PA_GPA, FIRE
Y: PA_PAPA, EVACUATE

Greater(time,time) Y: t1, t0; Y: t1, t0
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values of KETA, KETT, and KETPA are taken as true to mean that the agents based 

on the proposed model have this background knowledge.

Calculating the model weights

We use the software package Alchemy 2.0 [2] for developing the proposed MLN model. 

The non-evidence predicates used for both D1 and D2 are R, HES and HSES. The model 

is trained separately for data sets D1 and D2 using a discriminative learning method so 

that weights can be assigned to the rules presented in Table 2. It was observed that some 

participants did not listen to an alarm even though it was audible. The use of Listens 

(L) as a predicate came up (see Table  2) with the empirical observations, where, with 

some participants the predicate takes a false value. On the other hand, if Hears were 

used instead of Listens, then there would not be any case with a false value for 

Hears because all the participants had hearing abilities in the normal range. Similar con-

siderations were taken for other rules. Table 4 shows the weights. A portion of ground 

MN obtained by grounding the rules#2–5 is depicted in Fig.  4, which shows how the 

nodes corresponding to each predicate are related.

Results and discussion

Querying the proposed MLN based model of agent SA is the same as querying a knowl-

edgebase. We use the MC-SAT algorithm using the Alchemy inference engine for que-

rying. Now if the model is used in an agent program as a part of situation assessment 

logic, the evidence would come via the available sensors. Given the evidence predicates, 

the agent can determine the chances that a query predicate is true in the present con-

ditions. The most important things an agent seeks in an evolving emergency are the 

Table 4 Weights assigned to rules using datasets D1 and D2

Only 12 out of a total of 59 ground rules obtained by different groundings of the rules in Table 2 are shown for brevity

# Rules wD1 wD2

1 ¬L(ag,al,t) ⇒ ¬R(ag,al,t). ∞ ∞

2 L(ag,GPA,t)^HITR(ag,MSH,t)^BST(ag, + al,t) ⇒ R(ag, + al,t) 2.09 1.95

3 L(ag,PAPA,t)^HITR(ag,MSH,t)^BST(ag, + al,t) ⇒ R(ag, + al,t) 0.57 0.15

4 L(ag,PAPA,t)^HITR(ag,LFB,t)^BST(ag, + al,t) ⇒ R(ag, + al,t) 2.66 2.71

5 L(ag,al,t) ⇒ HSES(ag) 1.27 1.4

6 L(ag,al,t)^ ¬R(ag,al,t) ⇒ HSES(ag) 0.32 0.36

7 ST(ag,thrt,t) ⇒ HSES(ag) 0.93 1.01

8 (HFO(ag,PA_GPA,t)^FPA(ag, + p_a,t)^KETPA(+p_a,F
IRE))v(ST(ag,SMK_VENT,t)^KETT(+thrt, + eTyp))
v(L(ag,GPA,t)^HITR(ag,MSH,t)^ KETA(+al, + eTyp)^BST(ag, + al,
t)) ⇒ HES(ag, + eTyp,t)

0.30 0.30

9 (HFO(ag,PA_GPA,t)^FPA(ag, + p_a,t)^KETPA(+p_a,F
IRE))v(ST(ag,SMK_VENT,t)^KETT(+thrt, + eTyp))
v(L(ag,GPA,t)^HITR(ag,LFB,t)^ KETA(+al, + eTyp)^BST(ag, + al,
t)) ⇒ HES(ag, + eTyp,t)

0.20 0.25

10 HES(ag,FIRE,t) ⇒ ¬HES(ag,EVACUATE,t) 1.38 1.47

11 HES(ag,EVACUATE,t) ⇒ ¬HES(ag,FIRE,t) 1.38 1.47

12 HES(ag,FIRE,t0)^HES(ag,EVACUATE,t1)^Gt(t
1,t0) ⇒ ¬HES(ag,FIRE,t1)

− 1.54 − 0.45
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recognition of alarms and determination of the type of emergency it is in at a given time. 

For this reason, the query predicates are obtained by grounding the following predicates:

where, the predicate R is read as the agent, ag, recognizes an alarm, al, during the 

time interval t. HES means that the agent, ag, has an emergency, e, of type emg-
SitType, during time t, and the predicate HSES represents an agent, ag, who has 

got some sense of emergency. If in any case, the truth value of HSES is true and HES 

is false, it would mean that the agent is unable to determine the type of emergency 

despite that it has sensed the emergency situation. The predicates obtained after ground-

ing the predicates listed in Table 2 other than the query predicates mentioned in (5) are 

used as part of the evidence predicates that need to be provided to the inference engine 

to obtain the results of the queries presented in (5).

Table 5 presents the probabilities estimated against the queries for the cases in the test-

ing datasets. The test datasets were formed by taking 20% of the total samples from D1 

and D2 respectively, as reported in “Data set for training and testing the model” section.

With regards to the training and testing datasets for the model, the total duration each 

participant spends during a training or testing session has been divided into two inter-

vals. The first is the interval t0 that starts from the beginning of a session until the time 

when the GPA alarm stops. The second interval is termed t1, which is the interval that 

follows immediately after t0 ends, and it ends at the end of each session. t0 covers the 

period when there is FIRE type emergency, and t1 covers the duration when there is 

EVACUATE type emergency. This division of time is important to assess the importance 

of cues relevant to each emergency type. For example, if an agent observes smoke in the 

central stairwell, then this is an important cue for FIRE type emergency because in that 

case, the agent should move to the primary muster station, the mess hall. On the other 

? R(agent ag, alarm al, time t),

? HES(agent ag, emgSitType e, time t), and

? HSES(agent ag),
(5)

R(MBG1,GPA

,T0)

HITR(MBG1,

MH,T0)

L(MBG1,GPA

,T0)

BST(MBG1,G

PA,T0)

HITR(MBG1,

LFB,T0)

HSES(MBG1)

ST(MBG1,SM

K_MSHA,T0)

ST(MBG1,SM

K_VENT,T0)

ST(MBG1,SM

K_STAI,T0)

KETA(GPA, FIRE)

HES(MBG1,FIRE,T0)

Fig. 4 A portion of ground MN obtained using grounding of the predicates in rules 2–5



Page 18 of 26Danial et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:37 

Table 5 Query results

# Evidence Empirical result Model output 
probability

1. 1 L(P1G1, GPA, t0) R(P1G1, GPA, t0) 0.91

2 HITR(P1G1, MSH, t0) HES(P1G1, FIRE, t0) 0.92

3 BST(P1G1, GPA, t0) HES(P1G1, FIRE, t1) 0.74

4 HITR(P1G1, MSH, t1) ¬HES(P1G1, EVACUATE,t1) 0.16

5 ST(P1G1, SMK_MSHA, t1) ¬HES(P1G1, EVACUATE,t0) 0.12

6 ST(P1G1, SMK_STAI, t1) HSES(P1G1) 0.99

7 ST(P1G1, SMK_VENT, t1) ¬R(P1G1, PAPA, t1) 0.0

8 HFO(P1G1, PA_GPA, t0)
9 FPA(P1G1, PA_GPA, t0)
10 ¬L(P1G1, PAPA, t1)
11 ¬BST(P1G1, PAPA, t1)
12 ¬HFO(P1G1, PA_PAPA, t1)
13 ¬FPA(P1G1, PA_PAPA, t1)
14 HITR(P1G1, LFB, t1)

2. 1 L(P2G1, GPA, t0) R(P2G1, GPA, t0) 0.87

2 HITR(P2G1, MSH, t0) HES(P2G1, FIRE, t0) 0.94

3 BST(P2G1, GPA, t0) ¬HES(P2G1, FIRE, t1) 0.29

4 ST(P2G1, SMK_VENT, t0) R(P2G1, PAPA, t1) 0.92

5 HFO(P2G1, PA_GPA,t0) HES(P2G1, EVACUATE,t1) 0.98

6 FPA(P2G1, PA_GPA, t0) ¬HES(P2G1, EVACUATE,t0) 0.07

7 L(P2G1, PAPA, t1) HSES(P2G1) 0.98

8 HFO(P2G1, PA_PAPA, t1)
9 FPA(P2G1, PA_PAPA, t1)
10 BST(P2G1, PAPA, t1)
11 HITR(P2G1, LFB, t1)

3. 1 L(P3G1, GPA, t0) ¬R(P3G1, GPA, t0) 0.49

2 ¬HITR(P3G1,MSH,t0) ¬HES(P3G1, FIRE, t0) 0.44

3 ¬BST(P3G1, GPA, t0) ¬HES(P3G1, FIRE, t1) 0.15

4 ST(P3G1, SMK_VENT, t0) R(P3G1, PAPA, t1) 0.93

5 ¬HFO(P3G1,PA_GPA, t0) HES(P3G1, EVACUATE,t1) 0.99

6 ¬FPA(P3G1, PA_GPA, t0) ¬HES(P3G1, EVACUATE,t0) 0.24

7 L(P3G1, PAPA, t1) HSES(P3G1) 0.90

8 HFO(P3G1, PA_PAPA, t1)
9 FPA(P3G1, PA_PAPA, t1)
10 BST(P3G1, PAPA, t1)
11 HITR(P3G1, LFB, t1)

4. 1 L(P1G2,GPA,t0) R(P1G2, GPA, t0) 0.88

2 HITR(P1G2,MSH,t0) HES(P1G2, FIRE, t0) 0.88

3 BST(P1G2,GPA,t0) ¬HES(P1G2, FIRE, t1) 0.08

4 HITR(P1G2,MSH,t1) R(P1G2, PAPA, t1) 0.94

5 ST(P1G2, SMK_VENT, t0) HES(P1G2, EVACUATE,t1) 0.98

6 ST(P1G2, SMK_VENT, t1) HSES(P1G2) 0.99

7 HFO(P1G2, PA_GPA, t0) HES(P1G2, EVACUATE,t0) 0.15

8 FPA(P1G2, PA_GPA, t0)
9 L(P1G2, PAPA, t1)
10 HFO(P1G2, PA_PAPA, t1)
11 FPA(P1G2, PA_PAPA, t1)
12 HITR(P1G2, LFB, t1)
13 BST(P1G2,PAPA,t1)



Page 19 of 26Danial et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:37 

hand, smoke in the central stairwell should not be considered during t1, or when the 

PAPA alarm sounds, because PAPA alarm is a call to gather at the secondary, or alter-

native muster station, the LIFEBOAT station. Often in such cases, the primary muster 

The symbol ‘¬’ is the logical not operator. A predicate followed by a symbol ‘¬’ has a truth value of false, otherwise true. The 

column for empirical results contains the results obtained from participants. Corresponding to each empirical result is a 

probability the model generated for that predicate. For example, R(P1G1, GPA, t0) meaning that the participant P1G1 has 

recognized the GPA alarm during time interval t0. The probability that this predicate R(P1G1, GPA, t0) is true is 0.91

Table 5 (continued)

# Evidence Empirical result Model output 
probability

5. 1 L(P2G2,GPA,t0) R(P2G2,GPA,t0) 0.87

2 HITR(P2G2,MSH,t0) ¬R(P2G2, GPA, t1) 0.0

3 BST(P2G2, GPA, t0) ¬R(P2G2, PAPA, t0) 0.0

4 HITR(P2G2,MSH,t1) ¬R(P2G2,PAPA,t1) 0.49

5 ST(P2G2,SMK_MSHA,t1) HES(P2G2,FIRE,t0) 0.93

6 ST(P2G2,SMK_VENT,t1) HES(P2G2,FIRE,t1) 0.52

7 ST(P2G2,SMK_STAI,t1) ¬HES(P2G2,EVACUATE,t0) 0.06

8 HFO(P2G2,PA_GPA,t0) ¬HES(P2G2,EVACUATE,t1) 0.47

9 FPA(P2G2,PA_GPA,t0) HSES(P2G2) 0.99

10 L(P2G2,PAPA,t1)
11 ¬BST(P2G2,PAPA,t1)
12 ¬HFO(P2G2,PA_PAPA,t1)
13 ¬FPA(P2G2,PA_PAPA,t1)
14 HITR(P2G2,LFB,t1)

6. 1 L(P3G2,GPA,t0) ¬R(P3G2,GPA,t0) 0.5

2 ¬HITR(P3G2,MSH,t0) ¬R(P3G2,GPA, t1) 0.0

3 ¬BST(P3G2,GPA,t0) ¬R(P3G2,PAPA,t0) 0.0

4 ¬ST(P3G2,SMK_MSHA,t0) R(P3G2,PAPA,t1) 0.91

5 ST(P3G2,SMK_VENT,t1) HES(P3G2,FIRE,t0) 0.99

6 ST(P3G2,SMK_STAI,t1) ¬HES(P3G2,FIRE,t1) 0.13

7 HFO(P3G2,PA_GPA,t0) HES(P3G2,EVACUATE,t1) 0.98

8 FPA(P3G2,PA_GPA,t0) HSES(P3G2) 0.99

9 L(P3G2,PAPA,t1) ¬HES(P3G2,EVACUATE,t0) 0.05

10 HFO(P3G2,PA_PAPA,t1)
11 BST(P3G2,PAPA,t1)
12 FPA(P3G2,PA_PAPA,t1)
13 HITR(P3G2,LFB,t1)

7. 1 L(P4G2,GPA,t0) R(P4G2,GPA,t0) 0.87

2 HITR(P4G2,MSH,t0) HES(P4G2,FIRE,t0) 0.93

3 BST(P4G2,GPA,t0) HES(P4G2,FIRE,t1) 0.56

4 HITR(P4G2,MSH,t1) ¬R(P4G2,PAPA,t1) 0.49

5 ST(P4G2,SMK_MSHA,t1) ¬HES(P4G2,EVACUATE,t1) 0.47

6 ST(P4G2,SMK_VENT,t1) HSES(P4G2) 0.99

7 ST(P4G2,SMK_STAI,t1)
8 HFO(P4G2,PA_GPA,t0)
9 FPA(P4G2,PA_GPA,t0)
10 L(P4G2,PAPA,t1)
11 ¬BST(P4G2,PAPA,t1)
12 HFO(P4G2,PA_PAPA,t1)
13 ¬FPA(P4G2,PA_PAPA,t1)
14 HITR(P4G2,LFB,t1)
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station may have been compromised, or the routes that lead to the primary muster sta-

tion may have been blocked.

Table  5 presents the results that are obtained for seven participants P1G1, P2G1, 

P3G1, P1G2, P2G2, P3G2, and P4G2. The names of these participants are kept hidden 

due to privacy. The information obtained by watching the replay videos and by observ-

ing the log files is divided into two columns with the view that those predicates that are 

used as part of the evidence in the inference algorithm are kept under the heading of 

evidence and those that are used to query the model are kept as empirical results. Both 

columns contain the empirical results obtained from Smith’s experiment. The truth val-

ues of the empirical results are used for validating the model output that is described as 

the last column in Table 5.

Simulation results against the participant P1G1

Now consider the case when the participant, P1G1, was tested in AVERT. The evidence 

predicates suggest that immediately after hearing the alarm, P1G1 developed the inten-

tion to move to the mess hall, the primary muster station, which was correct, but the 

participant spent more time than needed time and so reached the mess hall when t0 

had already expired. On the other hand, this also means that P1G1 recognized the GPA 

alarm, R(P1G1, GPA, t0), and developed awareness about the FIRE situation, 

HES(P1G1, FIRE, t0), during the initial time interval t0. But as a slow mover, 

P1G1 observed the smoke in the stairwell, mess hall, and the smoke coming through 

the mess hall ventilation during t1. P1G1 also did not pay attention to the PAPA alarm, 

which is the reason for ¬L(P1G1, PAPA, t1), which was activated when P1G1 was 

still in the main stairwell. P1G1 took about 20 s more in t1, ignoring the fact that the 

PAPA alarm implies a re-route towards the lifeboat station through the secondary escape 

route. So, unnoticed from the PAPA alarm and the relevant PA, P1G1 entered the mess 

hall and saw thick smoke. Studies [47, 54] suggest that humans show dominance on 

visual information than on other types of sensory cues such as auditory information. 

Observing smoke drew the P1G1’s attention on smoke, and he instantly realized a need 

to move out of the mess hall, which was done by re-routing to the lifeboat. But this reali-

zation of the situation comes only when P1G1 saw smoke, and it was not due to the 

PAPA alarm or the relevant PA. In a real situation, entering an area filled with smoke 

due to fire or any other toxic element could be lethal. Also, observing a fire or smoke is a 

natural cue that would develop awareness about a fire situation. It is, nevertheless, hard 

to develop awareness about an evacuation situation by watching a fire or smoke unless 

the relevant alarms and/or platform announcements are heard and recognized. This is 

the reason why P1G1, although mustered at the lifeboat station, is considered to be poor 

in responding to the evacuation situation, and that is why we have ¬R(P1G1, PAPA, 
t1) and ¬HES(P1G1, EVACUATE, t1) in the empirical results for P1G1. Similarly, 

P1G1 spent a fraction of the interval t1 maintaining the impression of a fire situation, 

although the fire situation had already been escalated to an evacuation situation, which 

is why we have a predicate HES(P1G1, FIRE, t1) in the empirical results. The 

model output is probabilities obtained against the query predicates, as shown in the last 

column of Table 5.



Page 21 of 26Danial et al. Hum. Cent. Comput. Inf. Sci.            (2019) 9:37 

Ideally, a high probability is a good fit for a queried predicate when the correspond-

ing empirical result has a truth value of true. Similarly, a low output probability should 

serve a good fit for the queries predicate when its empirical truth value is false. This 

is very much evident for P1G1. Given the listed evidence for P1G1, the probability that 

an agent would recognize a GPA is 0.91, and the probability the same agent would get 

immediate fire emergency awareness is 0.92. However, there are fewer chances (only 

16%) that the agent would respond to the escalating situation from FIRE to EVACUATE 

because the likelihood of recognition of the PAPA alarm is zero, as the agent does not 

listen to or has no focus on the sounding alarm. In any case, if we change the evidence 

truth value for the predicate 1.10 in Table 5 from false to true, the corresponding 

probability of recognizing PAPA during t1 would increase from 0.0 to 0.48. The reason 

for getting a zero probability is due to the hard constraint (rule#1) listed in Table 4. Simi-

larly, if P1G1 realized the presence of smoke in the stairwell during t0 rather than t1, 

for example, if P1G1 had moved fast, then the chances for having a FIRE situation dur-

ing t1 would have been lowered from 0.74 to 0.46, and the chances for getting aware-

ness about the EVACUATE situation would be increased from 16 to 23% during t1. This 

is because the SMK_STAI, i.e., seeing smoke in the stairs, is a positive cue for a fire situ-

ation, but when one observes it in the presence of a cue that is for an evacuation situa-

tion, for example, a PAPA alarm, the two conflicting cues would cause confusion, and 

the agent needs to decide which cue should be considered. P1G1 preferred SMK_STAI 

during t1 over the PAPA alarm and so entered the mess hall, although this decision was 

wrong as it wasted egress time and exposed the participant to a hazard.

Simulation results against the participant P2G1

The case of participant P2G1 shows a slight deviation between the model output and the 

empirical results at only one place (see empirical result # 2.3 and corresponding model 

output probability in Table 5). The model output probability of keeping the impression 

of a fire situation, though the situation had turned into an evacuation situation, is a bit 

high (0.29) compared to the empirical result where the truth value of the involved predi-

cate, HES(P2G1, FIRE, t1), was false. The rest of the model output probabilities, 

estimated for modeling P2G1’s behavior, are reasonable.

Simulation results against the participants P3G1 and P1G2

The only thing participant P3G1 took into consideration during t0 was the smoke coming 

out from the mess hall ventilation. P3G1 did not recognize the GPA alarm nor heed the PA 

for the FIRE emergency. P3G1 never had any intention to move to the mess hall. The model 

output for recognizing the GPA alarm (0.49) during t0 is reasonable because the time when 

the GPA starts sounding is the time when the participant is in the cabin, and there are no 

other available cues except the alarm sound and the relevant PA. The model output prob-

abilities are in good agreement with the empirical results except for a slightly larger value 

of 0.44 for the probability of having awareness about FIRE emergency during t0, whereas 

P3G1 remained unaware about the fire emergency, and from the beginning of the scenario 

P3G1 had decided to muster at the LIFEBOAT station. The results obtained against the evi-

dence for the participant P1G2 are all in good agreement with the empirical values.
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Simulation results against the participant P2G2

By giving the evidence of P2G2, the model recognizes the fire alarm during t0 with 

0.87 probability. P2G2 did not recognize the PAPA during the experiment, and the 

model output is 0.49 for the predicate R(P2G2, PAPA, t1). The reason for having a 

probability near 0.5 is that when the interval shifted from t0 to t1, there are only two 

cues suggesting that the situation has escalated from FIRE to EVACUATE (smoke from 

the vents and the smoke in the mess hall) and the smoke in the stairwell is a cue for 

moving to the mess hall. This is a conflicting situation. Moreover, as P2G2 moved into 

the mess hall while the PAPA alarm was still on along with the relevant PA, the predi-

cate BST(P2G2, PAPA, t1) takes a false value in the evidence that reduced the 

probability of recognizing PAPA during t1 from 0.94 (if BST(P2G2, PAPA, t1) is 

true) to 0.49 when the predicate BST is false, as in the case of P2G2. Similar reason-

ing is true for recognizing the FIRE and EVACUATE situations during t1. If we set 

BST(P2G2, PAPA, t1) true in the evidence dataset for P2G2, then the new values 

for probabilities for having awareness about FIRE and EVACUATE situations during t0 

and t1 come out to be 0.94 for a FIRE at t0 and 0.96 for EVACUATE at t1. This shows 

the importance of recognizing the alarm before seeing any real threat.

Simulation results against the participants P3G2 and P4G2

The participant P3G2 did not recognize the GPA alarm, and the model probability 

against the query predicate is 0.5 for similar reasons we observed in the case of P3G1. 

The rest of the results for P3G2, as reported in Table 5, support the empirical results for 

P3G2. Similar reasons are there for the results obtained against the query predicates for 

P4G2.

Conclusions

A MLN-based model of SA for agents in a VE is proposed in this work. The method-

ology used here involves assessing the environmental and cognitive factors, such as 

alarms, fire/smoke, intention, and focus of attention, for potential impact on awareness 

of emergencies. The proposed model has been used to represent two case studies that 

involve fire and evacuation situations on an offshore petroleum platform. The case stud-

ies were carried out in a VE with real people. Data obtained from the case studies are 

used to validate the model output. Empirical and simulated results agree in asserting the 

importance of alarm recognition and focus of attention for awareness about the emer-

gency situations involving smoke and fire.

Endsley’s SA model describes how people get awareness about a situation, but it 

does not provide how such a model can be used for software agents [32]. The present 

work shows a potential approach to modeling SA for software agents. Agents based on 

this model can be used in several application areas. For example, one can exploit such 

agents so that different situations can be considered as different experiences, and hence 

a repertoire of situations can be made as a basis for decision-making regarding choos-

ing actions in a given a situation. Virtual training environments are good examples of 

using such agents for cohort training where agents, based on the proposed methodol-

ogy, can exhibit different behaviors in different situations for training purposes. Due to 

the inherent stochasticity of the proposed approach, the model is dynamic, and it has an 
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advantage over other models, such as ontology-based SA models [32, 33, 37], and case-

based SA models [44], in that it can recognize a situation even if some of the FOL rules 

violate.

This work has the potential to be used in Naturalistic Decision-Making (NDM) envi-

ronments where situations are central entities to decision making [21]. Another appli-

cation is in intelligent tutoring where the model can be used to make student models 

in a VE for training people for different tasks of SA. Different kinds of agents can be 

developed—even without using training–testing samples, by manually selecting weights 

[26]—for tutoring different behaviors. For example, an agent that has poor capabilities of 

recognizing alarms should use a real positive number near zero as a weight for rule#2. 

Similarly, an agent that acts as an expert should have high values of weights in the rules, 

and the evidence database should contain as much of the needed information as possible 

so that the agent acts as an expert in retrieving cues from the environment.
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