Situation based control for cyber-physical environments

Vivek K. Singh

University of California, Irvine
singhv@uci.edu

ABSTRACT

The use of event-based paradigms to handle control prob-
lems in cyber-physical environments is of critical research
importance. Most current works however provide partial
solutions by only considering individual aspects like event
detection, temporal calculi or signal based control. There
is thus a need to define a new problem of situation based
control which supports symbolic reasoning, strong tempo-
ral support and explicit inclusion of domain knowledge to
undertake intelligent control in dynamic environments. We
describe the problem from a traditional control theoretic
perspective and show how it can be handled in practice us-
ing the semantics of ‘Situation Calculus’. The motivations
for future research as well as the research challenges have
been identified. The use of the proposed approach to sup-
port emerging cyber-physical applications is demonstrated
through the example of a multimodal tele-presence applica-
tion involving selection of appropriate sensor and actuator
parameters based on exogenous user actions.

Categories and Subject Descriptors
H.4 [Information Systems Applications|: Miscellaneous

General Terms
Design, theory

Keywords
Situation based control, cyber-phyical control systems, Sit-
uation calculus

1. INTRODUCTION

Recent advances in cyber-physical systems - systems in which
computing, broadly construed, interacts with the physical
world - have led to multiple advancements in the areas of
aerospace, automotive, chemical processes, healthcare, man-
ufacturing, entertainment, and consumer appliances. How-
ever, most cyber-physical systems of today shy away from
dealing with inherent dynamic nature of such environments

Ramesh Jain
University of California, Irvine
jain@ics.uci.edu

and either ignore the temporal complexities or address them
in an ad hoc manner [6]. In real world however, we cannot
expect the same set of conditions to hold forever, and need
explicit mechanisms to model world changes and responding
to them.

We feel the lack of progress is not due to lack of relevant
research interest. Multiple works in computer vision, multi-
media and related communities [1, 8] have focused on event
detection and identification. They however do not consider
what to do next with these events and typically do not use
formal temporal logic to represent these events or handle
actuator response. Work in areas like event calculus and
situation calculus[9, 13] on the other hand, provide valuable
formal models for representing events and situations based
on their impact on the real world. They typically though, ig-
nore the issues of event detection and or actuator control in
generic settings. Lastly, research in discrete event control [4]
has provided some very useful tools for handling event based
input and output in generic cyber-physical settings. They
however focus on signal based systems and do not consider
symbolic data or domain semantics.

Solving control theoretic problems for powerful cyber-physical
applications though requires an effective combination of the
strengths of each of these areas. We need to create general
purpose tools which consider event detection, formally study
their impact on world models and provide robust tools for
deciding control actions.

Hence, we formulate a new problem of generic situation-
based control in cyber-physical environments and describe
how this problem can be solved using the semantics of situa-
tion calculus. We argue that such a control approach should
support the following critical requirements:

1. The ability of the controller to reason based on symbols
(rather than just signals)

2. Inherent support for temporal reasoning, and

3. Explicit inclusion of domain semantics.

We model the problem of effectively handling events and cre-
ating appropriate response actions in cyber-physical (CP)
environments as that of ‘intelligent control’ (as shown in
figure 1). We divide the dynamic environment being con-
sidered into 2 parts viz. system-controllable (where the
actions are totally controlled by the system) and system-
uncontrollable (where the actions are exogenous to the sys-

tem e.g. user actions). We model the world in terms of rel-
evant fluents®. Each user action impacts the fluent values
and can potentially cause the system to move away from its
equilibrium state. The system then undertakes the control
actions to move back towards equilibrium. The control ac-
tions thus undertaken can further change the system state,
resulting in respective control actions. Such a process con-
tinues until the system return to equilibrium state, at which
it waits for next user action. The user actions are captured
by the system using sensors, and the control actions are un-
dertaken using available actuators.

An important point to note in this discussion is that the
control action is determined by the ‘state’ variable, which
elegantly combines the user-action input with the previous
state value. This resultant state which is the necessary and
sufficient world descriptor to decide the control output is
defined as situation in our system.

The contributions of this paper are to:

1. Introduce and formally define the problem of situation-
based control for cyber-phyical systems.

2. Describe the mapping of this control problem into a Situ-
ation Calculus based approach for supporting relevant prac-
tical applications.

The organization of the remainder of this paper is as follows.
Section 2 describes the related work. Section 3 defines the
problem of Situation based control and implementation of an
intelligent controller. Section 4 discusses the advantages of a
situation based approach. Section 5 describes the use of the
proposed ideas into a real world application of appropriate
sensor and actuator parameter selection in a tele-presence
scenario. We wind off with a discussion on future work and
conclusions.

2. RELATED WORK

Discrete Event based control systems[4] have made signifi-
cant progress in using event based control systems for dif-
ferent applications. However, they typically focus on signal-
based systems and do not exploit or use the real world se-
mantics. From computer vision and multimedia based sys-
tems[1, 8], a large volume of work has been done on event
detection and correlation. However, it does not focus on
effects of these events on world states or any inference.

Knowledge based systems [17] on the other hand focus on
inferring truth values about the world state based on cer-
tain user inputs and rules. They however, do not focus on
dynamic (time-varying) aspects. Very few works from this
area look into dynamic control systems or deal with sensing
inputs.

A related problem with a similar name ‘Situational Control’
was studied in Russia by Pospelov [11]. Based on citations
in [16] and [5], this situational control theory was based
on semiotic models of the domain developed in linguistics
and language psychology. Semiotics as a science of signs

'Fluents are first order predicates having an argument that
depends on time. For example the predicate On(boz,table)
can not be always true (or false). We must reify the tem-
poral aspect of this predicate as a variable to make it more
useful. e.g. using situation ‘s’ to get On(boz,table, s)

explores the syntactic, semantic and pragmatic aspects of
signs. Pospelov considered situations as states of the re-
lations between objects referred to, at some point in time.
More details of this work are not easily available in English
language. However it is clear that their focus was very dif-
ferent from our work.

Multiple advances have been made by the Situation aware-
ness[2] and Situation modeling[5] community in terms of
defining situation awareness and its impact on various mis-
sion and control tasks[14]. However there focus has not been
from a control-theoretic perspective for dealing with cyber-
physical systems.

Our methodology and terminologies build largely on the
work in the area of situation calculus pioneered by Mec-
Carthy[9] and subsequently by Reiter[10, 13]. While this
calculus has been successfully employed to logic, robotics[7]
and is starting to be used in databases, it has not been ap-
plied to multi-modal or cyber-physical systems.

Rather than focusing on any particular application area, we
build this work onto the broad domain of cyber-physical sys-
tems which have wide-spread applicability and proven im-
pact in multiple areas like aerospace, automotive, chemical
processes, healthcare, manufacturing, entertainment, and
consumer appliances. In fact any phyical environment which
contains computing-enabled devices can be considered as a
cyber-physical environment [6].

3. DEFINITION AND FORMALISMS

3.1 Preliminaries: Situation Calculus

The Situation Calculus is a logic formalism designed for rep-
resenting and reasoning about dynamical domains. It builds
upon traditional predicate, 1st and 2nd order calculus, but
is different because it allows for truth values to change over
time. The main use of Situation Calculus (on similar lines to
traditional calculus), is in using a set of truth values (facts)
about a closed world and some reasoning mechanisms (pred-
icates or functions), to infer new truth values which have not
explicitly been provided earlier. Lsitcaic is a second order
language with equality. It has 4 disjoint components.

1. Actions (A) for actions i.e. those which change the ’state’
of the world,

2. Situations (S) for ‘history of events’ 2

3. Objects (O) as the default sort for everything else.

4. The most important component of Situation Calculus is
the fluent (F') sort, which defines truth statements which
are dependent on the situation. Fluents can be relational
(typically give True/False answers) or functional (return any
value as computed).

Thus the language for event calculus can be defined as:

Y ={A,S,0,F} (1)

2This is the definition as per the Reiter formulation. While
conceptually we prefer to think of situations as ‘snap-shots
of the world at a given instant’ based on McCarthy[9], the
mathematical formulations discussed here are conveniently
built upon the formalisms of Reiter formulation[10, 13].
What we define as ‘situation’ can be thought of as a ‘state’
variable in the Reiter formulation.

Aslk-1) ™\
L,
N Logical
K Ino(k! Situation based K]
A k) p(k) Controller Ayslk) Controller
[s, G]
)
I
1
:Situation
| Model
System System Physical
Un-Controllable Controllable [<— Actuators Environment
U(k) Part Part Y(k)

Figure 1: Overall structure for CPE control systems

Within ¥, we can formulate action theories that describe
how the world changes as a result of the available actions.
We focus on a variant of the basic action theories defined in
[13]. An action theory D has the following form:

D = D¢nqgU Dyna UeU Dgp U Dgs U Do (2)

1. Dyna consists of the axioms for equality and a set of do-
main independent foundational axioms which formally de-
fine legal situations including (do(a, s) = do(a’,s’)) C (a =
a ANs=1s")

2. Duyne is the set of unique-names axioms for actions.
A(z) = A'(y) A A() = A(y) D = y.

3. e is a set of unique-names axioms for constants along with
a domain closure axiom for sort object.

4. D,y is a set of action precondition axioms, one per action
symbol A, of the form Poss(A(y),s) = I1A(y, s).

5. Dss is a set of successor state axioms (SSAs), one for
each fluent symbol F', which characterizes all the ways the
value of a particular fluent can be changed. Poss(a,s) —
[F(7,do(a,s)) « v} (T,a,8) V (F(Z,8) A 5 (T, a,s)))

6. Do is a set of axioms describing the initial situation Sp.

The central idea of situation calculus is to define precondi-
tions Dgp for each event to happen, and define the impact of
these events on the world fluents D;s, once they occur. The

primitive operator in situation calculus is do(action, situation),

which links up actions and situations. Thus:
AxS— S8 (3)

The simple do operator can be iteratively employed together
with the various axioms, to undertake more sophisticated
operations like progression and regression, which can be used
for planning and projection. Note that Dss also provides a
way for handling the frame-problem®. A fluent F is true
in a situation resulting from applying event a, to situation
s, only if, either event/action a caused it to be true (listed
under v} (%, a, s)), or it was already true in situation s, and
action a, did not cancel it (listed under vz (7, a, $)).

3.2 Situation based control
The basic representation for event based control of a CP
environment is shown in figure 1. The exogenous actions

3Handling the non-effects of actions. For a detailed review
of the frame problem and how D, handles it, see [12]

(which can not be controlled by the system) undertaken by
the users at time instance k are shown as U(k). These ac-
tions are captured by the sensors and represented as A¢z (k).

Aca(k) = f1(U(K)) (4)

The state of the dynamic environment at cycle k, can be
affected by either the user-driven actions Ac. (k) or by sys-
tem’s own control actions as computed during the previous
cycle (Asys(k — 1)). The net input going to the controller
can thus be defined as:

Inp(k) = f2(Aex(k), Asys(k — 1)) ()
The state of the system in cycle k, is defined as:
S(k) = fs(Inp(k),S(k — 1)) (6)

The control action or the output of the system in a situation
based control system is dependent on the state/situation and
the Goal G.

AsyS(k) = f4(S(k)7G) (7)

Which, depending on the representational requirements can
also be expressed as:

Asys (k) = fa(fs(Inp(k), S(k — 1)), G) (8)

Asys(k) = fa(f3(fo(Aex (k) Asys (k = 1)), S(k = 1)), G) (9)

and so on.

Finally, the translation of the controller output actions from
a decision level to their physical implementation is under-
taken via the Actuators:

Y(k) = fs(Aous (k) (10)

Assuming reasonable ways for exogenous action/ event de-
tection using sensors and action-performance using actua-
tors, we will restrict our focus here to appropriate conver-
sion from Ac. (k) to Asys(k) based on the presented situation
(S(k)), and its evolution.

For temporal symbolic control systems, the functions f3 and
fa cannot be formulated as standard numerical functions, as
we want to handle symbolic data. We need an explicit mech-
anism which allows us to define the state or situation S(k),
and create inference mechanisms which would undertake the
translations described by function fi.

3.3 Implementing the Controller

In this section we discuss how the semantics of the functions
f3 (Eq. 6) and f4 (Eq.7) can be undertaken using a temporal
symbolic framework which allows domain specification. The
semantics discussed here build upon the RGOLOG (Reac-
tive Golog) [13] which is a variant of Prolog and Golog that
allows concurrent processing and reactivity which are not
handled adequately in standard Golog][7].

Let us start by considering the Eq. 6 which needs mech-
anisms for translation from S(k-1) to S(k), based on in-
put actions Inp(k). Given, that the basic axioms Dg, and
D, (pre-condition and post-condition axioms), are well de-
fined, this translation is quite intuitively handled by situa-
tion calculus through it’s primitive operation Do(A4,S) —

S’. Hence:
S(k) = Do(Inp(k),S(k — 1)) (11)

Note that this formulation also handles elegantly a sequence
of actions, which can simply be executed one after the other.

Now we consider the semantics for Eq. 7, and look at the
definition of G i.e. the goal or the equilibrium state which
the system is trying to achieve. Let us consider a set of
condition-action rules with possible conditions which can
move the system away from the equilibrium. The conditions
listed become true in different situations(S(k)) based on the
inputs Inp(k), acting upon S(k—1) as shown in Eq. 11. The
input actions can be both exogenous or system controlled.
The control actions* required to bring back the system to
the equilibrium state are Aou:(k). In general, there can be
up to n condition-action pairs which can be represented as:

o1(X1) — a1(X1),

$1(Xn) = a1(Xn) (12)

where X; contains all the free variables present in the defini-
tion. The goal state can hence be defined (in CNF form) as
one where none of the condition-action pairs gets violated
ie.

SGoal = (7¢1(X1) V ar(X1)) A=+ A (2¢n(Xn) V a”(Xng)

As can be noticed, «a;(X;) contains multiple free variables
and hence may require multiple steps or physical actions to
attain the goal state. Further, the i*" control action, may
potentially lead to the j'* violation condition, and hence
multiple iterations of control action may be required. The
problem of finding the appropriate control action can be de-
fined as the planning operation of Situation Calculus. Such
a process is handled in Situation Calculus literature based
on proving a theorem [3] that:

JAout (k) : Do(Aout(k), S(k)) — Scoal (14)

where Ao+ (k) is a sequence of control actions which are un-
dertaken by the system one in each cycle. Note that this
equation links the situation S(k) and goal state Sgoar With
the output action Aou:(k), just as was required for the real-
ization of f4(Eq. 7). Thus equations 11 and 14, provide the
necessary translations from the control theoretic problems
to the Situation Calculus semantics.

3.4 Controller: Discussion

The theorem proving method shown in previous section has
been shown to work well in theoretic settings [3]. How-
ever, for creating real time concurrent systems, RGOLOG
provides the option of using a procedural definition of the
control actions to be undertaken[13]. Thus the system will
no longer recursively find the ‘plan’ to reach the goal based
on a declarative structure, but rather follow a set of well-
defined procedures to move towards goal state. To handle

4Certain conditions might need external control actions too.
But they are ‘uncontrollable’ in control theoretic terms then.
We focus only on ‘controllable’ systems.

Situation Based Controller

A. Inference
Engine

B. Knowledge Base

C. System Goal

Figure 2: Components of the Situation Based Con-
troller

this we can consider the Inference engine of the controller
to be two Golog programs running concurrently, one which
controls the ‘normal’ operation of the systems to move to-
wards a Goal state and other which handles high-priority
interrupts, which change the world state in any iteration.
Hence new control action sequence will be undertaken from
that point onwards with an aim to bring system once again
to the goal state. Note that this mechanism is not guar-
anteed to be optimal as the current step undertaken might
become useless (or even detrimental) after the occurrence of
a new exogenous action. However this approach performs
reasonably well for an on-line control action mechanism.

As might be clear by now, the precise decisions for the next
action or next state depend on the rules of the application
domain. To include the semantics of the condition-action
pairs we add a new class to the action theory D (Eq. 2):

Dl =DU Dca (15)

where D., refers to the condition action rules.

D’ consists of both generic and application specific compo-
nents. The components D¢nd, Duna, € are generic and com-
mon across all domains and can be considered part of the
‘Inference Engine’ component of the controller (see fig. 2).
The terms Dgyp, Dss, Do and D., on the other hand need
to be defined separately for each domain by a system de-
signer and together form the ‘Knowledge Base’ component.
The procedure for handling the goal state has already been
described above.

3.4.1 Situation Modeling
We now describe here a generic procedure which can be used
by system designer for creating a situation model, i.e. de-
scribing the domain semantics as relevant for the applica-
tion. This will cover the Knowledge base and the System
goal aspects of the controller.

1. Examine the (closed) world to be considered for the
application. Identify the subset which will influence
the application outcomes in terms of:

e Objects and their properties to be considered.

e Actions allowed in the model.

e Fluents considered in the model. Defined fluents®, if
used should be mapped to primitive fluents.

2. For each action, list down its pre-conditions (Dgp) in
terms of fluents.

5Those which use a combination of primitive fluents

3. To describe the after-effects of each action, use the
successor state axioms (Dss), clearly listing the actions
and conditions for each fluent to be made true or false.

4. Describe the initial situation Sy in terms of the fluents
identified. This covers the Dy component of D.

5. Define the Goal or equilibrium state for the system in
terms of conditions (fluents) and their control actions.
This covers the D., component of D.

Note that identifying the correct set of actions and flu-
ents which will be relevant and sufficient for the application
at hand, is application-specific. Hence, while we provide
generic tools and guidelines, it is the responsibility of the ap-
plication designer to create an appropriate situation model.
This is analogous to E/R modeling in databases, where the
application relevant domain details are modeled by a sys-
tem designer using some generic tools. Obviously, while
E/R models deal with static snapshots of the world, Sit-
uation Modeling involves temporal dynamics and has very
different end aim.

4. MOTIVATIONS FOR SITUATION BASED
CONTROL AND CHALLENGES

4.1 Generic adaptability

Situation modeling approach provides a generic approach
to allow different application designers to describe the se-
mantics of their own application. Thus they can plug the
necessary details into a developed architecture, and start
using inference and intelligent control rather than starting
from scratch for each application they develop. A situation
model completely specifies all that is necessary and sufficient
to characterize a dynamic environment. Hence, it allows for
abstraction of details across systems. Larger systems can be
built which use smaller systems as building blocks.

4.2 Enhanced sensing based on feedback from

situation controller
The allocation of sensing resources can be optimized based
on world states to be detected, rather than lower level data
attributes. In fact we can combine top-down and bottom-up
approaches, and sensing to be undertaken can be function
of the current system state.

Situational approaches can sit on top of the standard sensors
which tend to be noisy. The situation calculus approach can
identify if a detected sequence of exogenous events is valid
and admissible. Invalid event patterns (e.g. ‘wearing socks’,
after ‘wearing shoes’) can be detected and filtered. Note
that this validation now can be at an event-based/semantic
level rather than signal level. Alternatively, invalid event
patterns can be put into an abnormal classification and used
to raise necessary alarms /control actions.

4.3 Reasoning and Analysis

Situation Calculus has an in-built notion of which actions
affect which fluents. This can be very useful for goal-based
minimal event-set selection. For example, given an initial
state So (e.g. User is ‘away’ i.e. — isPresent(P1)) and a

goal state Sgoqr which entails that (User is ‘busy’ i.e. isPre-
sent(P1) A isBusy(P1)); we can compute the minimal num-
ber of events which can lead from Sop to Sgoai. Conversely,
from a corpus of occured events we can find the optimal
sub-situation representation i.e. the minimal subset which
has directly affected the state transition from So to Sgoar-

The use of situation calculus allows for creation of tools for
‘observability’ of black box processes. Through abductive
reasoning, we can infer what was the initial state So, if a
sequence of event E, and the final state Sgoq; are available.

4.4 Using Predictive Analysis for control ac-
tion

In our discussion so far we have assumed no knowledge about
exogenous (user) actions. However, if we assume human ac-
tors to be acting in a goal-centric manner i.e. using an op-
timal plan to go from initial State Sy to desired state Sgoai,
the system can be used to predict the next few user steps.
This can allow for faster control action. Tools like Model
Predictive Control can be applied to decide the most opti-
mal control action based on current actions and the expected
future trajectory.

S. PRACTICAL APPLICATION

5.1 Background: E2E communication

E2E (Environment-to-Environment) communication is a new
paradigm for supporting multi-modal tele-presence. Tradi-
tional video-conferencing systems have focused on connect-
ing fixed sensors and actuators (camera and display device)
to support communication leading to restricted user move-
ment and interaction. E2E paradigm works on instrument-
ing the cyber-physical environments with as many sensors
and actuators as required and using an event based sen-
tient system which understands user actions to select the
best sensors (for outward transmission) and actuators (for
rendering incoming information) at each time cycle. This
motivates our research on situation based control systems
wherein exogenous user actions, need to be handled in the
most appropriate manner by a temporal, symbolic, domain-
expertise based control system.

Our current implementation involves connecting three envi-
ronments spread across two different buildings using 7 cam-
eras, 4 microphones, 4 speakers and 5 display devices (1
multi-tiled display, 2 projectors and 2 PC monitors). A typ-
ical problem in such a system is that of choosing the best
(audio/ video output) data feed to be sent to other users,
and identifying the most appropriate settings for actuators
and rendering devices to present the incoming audio video
information. Readers are pointed to [15] for more details on
this paradigm and implementation.

5.2 Automatic camera selection and audio con-

trol example
To ground the ideas discussed about modeling situation,
user actions and control control action, let us consider a
simple problem encountered in our E2E communication sys-
tems. The system needs to undertake appropriate camera
selection for sharing (video-out) with external environments
and adjust the speaker volume (audio-in) control based on

Loc 1: Desk Loc2: Whiteboard Conditions Actions
&5 l Moveto | Activity | Selected | Desired
/ location Com | Volume
- | Desk WorkOn 1 1
Actions possible: o=l PC
1 ‘Workon PC T—
2. Workon Table Desk WorkOn 2 2
Table
/ Whitebo | - 3 3
ard
User ¢ .
Loc 3: Engineering Model | - 4 4
Model

Figure 3: The CP environment being considered.

user actions in an environment. The relevant system ac-
tions include camera selection and setting the audio volume
to high/low values (enumerated between 1 to 4). The ex-
ogenous user actions include changing its position (move-
ToLoc(x)) from being near a ‘desk’ to a ‘whiteboard’ to an
‘engineering model’. Also, if user location is at his desk he
can be working on either the PC or his table. The dynamic
cyber-physical world being handled has been summarized
in fig. 3. The condition-action pairs have also been shown
informally for easy understanding.

Clearly, the exogenous actions require control action from
the system. While the camera selection task is assumed to
be a one-step process which can be undertaken instantly,
setting the volume to the desired level may require multiple
control action iterations as we consider the case where the
volume can be adjusted by only one unit in each cycle.

Based on the description in section 3.4.1, we now proceed to
describe the various axioms which together yield the desired
control outcome.

Step 1: Identify the relevant Objects, Actions and
Fluents.

Objects
o Desk, Whiteboard and Engineering Model.

Control Actions (System controllable)

e SelectCam(n). To select camera number n to be sent out.

e IncreaseVolume. To increase speaker volume by one unit.

e DecreaseVolume. To decrease speaker volume by one unit.

e SetDesVolume. To set the desired speaker volume based on user
actions. The actual change of state to this desired level may require
multiple steps.

e wait. A no-op, created to for next exogenous action to interrupt.

Exogenous Actions

e MoveToLoc(x). User can move to any location between ‘desk’,
‘whiteboard’ and ‘model’

o Start WorkOnPC. User starts to work on his PC. Also, that he is no
longer working on the desk.

o StartWorkOnTable. User starts to work on his Table.

Relational Fluents
e isWorkingOnPC(s)
e isWorkingOnTable(s)

Functional Fluents
e atLoc(s)

e CamSelected(s)

e CurrVol(s)

e DesVol(s)

Step 2: Identify the preconditions for each action

Action Precondition Axioms

e Poss(SelectCam(n), s) < — CamSelected(s) = n
e Poss (IncreaseVolume, s) < (CurrVol,s) | 4
e Poss (DecreaseVolume, s) < (CurrVol,s) ; 1
e Poss(wait)= True.

Poss(MoveToLoc(x), s) < — atLoc(x, s)

e Poss(StartWorkOnPC, s) < atLoc(s)=Desk A = isWorkingOnPC(s)

e Poss(StartWorkOnTable, s) < atLoc(s)=Desk A — isWorkingOnTable(s)

Step 3: Identify the after-effects of each action

Successor State Axioms
e isWorkingOnPC(Do(a,s)) < a=Start WorkOnPC V isWorkingOnP C(s)
A — a = StartWorkOnTable

e isWorkingOnTable(Do(a,s)) < a=Start WorkOnTable V isWorkingOnTable(s)

A = a=Start WorkOnPC
e atLoc(Do(a,s))=x «» a=MoveToLoc(x) V atLoc(s)=x A = a=MoveToLoc(y)
Ax#y

e CamSelected(Do(a,s))=n «> a=SelectCam(n) V CamSelected(s)=n
A = a=SelectCam(y) A x # y

e CurrVol(Do(a,s))=n < a= IncreaseVolume A CurrVol(s)=n-1V a=
DecreaseVolume A CurrVol(s)=n+1 V CurrVol(s)=n A a=- Increa-
seVolume A a=-— DecreaseVolume

Step 4: Describe the initial situation

Initial Situation

e isWorkingOnPC(Sp)

e — isWorkingOnTable(Sp)
e atLoc(Sp) = Desk

e CamSelected(Sp) =1

e CurrVol(Sp) = 4

e DesVol(Sp) =1

Step 5: Identify the goal state using action-condition
constraints

Condition-Action (Goal) Constraints

e atLoc(s)= ‘Desk’ A isWorkingOnPC(s) — Do= Seq A CamSelected(Seq,s)
= 1 A DesVol(Seq, s)=1

e atLoc(s)= ‘Desk’ A isWorkingOnTable(s) — Do= Seq A CamSe-
lected(Seq,s) = 2 A DesVol(Seq, s)= 2

e atLoc(s)= ‘WhiteBoard’ — Do= Seq A CamSelected(Seq,s) = 3 A
DesVol(Seq, s)= 3

e atLoc(s)= ‘Model’ — Do= Seq A CamSelected(Seq,s) = 4 A DesVol(Seq,
s)=4

We will adopt a procedural as opposed to declarative/ theo-
rem proving based method for finding the appropriate con-
trol actions.

Procedures

proc control() % The main control loop

wait;

while (CurrVol # DesVol) do

IF CurrVol > DesVol THEN DecreaseVolume

ELSE IncreaseVolume

endWhile

endProc

proc rules() % Loop to check for exogenous actions and take counter-
action

IF atLoc(s)= ‘Desk’ A isWorkingOnPC(s) THEN SelectCam(1) A Set-
DesVolume(1)

IF atLoc(s)= ‘Desk’ A isWorkingOnTable(s) THEN SelectCam(2) A
SetDesVolume(2)

IF atLoc(s)= ‘Whiteboard’” THEN SelectCam(3) A SetDesVolume(3)
IF atLoc(s)= ‘Model’ THEN SelectCam(4) A SetDesVolume(4)
endProc

The use of procedural control allows for easier adoption of
concurrency. For example, it can be noted that in the initial
state So, the DesVol=4 but the CurVol=1. Thus the output
of the controller to move to Sgoqr, without any exogenous
actions is the (3 step) control action sequence:

DecreaseVolume, DecreaseV olume, DecreaseV olume, So

However if we cause an exogenous action MoveToLoc(‘ Model")

at the end of second cycle, this high-priority interrupt changes
the desired volume level to 4. Thus the system does not con-
tinue working towards the plan created earlier (involving De-
creaseVolume). Rather it immediately starts increasing the
volume to reach towards its new goal. Hence the obtained
action execution order is:

IncreaseVolume, IncreaseVolume, SelectCam(4), MoveToLoc(‘Model’),

DecreaseVolume, DecreaseVolume, Sp

This is indeed representative (and appropriate) for a real
world online scenario, where we do not want a control sys-
tem, to keep working towards an old plan, if a new exogenous
action has changed the desired outcome.

It might be important at this point to re-look at the control
problem being solved and why it could not be solved using
other prevalent approaches. Firstly, discrete event based
system like [4] do not deal with symbols and hence will not
be able to handle symbolic activities like ‘isWorkingOnPC’
or ‘isWorkingOnTable’. Knowledge based control systems,
would have also not worked as they do not study transi-
tion of states across time and concurrency. The example of
control sequence reacting to the exogenous action, could not
be handled by a traditional knowledge based control system.
Similarly from our initial motivation perspective, we noticed
that this system does satisfy the native temporal suppport
requirement. Similarly it allows for symbolic inference and
lastly the inclusion of domain semantic via axioms Dqyp, Dss,
Do and D4, as shown in the example.

Our progress so far has been in terms of problem definition
and defining the appropriate axioms and control procedures.
We have successfully tested out the above scenario at a logic
level in software (using Prolog). We are currently working
towards linking the control with the physical sensors in the
environment.

6. CONCLUSIONS

The Primary contribution of this paper lies is in defining the
problem of situation based control and describing the pro-
cess of handling the situation based control by building upon
the tenets of Situation Calculus. We have defined situation
as a collection of world state descriptors which is sufficient to
convert the input (system or user) actions into appropriate
control actions. The motivations for future research as well
as the research challenges have been identified. We have
shown through a practical cyber-application how the pro-
posed ideas can be used in practice. We are currently work-
ing towards integrating the logical control structure with the
actual physical sensors and actuators.

7. REFERENCES

[1] J. Allan, R. Papka, and V. Lavrenko. On-line new
event detection and tracking. In SIGIR ’98:
Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 37-45, 1998.

[2] M. Endsley. Situation awareness global assessment
technique (sagat). In Aerospace and Electronics
Conference, 1988. NAECON 1988., Proceedings of the
IEEFE 1988 National, volume 3, pages 789-795, May
1988.

[3] A. Finzi, F. Pirri, Ray, and R. Reiter. Open world
planning in the situation calculus. In In Proceedings of
the 7th Conference on Artificial Intelligence
(AAAI-00) and of the 12th Conference on Innovative
Applications of Artificial Intelligence (IAAI-00, pages
754-760. AAAI Press, 1999.

[4] Y.-C. Ho. Introduction to special issue on dynamics of
discrete event systems. Proceedings of the IEFE,
77(1):3-6, Jan 1989.

[5] G. Jakobson, J. Buford, and L. Lewis. A framework of
cognitive situation modeling and recognition. In
Military Communications Conference, 2006.
MILCOM 2006. IEEE, pages 1-7, Oct. 2006.

[6] E. A. Lee. Cyber physical systems: Design challenges.
In International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), May 2008. Invited
Paper.

[7] H. J. Levesque, R. Reiter, Y. Lesprance, F. Lin, R. B.
Scherl, and R. B. Golog: A logic programming
language for dynamic domains, 1994.

[8] G. Luo, R. Yan, and P. S. Yu. Real-time new event
detection for video streams. In CIKM °08: Proceeding
of the 17th ACM conference on Information and
knowledge management, pages 379-388, 2008.

[9] J. Mccarthy and P. J. Hayes. Some philosophical
problems from the standpoint of artificial intelligence.
In Machine Intelligence, pages 463—502. Edinburgh
University Press, 1969.

[10] F. Pirri and R. Reiter. Some contributions to the
metatheory of the situation calculus. J. ACM,
46(3):325-361, 1999.

[11] D. A. Pospelov. Situational Control: Theory and
Practice(in Russian)). Nauka, 1986.

[12] R. Reiter. The frame problem in situation the calculus:
a simple solution (sometimes) and a completeness
result for goal regression. Artificial intelligence and
mathematical theory of computation: papers in honor
of John McCarthy, pages 359-380, 1991.

[13] R. Reiter. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

[14] P. M. Salmon, G. H. Walker, D. Ladva, N. A. Stanton,
D. P. Jenkins, and L. Rafferty. Measuring situation
awareness in command and control: comparison of
methods study. In ECCE ’07: Proceedings of the 14th
FEuropean conference on Cognitive ergonomics, pages
27-34, 2007.

[15] V. K. Singh, H. Pirsiavash, I. Rishabh, and R. Jain.
Towards environment-to-environment (e2e)
multimedia communication systems. In SAME ’08:
Proceeding of the 1st ACM international workshop on
Semantic ambient media experiences, pages 31-40,
2008.

[16] V. Stefanuk. In search for hidden meaning: Pospelov’s
work on applied semiotics. Integration of Knowledge
Intensive Multi-Agent Systems, 2003. International
Conference on, pages 575-578, Sept.-4 Oct. 2003.

[17] G. A. Sullivan. A knowledge-based control architecture
with interactive reasoning functions. IEEE Trans. on
Knowl. and Data Eng., 8(1):179-183, 1996.

