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Abstract

A wide range of problems, from contingent and multi-
agent planning to process/service orchestration, can be
viewed as games. In many of these, it is natural to spec-
ify the possible behaviors procedurally. In this paper,
we develop a logical framework for specifying these
types of problems/games based on the situation calcu-
lus and ConGolog. The framework incorporates game-
theoretic path quantifiers as in ATL. We show that the
framework can be used to model such problems in a nat-
ural way. We also show how verification/synthesis tech-
niques can be used to solve problems expressed in the
framework. In particular, we develop a method for deal-
ing with infinite state settings using fixpoint approxima-
tion and “characteristic graphs”.

Introduction

Many types of problems, from contingent and multiagent
planning to process/service orchestration, can be viewed as
games, where one or more agents try to ensure that certain
objectives hold no matter how the environment and other
agents behave. There has been much work recently on de-
veloping logical formalisms for specifying such game struc-
tures and the properties that coalitions of agents can ensure
in them, e.g., (Ruan, van der Hoek, and Wooldridge 2009),
mostly based on Alternating-Time Temporal Logic (ATL)
(Alur, Henzinger, and Kupferman 2002). It has also been
shown that model checking techniques can be used to verify
that such properties hold in a game structure. As well, these
techniques can be used to synthesize strategies for the agents
in the coalition to ensure that the objectives hold (Lomuscio,
Qu, and Raimondi 2009).

Logics like ATL, ATL*, and the alternating-time pu-
calculus (AMC) (Alur, Henzinger, and Kupferman 2002)
provide elegant and rather expressive languages for speci-
fying the properties that one wants to verify. However, these
logics do not address how one specifies the model/game
structure over which the property is to be verified, or the
strategies that agents may follow. The languages in com-
mon use for this arose with model checking technology and
tend to be quite low level and, more importantly, restricted to
finite states structures. Also, in many applications, it is natu-
ral to specify the possible behaviors of the agents/players by
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combining declarative and procedural elements. This sug-
gests incorporating an action/programming language into
the logical framework.

In this paper, we develop a logical framework for speci-
fying and solving game theoretic problems based on the sit-
uation calculus and the ConGolog agent programming lan-
guage (De Giacomo, Lespérance, and Levesque 2000). We
adapt ConGolog to precisely specify which agent can make
a choice in any given situation. A program in the resulting
language, called GameGolog, can be used to conveniently
specify a game structure, making use of a background sit-
uation calculus action theory in doing this. For specifying
properties to be verified, we use a very rich language that
combines the p-calculus, game-theoretic path quantifiers,
and first-order quantification.

We show how our logical framework can be used to model
in a natural way and solve a range of problems from simple
games, to contingent planning, and process/service orches-
tration. To do this, we show how existing formalizations
of contingent planning (Lespérance, De Giacomo, and Oz-
govde 2008) and process/service orchestration (De Giacomo
and Sardina 2007) can be translated into our framework. We
also discuss how constraints such as forms of fairness can be
expressed and used in verifying properties.

The verification method we propose is inspired from ATL
symbolic model checking approaches (Alur, Henzinger, and
Kupferman 2002; Lomuscio, Qu, and Raimondi 2009).
However, our method has to deal with incomplete specifi-
cation of the game structure, which in our case is a theory
and not a single model. Moreover, as usual in the situation
calculus, we allow for first-order quantification and infinite
states settings. To deal with this, our method for verifica-
tion in infinite states settings uses fixpoint approximation
and “characteristic graphs” (Claen and Lakemeyer 2008).

We stress that the aim of this work is to support reason-
ing about game structures, not just games in the conven-
tional sense, but any type of multiagent problem that re-
quires strategic thinking. Our framework is not based on
classical game theory and does not use probabilities or util-
ities. Our focus is instead on multiagent interaction prob-
lems that are naturally specified in a language that combines
declarative and procedural elements.

The rest of the paper is organized as follows. First, we re-
view the essentials of the situation calculus and ConGolog.
Then, we present our approach to modeling and verifying



game structures in the situation calculus and propose an
ATL-like language for specifying properties to be verified.
We illustrate the approach by specifying the game tic-tac-
toe and expressing and verifying some of its properties. Af-
ter this, we define GameGolog and show how it can be used
to specify and verify game structures conveniently. Then
we discuss how our framework can be used to conveniently
model contingent planning and process orchestration prob-
lems. We conclude by discussing related work, considering
how one can do synthesis in our framework, and pointing
out some issues for future work.

Preliminaries

The Situation Calculus and Basic Action Theories. The
situation calculus is a logical language specifically designed
for representing and reasoning about dynamically changing
worlds (Reiter 2001). All changes to the world are the result
of actions, which are terms in the language. We denote ac-
tion variables by lower case letters a, action types by capital
letters A, and action terms by «, possibly with subscripts.
A possible world history is represented by a term called a
situation. The constant Sy is used to denote the initial situ-
ation where no actions have yet been performed. Sequences
of actions are built using the function symbol do, such that
do(a, s) denotes the successor situation resulting from per-
forming action a in situation s. Predicates and functions
whose value varies from situation to situation are called flu-
ents, and are denoted by symbols taking a situation term as
their last argument (e.g., Holding(z, s)).

Within the language, one can formulate action theories
that describe how the world changes as the result of the
available actions. Here, we concentrate on basic action the-
ories as proposed in (Pirri and Reiter 1999; Reiter 2001).
We also assume that there is a finite number of action types
in the domains that we consider. As a result a basic action
theory D is the union of the following disjoint sets: the foun-
dational, domain independent, axioms of the situation cal-
culus (X); precondition axioms stating when actions can be
legally performed (Djss); successor state axioms describ-
ing how fluents change between situations (Dsg,); unique
name axioms for actions and domain closure on action types
(D¢q); and axioms describing the initial configuration of the
world (Dg,). A special predicate Poss(a, s) is used to state
that action a is executable in situation s; precondition ax-
ioms in D,,,,, characterize this predicate. In turn, successor
state axioms encode the causal laws of the world being mod-
eled; they take the place of the so-called effect axioms and
provide a solution to the frame problem.

High-Level Programs. To represent and reason about
complex actions or processes obtained by suitably execut-
ing atomic actions, various so-called high-level program-
ming languages have been defined. Here we concentrate on
a fragment of ConGolog, which includes most constructs of
the language, except for (recursive) procedures:

«a atomic action
p? test for a condition
01; 02 sequence
if ¢ then §; else J conditional
while ¢ do § while loop

0102 nondeterministic branch
Tz.d nondeterministic choice of argument
6" nondeterministic iteration
01|02 concurrency

In the above, « is an action term, possibly with parame-
ters, and ¢ is situation-suppressed formula, that is, a formula
in the language with all situation arguments in fluents sup-
pressed. We denote by ¢[s] the situation calculus formula
obtained from ¢ by restoring the situation argument s into
all fluents in . Program d1 |02 allows for the nondeterminis-
tic choice between programs d; and s, while 7.6 executes
program § for some nondeterministic choice of a legal bind-
ing for variable = (observe that such a choice is, in general,
unbounded). §* performs & zero or more times. Program
01|02 expresses the concurrent execution (interpreted as in-
terleaving) of programs d; and Js.

Formally, the semantics of ConGolog is specified in terms
of single-step transitions, using the following two predi-
cates (De Giacomo, Lespérance, and Levesque 2000): (i)
Trans(d,s,d’,s’), which holds if one step of program §
in situation s may lead to situation s’ with ¢’ remaining to
be executed; and (ii) Final(d,s), which holds if program
0 may legally terminate in situation s. The definitions of
Trans and Final for the constructs used in this paper are
shown below:

Trans(a,s,d',s') =

s’ = do(a, s) A Poss(a, s) A& = True?
Trans(¢?,s,8',s") = False
Trans(61;62,5,8',s') =

Trans(61,s,61,8' ) N8 =61;62V

Final(61,s) A Trans(82,s,8',s")
Trans(if  then 5, else 62, 5,6, s") =

©[s] ATrans(61,s,8',s" )V

—[s] A Trans(d2,s,d',s")
Trans(while ¢ do §,s,8',s") =

©[s] A Trans(6,s,8",s")y A& = §"; (while © do §)
Trans(61|d2,5,8',s") =

Trans(61,s,6',s") V Trans(d2,s,8,s")
Trans(rz.5,s,8',s') = Jz.Trans(d,s,8',s)
Trans(6*,s,8',s") = Trans(8,s,8",s") A& = 8";6*
Trans(61|02,s,8",s") =

Trans(61,s,01,8' ) A& = 61|02 V

Trans(6z2,s,05,8" ) A& = 61|05

Final(a, s) = False

Final(p?,s) = ¢ls]

Final(d1;02,s) = Final(d1,s) A Final(d2, s)

Final(if ¢ then 0; else J2, s) =

p[s] A Final(61,s) V —p[s] A Final(d2)

Final(while ¢ do §, s) = p[s] A Final(4,5") V —¢]s]

Final (61162, s) = Final(d1, s) V Final(d2, s)

Final(nz.0,s) = Jz.Final (4, s)

Final(6*,s) = True

Final(01|62, s) = Final(d1, s) A Final(d2, s)
The definitions of Trans and Final we use are as in (Sar-
dina and De Giacomo 2009); these are in fact the usual ones
(De Giacomo, Lespérance, and Levesque 2000), except that,
following (ClaBen and Lakemeyer 2008), the test construct
7 does not yield any transition, but is final when satisfied.
Thus, it is a synchronous version of the original test con-
struct (it does not allow interleaving). Also, as in (Sardina



and De Giacomo 2009), we require that in programs of the
form 7z.0, the variable x occurs in some non-variable action
term in §; we disallow cases where = occurs only in tests or
as an action itself. In this way, mx.0 acts as a construct for
making nondeterministic choices of action parameters (pos-
sibly constrained by tests). Finally, we assume without loss
of generality that each occurrence of the construct 7.9 in a
program uses a unique fresh variable z—no two occurrences
of such a construct use the same variable.

Situation Calculus Game Structures

To model games, we use a specialization of the situation cal-
culus in which every action has an agent parameter. The
function agent() takes an action, a, and returns the agent of
the action; we provide axioms specifying it for every action
type. By convention, the agent will usually be the first argu-
ment of the action type. We assume that that there is a finite
set of agents Agents, which are denoted by a set of unique
names.

Actions are partitioned into two classes: choice actions
and standard actions. Choice actions are special actions
that are used to model the decisions of agents. We assume
that choice actions have no effects on any fluents, other than
those defined below. Poss(a, s) corresponds to the notion
of an action a being physically possible (i.e. executable)
in situation s. We take choice actions to be always phys-
ically possible. However, we introduce a stronger version
of possibility/legality that is used to model the structure of
the game setting of interest. We specify such a notion using
a special predicate Legal, modeling the ability of agents to
perform actions and take decisions according to the rules of
the game. Legal must be axiomatized on a case by case basis
according to the game being modeled. But, we require that
the axiomatization of Legal entail the following properties:

1. Legal implies physically possible/executable:
Legal(s) D s =Sy V3a,s'. s =do(a,s) \ Poss(s").

2. If we are in a legal situation after an action, then before
the action we were in a legal situation as well:

Legal(s) D s =Sy V3a,s’. s =do(a,s) A Legal(s').

3. In alegal situation, only one agent can act:

Legal(do(a, s) A Legal(do(a’, s) D agent(a) = agent(a’).

For convenience, we also introduce the predicate Control
that given a legal situation returns the agent that can act in
that situation:

Control(agt, s) = Ja. Legal(do(a, s)) A agent(a) = agt.

Note that Control(agt, s) AControl(agt’, s) D agt = agt’
is entailed, since the constraints on Legal imply that only one
agent can act in a legal situation.

We note that there are clearly games where several agents
can act simultaneously. We can model such games using
a sort of round robin of choice actions among the agents
involved. Also, there are games where several agents may
try to act and nondeterministically one player will succeed
in performing his action. We can model this case by adding
to the game an extra player, a sort of game master, who is

in charge of making the “nondeterministic” decision, i.e., of
deciding which agent will actually act among all those that
may act (and we record such decisions in the situation).

We call the resulting variant of basic action theories sit-
uation calculus game structures. A situation calculus game
structure Dgs = X U Dypss U Dggq U Deg U Dg,y U Diegals
where ¥ U Dyp55 U Dygq U Dy U Dg, are as for standard
basic action theories, cf. Preliminaries, and Dj4q; denotes
the axioms for Legal and C'ontrol, as well as the definition
of the function agent(). Observe that in the literature, the
term game structure usually refers to a single model; here
instead, it stands for a type of situation calculus theory.

Example 1 To illustrate, we use the well-known tic-tac-toe
game as a running example. The state of the game, in situa-
tion s, is captured by fluents, Cell(m,r, ¢, s) that represent
the mark, m, either nought, O, cross X, or blank, B; one
for each of the row, 1 < r < 3, and column, 1 < ¢ < 3,
positions. Initially, the whole board is blank:

Vr, c.InRange(r,c) D Cell(B,r,c, So)

where InRange(r,c) = (1 <r <3) A (1 <c<3).

Players perform actions move(O,r, ¢) or move(X,r,c)
at a particular cell. They can move on any blank cell posi-
tion, so we define possible moves as follows:

Poss(move(m,r,c),s) =
(m=XVm=0)ACell(B,r,c,s) N InRange(r,c).

We specify the successor state axiom

Cell(m,r,c,do(a,s)) =
a = move(m,r,c) V Cell(m,r,c,s),

capturing how fluent Cell(m, r, ¢, s) becomes true either if
a player performs an action to move into that cell or remains
true if that cell was in the same state in the previous situation,
s, and the player (implicitly) moved into a different cell. The
function agent() is specified as follows:

agent(move(m,r,c)) = m.

Given the precondition axiom, m can only be X or O.
For defining legality it is convenient to introduce the fol-
lowing abbreviation:
Completed(s) =
Vr, c.InRange(r,c) A Cell(m,r,¢c,s) D m # B.
Then, we can write:
Legal(s) = So V
Ja.(s = do(a, So) A Poss(a, So) A agent(a) = X) V
Ja, b, s’.s = do(b, do(a, s") A Poss(b,do(a,s’)) A
Poss(a,s") A ~Completed(do(a,s")) A
(agent(a) = X A agent(b) = O V
agent(a) = O A agent(b) = X).
capturing that a situation s is legal if it is either the initial sit-
uation or a situation reached by alternating X and O moves
starting with X, and stopping the alternation as soon as the
board does not contain any more blanks (C'ompleted holds).
Finally, we define a convenient abbreviation for denoting
the winning condition for the tic-tac-toe game:
Wins(m,s) =
Ir Nj<cocy Cell(m,r,c) V
e\ <, <3 Cell(m,r,c) v
Ni<ics Cell(m,i, i) Vv
Ni<cics Cell(m,i,4 —14)



We also model the game being finished by: Flinished(s) =
Completed(s) vV Wins(X, s) V Wins(O, s). O

To express properties about these kinds of game struc-
tures, we introduce a specific logic, inspired by ATL (Alur,
Henzinger, and Kupferman 2002), and more generally by
the p-calculus (Bradfield and Stirling 2007) over the game
structures (de Alfaro, Henzinger, and Majumdar 2001) used,
e.g., in LTL synthesis by model checking (Piterman, Pnueli,
and Sa’ar 2006). The key building block of our logic is the
following operator:

(@) Ow=
(Jagt € G. Control(agt, now) A
Ja. agent(a) = agt A
Legal(do(a, now)) A pldo(a, now)]) V
(3agt ¢ G. Control(agt, now) A
Va. agent(a) = agt A
Legal(do(a,now)) D ¢[do(a, now)])

In the above, ¢ is a (possibly open) situation suppressed for-
mula, and now is a placeholder for the suppressed situation
in the formula. Note that here, we quantify differently ac-
cording to whether or not the agent controlling the situation
is in the coalition G. In the first case, for an agent agt € G,
the quantification is existential: we look for an action that
makes ¢ true. In the second case, i.e. for agt ¢ G, we re-
quire that all actions that the controlling agent can do make
o true. In this way, we allow an agent agt € G to select a
play against all possible moves of other agents not in G.

With this operator at hand, we develop the whole logic £
based on the p-calculus (Park 1976; Bradfield and Stirling
2007). L is defined as follows:

\Ifﬂp\Z(f)|x111m112|x111vx112|3x\1/\ .U |
(G) OV I[GOY | pz(2).¥(Z()) | vZ(Z).V(Z(Z))

where ¢ is an arbitrary, possibly open, situation-suppressed
situation calculus uniform formula, Z is a predicate variable
of a given arity, ((G)) O W is as defined above, [[G]] O ¥ is
the dual of ((G)) O ¥ (i.e., [[G]] O ¥ = ~((G)) O ~¥"),
w (resp. v) is the least (resp. greatest) fixpoint operator from
the p-calculus, and ¥(Z(Z)) is a notation used to emphasize
that Z(Z) may occur free, i.e., not quantified by p or v in W.

We can express arbitrary temporal/dynamic properties us-
ing least and greatest fixpoint constructions. For instance, to
say that group G has a strategy to achieve ¢(Z), where ()
is a situation suppressed formula with free variables Z, we
use the following least fixpoint construction:

(@) 0p(Z) = p2(Z). p(Z) v ((G)) O 2(T)

Similarly, we use a greatest fixpoint construction to express
the ability of a coalition GG to maintain a property ¢:

(G)De(@) = vZ()-¢(T) A (G)) O Z(Z)

Example 2 In the tic-tac-toe game, an interesting property
to check is the existence of a strategy to win the game for
player m. This can be formalized in our logic as:

uZ. Wins(m) vV {{(m)) O Z

! Although —({(G)) O =¥ is not in £ according to the syntax,
the equivalent formula in negation normal form is.

ie., ((m))OWins(m). Now it is well known that start-
ing from the bank board neither of the players has a strat-
egy to ensure a win, and indeed, we have that Dppp
({m))OWins(m)[Sp] for both m = X and m = O, where
Drrr is the game structure theory for tic-tac-toe speci-
fied above. However, if we start, for example, from the
board resulting from executing move(X, 2, 2) followed by
move(O, 1,2), then X does have a strategy to ensure she
wins, and indeed we have Drrr = ((X))OWins(X)[S]
for S = do(move(O, 1,2), do(move(X,2,2),5p)). O

Verifying Properties of Game Structures

Next, we will show how one can verify that a formula of our
logic is satisfied in a situation calculus-based game structure
specified as explained in the previous section under certain
assumptions, spelled out below. First, note that since we
assume finite sets of action types and agents, we can rewrite
the formula ((G)) O ¢ as follows:

(G) O =
(Vagiee Control(agt, now) A
ac Agents 32~ agent(a(Z)) = agt A
Legal(do(a(Z), now)) A ¢(do(a(Z), now))) V
(Vagig¢c Control(agt, now) A
acAgents VE- agent(a(Z)) = agt A
Legal(do(a(z), now)) > w(do(a(), now)))

Our verification method is based on two main ingredients:
(i) regression (Pirri and Reiter 1999; Reiter 2001), and (ii)
fixpoint approximates and the classical Knaster and Tarski
results (Tarski 1955).

Regarding regression, we will assume that Legal is re-
gressible. Given this, if ¢ is regressible, then ((G)) O ¢ is
also regressible, and in fact its regression is:

R(UG)) O ¢) =
(Vagteq R(Control(agt, now)) A
Veea 37. agent(a(F)) = agt A
R(Legal(do(a(Z), now))) A R(p(do(a(Z), now)))) V
(Vagige R(Control(agt, now)) A
Naca VZ. agent(a ) = agt A
R(Legal(do(a(Z), now))) D R(p(do(a(L), now))))

This observation is the first key element of our method.

The second element is the ability, in some cases, to com-
pute fixpoint approximates. Suppose that we want to verify
a least fixpoint formula 2. ¥ (Z), where Z occurs free in ¥.
We can attempt to evaluate such a formula using the general
technique of fixpoint approximates (Tarski 1955). The tech-
nique goes as follows. The approximates for a least fixpoint
of the form puZ.¥(Z) are as follows:

A

)
agt,
)

—~

Zy = U(False)
Z1 =V (Zo)
Zy =V(Zy)

Observe that all of these formulas Z; are situation sup-
pressed which means that they all talk about the same sit-
uation, say now. As a direct consequence of the classical
Knaster and Tarski results, we have:



Proposition 1 Let Dgg be a situation calculus game struc-
ture and let S be a situation. If for some i, Dgg

Analogously, the approximates for a greatest fixpoint of
the form vZ. W (Z) are as follows:

Zo = ¥(True)
71 = U(Zy)

Zy =V(Z4)

As a consequence of the Knaster and Tarski results, we have:

Proposition 2 Let D g be a situation calculus game struc-
ture and let S be a situation. If for some i, Dgg
Zi+11S) = Z;[S], then Dgs = Z;[S| = vZ. 9 (Z)[5].

Based on this, we define a procedure 7(-) that given an £
formula tries to compute a first-order formula uniform in the
current situation now that is equivalent to W. We proceed by
induction on structure of the £ formula:

AR

Ui AU,) =
2 \/\112) =
Jz.U) = Jz.

T(uZ.9) = lfpZ.7(¥)
T(WZ. V) = gfpZ.7(V)

where NNF(—V) stands for the negation normal form of ¥
with the proviso that for variables NNF(Z) = Z, and

o [fpZ. U is the formula R resulting from the least fixpoint
procedure

R := False;
Rrew := ¥ (False);
while (Dca % R= Rncw){

L Rnew;

Ryew :=Y(R) }

o gfpZ.V is the formula R resulting from the greatest fix-
point procedure

R = True;

Ruew := ¥(True)];

while (Deq £ R = Rpew){
R := Rnew;
Ruew :=¥Y(R) }

Notice that in computing such fixpoints we need to test
whether D, £ R = Rpew, i-€., check the validity of
R = R, under the unique name and domain closure as-
sumptions for actions in Dgg. Note that such a check is
purely first-order (Reiter 1982).

For the least fixpoint formula ((G)){p, i.e. that coalition
G can achieve ¢, the fixpoint approximates are:

Zo =pV{{G)) O Falseie., Zy = ¢
Z1 =9V {(G) O Zo
Zy =V {(G) O 2

By computing 7({(G)){y), we apply regression at each step
of the computation of the approximate so as to get a formula
uniform in s:

Ro = 2

Ri = VRI{(G)) O Ro]

Ry = ¢ VR[(G)) O R

Observe that by the regression theorem (Reiter 2001), given
a situation S, R;[S] is equivalent to Z;[S], the difference
between the two being that in R;[S] the only situation term
that appears is .S, while in Z;[S] we have S and perhaps
other situation terms that may be up to ¢ steps in the future.

Notice that 7({((G))Op) stops if Doy E R = Rit1.
Obviously, there are no guarantees in general that such a
condition is ever met. However, if it does eventually hold,
i.e. Das ': Z; [S] = i+1[S], then Dgg ': R; [S] =
wZ.¥(Z)[S]. Moreover, R;[S] is not only first-order but
uniform in S, and this means that if S = S, then we have
Das = Ri[So] iff Dg, U Dy = R;i[So]. That is, in order
to check whether Dgs = 1Z.¥(Z)[So], we only need to
check whether Dg, U D, = R;[So]- In other words, we
have reduced the task of verifying a fixpoint formula in the
situation calculus (including the second-order axioms for sit-
uations) into that of verifying a first-order formula, by some
iterated syntactic manipulation and checks of first order for-
mulas (needed to compute I2;). We stress again here that
there are obviously no guarantees that the procedure to com-
pute R, terminates in general. An analogous line of reason-
ing would allow us to verify that Dgs = v P.((G))Op[So]
by checking Dg, U D, = 7(vP.{((G))Op)[So]. More gen-
erally, we have the following theorem:

Theorem 1 Let D be a situation calculus game structure
and let V be an L-formula. If the algorithm above termi-
nates, then Dgs = V[So] iff Ds, U Deq = 7(¥)[So)-

GameGolog

As an alternative, more procedural, way of specifying game
structures, we introduce a variant of the ConGolog pro-
gramming language that we call Game Structure ConGolog,
or simply GameGolog. In this variant, all nondetermin-
istic choices are made by some agent that has control in
the situation, and are recorded in the situation. For ex-
ample, consider the program [agt a | b]. The agent can
choose to go left and continue with the execution of a, end-
ing up in do(a, do(left(agt), s)), or she can choose to go
right and continue with the execution of b, ending up in
do(b, do(right(agt), s)). Thus the important thing about
GameGolog programs is that which agent gets to act next
is always specified, and that the history of nondeterministic
choices is recorded in the situation.

Formally, GameGolog is obtained from ConGolog by re-
placing the three nondeterministic constructs and the con-
currency construct with new versions where we specify ex-
plicitly which agent is responsible for the nondeterministic
choice (we denote GameGolog programs by p, possibly with
sub/superscripts):

[agt p1|p2] nondeterministic branch
lagt Tz.p) nondeterministic choice of argument
[agt p”] nondeterministic iteration

lagt p1p2] concurrency



Intuitively, [agt p1|p2] states that agent agt chooses whether
to continue with p; or with ps; [agt mx.p] states that agent
agt chooses a binding for the variable x to continue with
p; [agt p*] states that agent agt chooses when to stop the
iteration of p; [agt p1]||p2] states that agent agt chooses how
to interleave the execution of p; and po.

The definitions of T'rans and Final for the new nonde-
terministic constructs are the following (for the deterministic
constructs they are as before):

Trans([agt p1]p2],s,p',8") =
s’ = do(left(agt),s) ANp' = p1 V
s = do(right(agt)7 s)Ap = p2
Trans([agt nx.pl,s,p,8) =
Jz.s" = pzck(agt )ANp =p

Trans(lagt p*],s,p',s") =
s' = do(continue(agt), s) Ap' = p;lagt p*] VvV
s’ = do(stop(agt),s) A p' = True?
Trans(lagt prllpa]. ./, ') =

s = = do(left(agt), s) A p' = [agt pr (|| pa] V

s' = do(right(agt),s) A p’ = lagt p1]) p2]
Trans([agt p1 (|| p2], s, p',8') =

Trans(pi, s, p1, s )Ap/ = [agt pi||p2]
Trans([agt p1|[) 2], s, p', ') =

Trans(p2, s, pa,s) A p’ = [agt p1]|pb]

Final(lagt p1|p2], s) = False
Final([agt 7x.p], s) = False
Final([agt p*],s) = False
Final(lagt p1]|p2], s) = False

Final([agt p1 {|| pa], ) =
Final(p1,s) A\ Final(pa2, s)

Final([agt p1 II) pa), s) =
Final(p1,s) A Final(p2, s)

In the above, for the nondeterministic constructs, we in-
troduce explicit choice actions as necessary to record how
the nondeterministic choice was resolved into the situation.
Thus, for a nondeterministic branch [agt p1 | p2], either
agt chooses to go left, performing the le ft(agt) choice ac-
tion, and then executes the left branch p;, or chooses to go
right, doing the right(agt) choice action, and then executes
the right branch ps. For a nondeterministic choice of ar-
gument [agt wz.p|, agt first picks a binding for z, doing
the pick(agt, x) choice action, and then executes the body
p for this binding of x. For a nondeterministic iteration, the
agent either chooses to continue iterating or to stop; in ei-
ther case, the choice is recorded by doing a choice action,
continue(agt) in the former case, and stop(agt) in the lat-
ter. Concurrency requires some more technical machinery:
consider the program [agt p1 || p2] and suppose that agt
chooses to perform a step of p; first. Then, we must ensure
that the first transition comes from p1, after which agent agt
can decide on the interleaving of the remainder of p;, pf,
and po, i.e. [agt p} || p2]- To handle this, we introduce the
new “auxiliary” construct [agtp; (|| p2] to model the state of
the computation after the agent has chosen/committed to go
left, but before it has performed any further transition. Sim-
ilarly, we introduce [agtp; ||) p2] to represent the state after
agt has chosen to go right.

Example 3 To model the tic-tac-toe game, we can use the

following GameGolog program prrr:

while —Finished() do (
[X 77, c. move(X, 1, ¢)];
if = Finished() then
[O 7, c. move(O, 1, ¢)]
else True? )

prrr simply alternates the moves of X and O, starting from
X, until a player has won or the board no longer has blanks
and hence the fluent Finished() holds. O

Interestingly, GameGolog programs that do not involve
the new concurrency constructs, can be expressed directly in
ConGolog. Indeed let us define a translation function 9 by
induction on the structure of GameGolog programs (without
concurrency):

o) =«
9(p?) = @?
9(p1; p2) = 0(p1); O(p2)
O(if ¢ then p; else p2) = if ¢ then O(p1) else I(p2)
O(while ¢ do p) = while ¢ do B(p)
I([agt p1 | p2]) = (left(agt); O(p1)) | (right(agt); (p2))
I([agt mx.p]) = ma.pick(agt, x); O(p)
I([agt p*]) = (continue(agt); d(p))"; stop(agt)

Then, one can show the following result by induction on
GameGolog programs:

Theorem 2 For every GameGolog program p not involving
concurrency, we have that

Drr ': Transca (p7 S, plv 5/) = Transca (8(/;), S, 6(/),)7 S,)a
Drr | Finalca(p, s) = Finalca(9(p), s),

where we have distinguished the Trans and Final predi-
cates of GameGolog and ConGolog by the subscripts GG
and CG respectively, and denoted by D the union of the
axioms for Trans and F'inal for the two languages.

Strictly speaking, in GameGolog one must specify explic-
itly which agent controls each nondeterministic choice. But
often we would like to say that a given agent controls all the
nondeterministic choices in some program. Thus for conve-
nience, we will often write [agt o], where g is a program that
may mix constructs of both GameGolog and ConGolog, to
refer to the GameGolog program ¢([agt ¢]), where agt con-
trols all the nondeterministic choices in g that are not already
controlled by other agents. To get the standard GameGolog
program from [agt o], we inductively define the syntactic
transformation ¢ as follows:

—~

([agt p]) = p where p is a (pure) GameGolog program
U[agt 015 e2]) = u[agt 01]); u([agt 02])
([agt if ¢ then p; else g2]) =

if o then «([agt p1]) else ¢([agt 02])
agt while ¢ do g]) = while ¢ do ¢([agt ])
agty [agts e]]) = u([agt2 o])
agt o1]2]) = [agt t([agt 01])|¢([agt 02])]
agt mx.0]) = lagt wz.1([agt o])]
agt 0*]) = lagt «([agte])"]
agt e1l[02]) = [agt «([agt e1]) || t([agt e2])]
agt 01(||e2]) = [agt ¢([agt 01])(|| :([agt o2])]
agt o1]) 02]) = lagt u([agt ¢1]) [[) c([agt 02])]

—~

S - = o~

~ o~

~
e i i s T T

~

This is used in the larger examples later in the paper.



Let’s now examine some of the semantic properties of
GameGolog. We denote by Dg¢ the union of the axioms
for T'rans and Final for GameGolog. In GameGolog (as
well as in the version of ConGolog presented in the Prelimi-
naries), we have that any program transition adds one action
to the situation (as there are no test transitions):

Y UDge | Trans(p, s, p',s") D Ja.s’ = do(a, s).

Thus the number of transitions in Trans*(p, s, p’,s’) is
equal to the number of actions that lead from s to s’
GameGolog has another interesting property: that all deci-
sions are represented in the situation. This means that if we
make a transition to arrive to a given situation, the remain-
ing program is unique for this situation. Formally, we can
prove, by induction on the GameGolog structure of p, that

Y UDga ':
Trans(p,s,p',s') AN Trans(p,s,p",s") D p' = p"

Furthermore, by induction on the number of Trans steps and
observing that such a number is determined by the final sit-
uation, it can be shown that this uniqueness property is pre-
served over sequences of transitions:

Y UDga ':
Trans*(p,s,p',s") AN Trans™(p,s,p",s') D p' = p”

Now that we have defined this GameGolog language,
where all decisions are recorded in the situation, we can use
it to specify Legal in a game structure. Note that this use of
a program is quite different from the standard one: instead of
executing it, we use the space of possible computations spec-
ified by the program to define Legal in the game structure,
i.e., to define the possible moves/legal states of the game.

Concretely, we do this by axiomatizing Legal to specify
that the legal situations are exactly those that can be reached
from the initial situation by performing transitions on the
program py modeling the game structure of interest:

Legal(s) = 3p" . Trans*(po, So, p’, 3).

Note that Legal defined in this way is more than simply
an invariant for the program, it is the strongest invariant
(Cousot 1990), i.e. it completely characterizes the reachable
configurations of the program.

In some cases, is it also useful to specify which situations
correspond to the Final configuration of the program. We do
this as follows:

Final(s) = 3p’.Trans*(po, So, p’, s) A Final(p', s).

This definition is well-founded since p’ is functionally de-
termined by pg and s. We call theories of this form, where
Legal (and possibly Final(s)) is specified by a GameGolog
program, GameGolog theories, and denote one by Dgar-
We want to be able to verify whether a game structure
specified by GameGolog program satisfies some properties
of interest. To develop an effective verification method, it
is helpful to combine the specification of the game structure
(Legal) in terms of a GameGolog program with the specifi-
cation of the property that we want to verify on this game
structure. We do this by introducing a program-constrained
version of the ((G)) O ¢ operator, KG>> () ¢, as follows:

LKG>Qp=
(Jagt € G.
Ja, p’. agent(a) = agt A
Trans(pnow, now, o', do(a, now)) A plp’, do(a, now)]) v
(Jagt ¢ G.
Ja, p’(agent(a) = agt A
Trans(pnow, now, p', do(a, now))) A
Va, p'. agent(a) = agt A
Trans(pnow,now, o', do(a, now)) D plp’, do(a, now)]).

Note that this operator depends on two suppressed param-
eters, the current situation now, and the current program

Prow- For any L-formula ¥, we have a related formula ¥
with two suppressed arguments as above, which we will use
in the following. We call the resulting logic L,,.

It is easy to verify that for any GameGolog theory Dgar
and any situation calculus formula ¢ uniform in s:

Daar [ ((G) O ¢ls] =
Ip.Trans*(po, So, p,s) AN KG> O ¢[p, s]

More generally we have that:

Theorem 3 For every GameGolog theory Dggr and asso-
ciated program py, and L-formula U, the corresponding L,,

formula VU is such that

~

Daer ': fo S‘TTCLTZS*(po, SO: P 5) ) (\IJ[S] = \Ij[p7 S])
Note that given pg, Sy and s functionally determine p.

Example 4 Returning to our tic-tac-toe example, the exis-
tence of a strategy to win the game for player m, can be now
formalized as:

wZ. Wins(m) v<m> QO Z

ie., <m>OWins(m). Again, if we start for example,
from the board resulting from executing move(X,2,2)
followed by move(O,1,2), then X does have a strategy
that ensures a win, and indeed, we have that Dypprp =
KX >0Wins(X)[p, do(move(O, 1, 2), do(move(X, 2,2),
So))], where Dpprp is the GameGolog theory for tic-tac-
toe defined above (now including the program prrr), and
p is what remains of the original program pprpp in situation
do(move(0, 1,2),do(move(X,2,2),Sp)) (in this case
incidentally, p = prr7). |

Verifying Properties of GameGolog Theories

We propose a technique to verify properties over game struc-
tures specified using GameGolog programs. The technique
is based again on (i) regression and (ii) fixpoint approxi-
mates, but now with the addition of (iii) a variant of char-
acteristic graphs (ClaBBen and Lakemeyer 2008), which are
used to compactly represent all the possible configurations
that a GameGolog program may visit during its execution.
Given a GameGolog program py, its characteristic graph, is
a graph where the nodes V' are tuples of the form (p, x),
meaning that p is a possible remaining program during
po’s execution and that x characterizes the conditions un-
der which p may terminate (i.e., be F'inal). The initial node
is vo = {po, xo0)- Edges in G stand for single transitions be-
tween program configurations and are labeled with tuples of



the form (7Z : o, w), where « is an action term with a spec-
ified action type (i.e., not an action variable) and variables
Z may appear free in o and w. Roughly speaking, an edge
represents the fact that the program in the source node may
perform a transition to a configuration with the program in
the destination node when one chooses instantiations for &
and performs action « in a situation where w holds.

Let’s see how we can adapt the characteristic graph-based
verification methods proposed in (Clalen and Lakemeyer
2008) to check properties over game structures specified
by GameGolog programs. First, note that in every node

= (p, x) of a characteristic graph G of a GameGolog pro-
gram, all outgoing edges will be labeled by actions of the
same agent, the agent that controls the node (this follows by
induction on the structure of the program p). We denote this
agent by agent(v). Then, we can specify a verification pro-
cedure that labels nodes differently depending on whether or
not they are controlled by an agent in the coalition.

We assume without loss of generality that the free vari-
ables occurring in formulas to be checked are distinct from
those occurring in the program pg, quantified by the 7 con-
struct. We will develop a procedure [¥] that labels nodes
in a characteristic graph G (the characteristic graph of the
GameGolog program specifying the game structure of inter-
est) for any £,-formula W. If this procedure terminates (it
may not), it produces a labeling of the nodes in the graph, i.e.
a set {(v, p)|v € G} where each ¢ is a first order formula,
and this labeling can be used to check whether the property
of interest U holds. We denote such a labeling by Z. We
begin by introducing the following definitions.

[e] = {{v,¢)|v € G} where ¢ is any first-order, possibly
open, formula.

Z1 AND Z5 = {<’U,¢1 AN ¢)2>|<U,¢1> S 217 <’U7¢2> S ZQ},
21 OR Zp = {(v,¢1 V ¢2)|(v, ¢1) € Z1, (v, ¢2) € Z2}.
EXISTS z.2Z = {(v,3x.9)|{v, ¢) € Z}.

ALL 2.2 = {{v,Vz.9)|(v, ¢) € Z}.

Pre(G, Z) = {{(v, ¢)|v € G, where

if agent(v) € G then
-4 = ’

¢ - V'u *a> v eG, (v, ¢/ )EZ iz W(m) A R(¢ (do(a, TLO’LU)))

and if agent(v) ¢ G then

¢

=V rzow Z.w(

v == v eG,(v,¢p)EZ

A

8
N

vﬂng/eg,('w PEZ
Pre(G, 2) = {(v,NNF(=¢))|(v, ¢) € Pre(G, 2)}.

LFPZ.W(Z), where W(Z) denotes an parametrized expres-
sion in which Z occurs as a parameter (possibly together
with other parameters), stands for the result of the follow-
ing procedure (in which Z # Z,., is an abbreviation for

ca % /\<U:‘P>sz<vy¢new>ezold Y= Lpnew):

= [False];
Znew 1= \II(Z),
while (Z # Z,c0){
Z = chw7
Zew = W(Z2) ).

GFPZ.W(Z), where U(Z) denotes a parametrized expres-
sion in which Z occurs as a parameter, stands for the result

VZ.w(Z) D R(¢ (do(a, now)))}.

of the following procedure:
= [Truel;
Znew = \I](Z)v
while (Z # Z,c0){
Z = Znew;
Zpew =Y (Z) }.

We can show that Pre(G, [¢]) characterizes the condi-
tion for <G> ()  to be satisfied by a program in the char-
acteristic graph in a situation:

Theorem 4 For all situation terms s and nodes v =

{p,x) € G, we have that Daar E <G> ¢|p, s| = ¥[s],

where (v,v) € Pre(G, [¢])-

To verify that <G> holds for the initial game situation,

we must determine whether Dger = <G> O ¢|po, So)-

Given the above theorem, we can do this by checking

whether Dg, U D,, = ¢[So] where (v, ¢) € Pre(G, [¢]).
Given these definitions, we can define our general label-

ing procedure [¥] for any £,-formula ¥ as follows:?

], where ¢ is first-order is as defined earlier

Z] = Z where Z is any labeling

Uy A \I/Q]] = [[\IJ ]] AND [[\IJQ]]

U, VvV \112]] = [[\111]] OR [[\112]]

Jx. U] =EXISTS z.[¥]

V. U] =ALL z.[U]

[«G> O \I’]] Pre(G,[Y])

1G] O ] = Pre(G, [¥])

uZ(2)] = LFPZ.[[\IJ(Z)]]

vZ.U(Z)] = GrPZ.[U(Z)]

We can show that when [¥] terminates, we can use the uni-

form formulas that label the nodes in the resulting labeling

to check whether ¥ holds:

Theorem 5 For every L,-formula U, if [ U] terminates and
(v, ), with v = (p, x), is in the returned set, then for all
situation terms s, Daar E ¥[p, s| = ¢[s).

For checking whether a property holds in the initial situa-
tion, we can strengthen the above into the following:

Theorem 6 For every Ly-formula U, if [V] terminates and
(vo, @), with v = {po,Xo), is in the returned set, then
Daar F ¥[po, Sol iff Ds, U Dea = #[So]-

Example: Contingent Planning

In (Lespérance, De Giacomo, and Ozgovde 2008), a model
of contingent planning for use with agent programming lan-
guages is developed. A contingent planning problem is spec-
ified in terms of a program (in ConGolog or some other
agent programming language) specifying the agent’s task
6 Agt and a program specifying the p0531ble behaviors of the
environment d gy, (possibly involving various other agents),
together with a background basic action theory D.

We can can use our framework to formalize this account
of contingent planning quite simply (assuming complete in-
formation). We can specify the game structure as follows:?

pep = [ENV 0Eny || [Agt dage; finish(Agt)]]

2Such a procedure can be immediately extended to deal with
the ability of expressing F'inal of a program in a situation directly
in L,, following (ClaBen and Lakemeyer 2008).

*Note that here we don’t use prioritized concurrency, as in
(Lespérance, De Giacomo, and Ozgovde 2008), to make the en-
vironment run at higher priority than the agent.



where é gy, is the program specifying the environment and
dagt is the program specifying the agent’s task. Note
that the environment chooses when the agent gets to exe-
cute. Also, we append to the agent program a new action
finish(Agt), which we use to record its successful comple-
tion. finish(Agt) is always possible and makes the new flu-
ent Finished(Agt) true. Finished(Agt) is initially false
and is unaffected by other actions. Solving the contingent
planning task amounts showing that:

Daer | <Agt>OFinished(Agt)[pep, So)

i.e., the agent can ensure that eventually it has completed its
task no matter how the environment behaves.

Let’s look at some simple concrete instantiations of Agt
and Fnv. Suppose that we have an agent Agt whose task
0 aqt s specified by the following program:

while —Accepted do (request|sleep).

Agt might be a child that repeatedly sleeps or requests candy
from his mother until she accepts to give it to him (alterna-
tively, Agt might be a client process that requests a resource
from a server). Suppose that the environment’s behavior is
specified as follows:

0Eny = while True do (Requested?; (accept|reject)).

Here, Env might be the child’s mother (or alternatively a
server) that simply responds to requests from Agt by ei-
ther accepting or rejecting the request. We assume that
Requested is initially false and is made true by the action
request and made false by both accept and reject. We also
assume that Accepted is initially false and is made true by
accept and made false by request. We assume that all ac-
tions are always physically possible.

Given this specification, it is easy to show that Agt cannot
ensure that she will successfully complete her task and get
her request accepted:

Daar E ~<Agt>Q Finished(Agt)[pep, So]
A = Agt:>O Accepted|pep, Sol.

The reason for this is that EFnv is allowed to be unfair and
keep rejecting all requests forever. We can express the form
of strong fairness (SF) that would rule this out as follows:*

SF = OO Requested D OO Accepted.

Note that for the above specification, strong fairness does
not hold along all execution paths:

Dgar = - <> SF[pep, So).

Now, suppose that we change the environment program
so that after a request is rejected, a subsequent request is
always accepted:

0Eny = while True do (
Requested?;
if LastReqRejected then accept
else(accept|reject) ).

*We use LTL notation for simplicity, but the formula can be ex-
pressed using fixpoints in a standard way, see e.g., (de Alfaro, Hen-
zinger, and Majumdar 2001; Piterman, Pnueli, and Sa’ar 2006).

Here, Last ReqRejected is initially false and is made true
by reject and made false by accept. Then we can show that
strong fairness does hold along all paths and that Agt can
ensure that he will successfully complete his task and get
his request accepted:

Daer | <> SF[pep, So] A
< Agt>>O Finished(Agt)[pep, So] A
<K Agt>>O Accepted|pep, Sol.

Now, suppose that we change the environment program
again so that after a request is rejected, a subsequent request
is always accepted provided that Env is not insensitive:

6En'u =
while T'rue do (
Requested?;
if Last ReqRejected N\ —Insensitive then accept
else(accept|reject) ).

Suppose also that it is not known whether Insensitive
holds initially, and that it is unaffected by actions. Then,
we can show that strong fairness holds along all paths if and
only if —Insensitive holds initially, and that Agt can en-
sure that he will complete his task and get his request ac-
cepted if and only if strong fairness holds along all paths:

Daar E —Insensitive(So) =< SF[pep, So] =
< Agt>Q Finished(Agt)|pep, So] =
K Agt>>Q Accepted|pep, So.

Example: Process Orchestration

In (De Giacomo and Sardina 2007), an account of ser-
vice/process orchestration is proposed and techniques for
synthesizing an orchestrator are developed. In this account,
the desired service, as well as the available services that may
be orchestrated to try to produce the desired service, are
modeled as transition systems. It is assumed that the desired
service is “deterministic” in the sense that the current state
and the action performed by the desired service functionally
determine the next state of the desired service. The avail-
able services need not be deterministic in this sense, and the
orchestrator cannot control what state they end up in after
a transition involving a given action. An orchestrator is es-
sentially a function that given a system state and an action
selected by the desired service selects an available service to
perform that action. Roughly speaking, an orchestrator real-
izes a desired service if for any run of the desired service, the
orchestrator can select at every step an available service and
have it perform the action selected by the desired service.
This must hold regardless of the nondeterministic state tran-
sition performed by the selected available service at each
step (the other available services are assumed to remain in
their current state). The available services must also be in
a final state whenever the desired service is in a final state
(where it may terminate).

To illustrate how this works, let’s look at a simple ex-
ample involving a service for searching for songs and
listening to them, taken from (Berardi et al. 2005).
We model the desired service by the program &g =
((searchByAuthor|searchByTitle); listen)*, ie. we
want to be able to repeatedly search for a song by
either author or title, and then listen to it. The



two available services are modeled by the programs
01 = (searchByAuthor;listen)*, which allows repeat-
edly searching for a song by author only, and then listen-
ing to it, and 0o = (searchByTitle; listen)*, which allows
repeatedly searching for a song by title only, and then lis-
tening to it. Note that here we model services as ConGolog
programs. Clearly, in this example, we can in fact orches-
trate the available services to realize the desired service by
selecting 91 to perform searchByAuthor and then listen,
when the desired service selects these actions, and by select-
ing d, to perform searchByT'itle and then listen, when the
desired service selects them. If we do this, the available ser-
vices are final whenever the desired service is final.

We can use GameGolog to formalize the account of
process orchestration discussed above as follows. We
can specify the system/game structure using the following
GameGolog program:

po = [Sched [DesS 6y; finish(DesS)] ||
[Avail Sy 61; finish(AvailS1)] || ... ||
[Avail S, 6n; finish(Avail Sy, )]].

Here, ¢, is a modified version of the program specifying
the desired service Jy (we explain the modification below)
and 61, ..., J, are the programs specifying the available
services. We introduce an agent DesS that controls the
choices made in executing the desired service dj, and agents
AvailSy, ..., AvailS,,, where each AvailS; controls the
choices in executing the available service d;. In the model of
the system p,, all of these services run concurrently, with the
interleaving under the control of a scheduler agent Sched.
Note that the environment here is deterministic and can be
modeled by the basic action theory. As earlier, we intro-
duce a finish(agt) action for each agent with an associated
Finished(agt) fluent to record when the agent terminates.
The idea behind our formalization is that the scheduler
agent Sched can choose an interleaving of the available
services to perform the actions “requested” by the desired
service. To model the “requesting” of actions by the de-
sired service, each action a in the program Jy specifying the
desired service is replaced by the new action request(a),
yielding the program 4. We also introduce a functional flu-
ent requested to keep track of the last requested action:
requested(do(a, s)) =z =
requested(s) = nil A a = request(a,) Az = a, V
requested(s) = a A x = nil V
—(ControlAction(a) V Jagt(a = finish(agt))) A
requested(s) # a A x = error V
requested(s) = x A
—(requested(s) = nil A a = request(ar) Az = ar) A
—(requested(s) = a Az = nil A
—(=(Control Action(a) V Jagt(a = finish(agt))) A
requested(s) # a A x = error).
A requested action is cleared only when it is performed for
real, by one of the available services. Moreover, if a desired
service performs a non-control non-finish action that has not
been requested, requested records the error by permanently
taking on the value error. The desired service can only re-
quest an action after its last request has been cleared/served:

Poss(request(a), s) = requested = nil.

Initially, no requests have yet been made, i.e.
requested(Sy) = nil.

Given this model, solving the orchestration task amounts
showing that: Dger = U[rhooren, So] where

U = < Sched > O(requested # error A
O(requested # nil V AllFinished) A
(requested # nil D Qrequested = nil))

expressible using fixpoints as

U = vZ U AU AU3AKLSched> (O Z

U, = requested # error

Uy, = pZ. requested # nil V AllFinished
V «Sched> O Z

U3 = requested # nil D

uZ. requested = nil V K Sched> O Z

where  AllFinished = Finished(DesS) A
Finished(AvailSy) A ... A Finished(AvailSy,). That is,
we must show that the scheduler agent can ensure that in
any run of the system, no error occurs (the performance of
an unrequested non-control non-finish action), the desired
service keeps requesting actions until it and all available
services finish, and any requested action by the desired
service is eventually done by one of the available services.

Discussion

In this paper, we have devised techniques for the verifi-
cation of properties over game structures and GameGolog
programs. Interestingly, in presence of complete informa-
tion on the initial situation, the techniques presented here
can be extended to actually synthesize strategies that al-
low the agents in the coalition to ensure that the property
hold. To do so, we can rely on the notion of witness used
in model checking (Clarke, Grumberg, and Peled 1999;
Piterman, Pnueli, and Sa’ar 2006). Such witnesses can be
obtained by storing additionally the labeling corresponding
to the various intermediate approximates used in the com-
putation of fixpoints. Examples of such constructions in the
situation calculus and characteristic graphs can be found in
(Sardina and De Giacomo 2009). Interestingly in the case
of complete information, the logical tasks required by The-
orem 6, from logical implication become evaluation of first-
order formulas over a (possibly infinite) interpretation. Fur-
thermore, if the fluents are propositional, then we can use
results such as (Fritz, Baier, and Mcllraith 2008) to reduce
our situation calculus-based game structures to finite game
structures, and use ATL model checkers such as MCMAS
(Lomuscio, Qu, and Raimondi 2009), to actually get a sound
and complete effective tool for both verification and synthe-
sis. Notice that in the case of propositional fluents the com-
putation of the approximates always converges.

In the presence of incomplete information about the ini-
tial situation, getting synthesis techniques out of verification
techniques is much more involved. Indeed, strategies not
only need to exists (as verification in our logic guarantees),
but need to be epistemically feasible, i.e., the agent perform-
ing a strategy needs to have enough information to actually
make all the choices needed for its execution; see e.g., (Sar-
dina et al. 2004). As well, it would obviously be of interest
to generalize our framework to the full incomplete informa-
tion case, where agents have different knowledge and can
acquire new information as they act (Sardina et al. 2004;
Ghaderi, Levesque, and Lespérance 2007).



Note that our framework supports incomplete specifica-
tions of the application domain (our basic action theories
need not have a single model), but that all agents are as-
sumed to have complete knowledge of the theory, actions
are observable by all agents, and there are no sensing actions
that allow an agent to gain additional private knowledge. We
hope to relax these restrictions in future work.

In related work on game-theoretic logics, we should men-
tion ATEL (van der Hoek and Wooldridge 2003), a variant of
ATL that deals with incomplete knowledge and ensures epis-
temic feasibility of strategies. However, this logic is propo-
sitional and there is no expressive language for specifying
the game structure. (Walther, van der Hoek, and Wooldridge
2007) develops a variant of ATL where strategies can be
referred to explicitly; but it denotes strategies by primitive
terms and they cannot be specified explicitly in the object
language. Our approach is also quite different from that in
(Finzi and Lukasiewicz 2004; 2006), which develop “game
theoretic” agent programming languages based on Golog;
their languages are based on classical game theory and aim
to support restricted cases of game theoretic reasoning by
an agent at execution time. We focus more on verification
and offline synthesis and do not use probabilities and utili-
ties. There has has also been work on logical frameworks to
represent games. The Game Description Language (GDL)
(Genesereth, Love, and Pell 2005) is a declarative specifi-
cation language to represent discrete complete information
games that has been used as a standard in “general game
playing” competitions, where agents must compete in games
that are not known in advance. Our basic formalization of
game structures in the situation calculus is similar to GDL’s.
But GDL does not deal with the representation and verifica-
tion of properties over game structures, nor does it consider
specifying game structures procedurally. Schulte and Del-
grande (Schulte and Delgrande 2004) have proposed a situa-
tion calculus-based formalization of classical von Neumann-
Morgenstern game theory, including optimal strategies and
Nash equilibria. Our approach is quite different, and focuses
on multiagent interaction problems that are naturally speci-
fied using a procedural language and on their verification.

We conclude by emphasizing that the study here is es-
sentially theoretical. While effectiveness guarantees will
only be available for very specific cases (e.g. finite states, or
structures that allow for quantifier elimination such as Pres-
burger arithmetic), it remains very important to complement
our work (as well as that of (ClaBen and Lakemeyer 2008;
Sardina and De Giacomo 2009)) with experimental studies,
to understand whether these techniques, based on labeling
of characteristic graphs, are effective in practical cases.
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