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Abstract

Intuitively, the appearance of true object boundaries

varies from image to image. Hence the usual monolithic

approach of training a single boundary predictor and ap-

plying it to all images regardless of their content is bound

to be suboptimal. In this paper we therefore propose situ-

ational object boundary detection: We first define a variety

of situations and train a specialized object boundary detec-

tor for each of them using [10]. Then given a test image,

we classify it into these situations using its context, which

we model by global image appearance. We apply the cor-

responding situational object boundary detectors, and fuse

them based on the classification probabilities. In experi-

ments on ImageNet [35], Microsoft COCO [24], and Pascal

VOC 2012 segmentation [13] we show that our situational

object boundary detection gives significant improvements

over a monolithic approach. Additionally, our method sub-

stantially outperforms [17] on semantic contour detection

on their SBD dataset.

1. Introduction

Most methods for object boundary detection are mono-

lithic and use a single predictor to predict all object bound-

aries in an image [2, 10, 23] regardless of the image con-

tent. But intuitively, the appearance of object boundaries

is dependent on what is depicted in the image. For exam-

ple, black-white transitions are often good indicators of ob-

ject boundaries, unless the image depicts a zebra as in Fig-

ure 1. Outdoors, the sun may cast shadows which create

strong contrasts that are not object boundaries, while similar

colour contrasts in an indoor environment with diffuse light-

ing may be caused by object boundaries. Furthermore, not

all objects are equally important in all circumstances: one

may want to detect the boundary between a snowy moun-

tain and the sky in images of winter holidays, while ignoring

sky-cloud transitions in images depicting air balloons, even

though such boundaries may be visually very similar. These

examples show that one cannot expect a monolithic predic-

tor to accurately predict object boundaries in all situations.

In this work we recognize the need for different object

boundary detectors in different situations: first we define a
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Figure 1. Monolithic vs situational object boundary detection.

Black-white transitions indicate an object boundary for the snow-

board, but are false object boundaries for a zebra. This ambiguity

cannot be resolved by a monolithic detector. In contrast, by train-

ing class specific object boundary detectors and classifying the

image as a zebra, we correctly ignore most of the stripes.

set of situations and pre-train object boundary detectors for

each of them. For a test image, we classify which situations

the image depicts based on its context, modelled by global

image appearance. Then we apply the appropriate set of ob-

ject boundary detectors. Hence conditioned on the situation

of an image we choose which object boundary detectors to

run. We call this Situational Object Boundary Detection.

One important question is how to define such situations.

Since the appearance of object boundaries are for a large

part dependent on the object class, one natural choice is to

use each object class as a single situation. This results in

class specific object boundary detectors, which can deal for

example with the zebra in Figure 1. However, object bound-

aries are also determined by the object pose and the back-

ground or context of the image. Since this can vary within

a single object class, we propose to cluster images of a sin-

gle class into subclasses based on global image appearance.

This leads to subclass specific object boundary detectors.

Finally, one can imagine that the context of the image it-

self determines what kind of object boundaries to expect.

For example, one can expect cow-grass boundaries in the

countryside and street-car boundaries in the city. Therefore

we cluster images based on their global image appearance,

which results in class agnostic object boundary detectors.



Hence we experiment with three types of situations: class

specific, subclass specific, and class agnostic.

Obviously, situational object boundary detection re-

quires more training data than a monolithic approach.

Therefore we cannot use the standard BSD500 [2] dataset of

500 images for our evaluation. Instead, we evaluate on three

larger datasets: Pascal VOC 2012 segmentation [13], Mi-

crosoft COCO [24], and part of ImageNet [35]. Microsoft

COCO is two orders of magnitude larger than BSD500. For

ImageNet we train from segments which are created in a

semi-supervised fashion by Guillaumin et al. [16].

Additionally, our class-specific situational object bound-

ary detectors can also be applied to semantic contour de-

tection, the task of predicting class-specific object bound-

aries [17]. We compare with [17] on their SBD dataset.

2. Related Work

Manually defined predictors. Early work on object

boundary detection aimed to manually define local filters

to generate edges from an image. In these works, convolu-

tional derivative filters are applied to find local image gra-

dients [12, 32, 34] and their local maximum [6, 28].

Trained predictors. But object boundaries arise from a

complex combination of local cues. Therefore more recent

techniques resort to machine learning and datasets with an-

notated object boundaries: Martin et al. [29] compute local

brightness, colour, and texture cues, which they combine

using a logistic model. Both Mairal et al. [27] and Prasad

et al. [31] use RGB-features from local patches centred on

edges found by the canny edge detector [6], which they clas-

sify as true or false positives. Dollár et al. [9] use boosted

decision trees to predict if the centre label of an image patch

is an object boundary or not. Lim et al. [23] use Random

Forests [5] to predict sketch tokens, which are object bound-

ary patches generated by k-means clustering. Dollár and

Zitnick [10] proposed structured random forests, which use

object boundary patches as structured output labels inside

a random forest. Their method is extremely fast and yields

state-of-the-art results. We build on [10] in our paper.

Domain specific predictors. Some works that use ma-

chine learning to predict object boundaries observed that

this enables tuning detectors to specific domains. Dollár et

al. [9] showed qualitative examples of domain-specific de-

tectors for finding mouse boundaries in a laboratory setting

and detecting streets in aerial images. Both [27] and [31]

used class-specific object boundary detectors for boundary-

based object classification. Whereas in all these cases

the domain was predefined, in this work we automatically

choose which object boundary detector to apply at runtime.

Semantic contour detection. Like [27] and [31], Hariha-

ran et al. [17] addressed class-specific object boundary de-

tection. They call this ‘semantic contour detection’ and cre-

ate the SBD benchmark to directly evaluate this task. Their

method combines a monolithic object boundary detector

(gPb [2]) with object class detectors (Poselets [4]). Since

the class-specific version of our situational object boundary

detection can readily be applied to semantic contour detec-

tion, we compare to [17] in Section 4.4.

Globally constrained predictors. Instead of predicting

boundaries only at a local level, Arbeláez et al. [2] cast

the problem into a global optimization framework capturing

non-local properties in the spirit of Normalized Cuts [36].

In this paper we use the global image appearance to deter-

mine the set of local object boundary predictors to use. In

this sense, the global appearance of the image restricts our

algorithm to a limited set of expected object boundaries.

Contextual guidance. Context, as modelled by global

image appearance, has been successfully used to guide a va-

riety of computer vision tasks. Torralba et al. [38] showed

that global image features effectively constrain both the ob-

ject class and its location, which is frequently used in object

localisation (e.g. [13, 14, 18]). Boix et al. [3] do semantic

segmentation by region prediction, where the global image

appearance enforces a consistency potential in their hier-

archical CRF. Liu et al. [25] perform semantic segmenta-

tion through label transfer. Given a test image, they retrieve

nearest neighbours from a pixel-wise annotated dataset us-

ing global image appearance. After region alignment, they

transfer labels to the test image. In this paper we use con-

text modelled by global image features to select those object

boundary detectors that correspond to the situation depicted

in the image.

3. Method

3.1. Situational Object Boundary Detection

Our main idea is visualized in Figure 2. For each specific

situation, one can train a specialized object boundary detec-

tor. Given a test image, one then only needs to apply those

boundary detectors which best fit its situation. Intuitively,

the global image appearance can help distinguish the local

appearance of true object boundaries from edges caused by

other phenomena.

Formally, let D = {D1, . . . , Dk} be a set of k trained

object boundary detectors for a corresponding set of k sit-

uations S = {S1, . . . , Sk}. Applying the j-th detector Dj

to image I gives the boundary prediction Dj(I). We write

the probability that image I corresponds to situation Sj as

P (Sj |I), which we obtain using global image classification

as explained in section 3.3. Now we get the final object

boundary prediction D(I) by:

D(I) =
k∑

j=1

P (Sj |I) ·Dj(I) (1)
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Figure 2. Overview of situational object boundary detection. For

each situation there is a specialised boundary detector D̂j which

we apply by D̂j(I). The specialised predictions vary greatly and

are combined into a final prediction using Equation (2).

Of course, we do not need to apply all object boundary de-

tectors to the image since P (Sj |I) is likely to be small for

most situations j. To reduce computational costs we take

the top few n ≪ k situations for which P (Sj |I) is highest.

Formally, let Ŝ = {Ŝ1, . . . , Ŝk} be an ordered set for a spe-

cific image I such that P (Ŝi|I) > P (Ŝj |I) for all i < j.

Let D̂ be the set of boundary detectors corresponding to Ŝ.

Then the final object boundary prediction is obtained by:

D(I) =
1

Z

n∑

j=1

P (Ŝj |I) · D̂j(I) (2)

where Z =
∑n

j=1
P (Ŝj |I) is a normalizing factor ensuring

that the values of the predicted boundaries are comparable

for different n and across images.

We have two choices for n: either we fix n or we take

n such that Z > m for a specific probability mass m. We

determine the best solution experimentally in section 4.1.

3.2. Situations

For situational object boundary detection to work, the

key is to define proper situations. We propose three ways to

define our situations as visualised in Figure 3: class specific,

subclass specific, and class agnostic.

Class specific. As the term already says itself, object

boundaries are caused by the presence of an object. A logi-

cal way to define a situation is therefore to use class specific

situations, leading to class specific boundary detection. We

use class labels from the dataset to obtain these situations.

Class specific situations constrain the appearance of ob-

ject boundaries in two ways. Most importantly, instances

of the same class tend to have similar appearance: in Fig-

ure 3a the boundaries of a baboon are all a specific type of

fur, while air balloons have a characteristic oval shape. Sec-

ond, objects often occur in similar contexts: killer-whales

are mostly in the water while balloons are often in the air.

If both the context and object class is the same, there is lit-

tle variation in the appearance of object boundaries and one

can learn an object boundary detector which is sensitive to

these specific object boundaries.

Subclass specific. For some classes, its instances are de-

picted in a variety of contexts, poses, and from a variety

of viewpoints, which can significantly influence the ap-

pearance of the object boundaries. Take for example the

killer-whale in Figure 3b. Photographed in the wild the

object boundaries are only caused by water-whale transi-

tions, while in a whale-show object boundaries can also be

caused by crowd-whale transitions. Furthermore, spurious

edges caused by the crowd should not yield object bound-

aries here. Additionally, a viewpoint from within the water

or from above the water causes the object boundaries to be

very different due to colour changes and absence/presence

of foaming water or waves. Pose may also affect object

boundary appearance: a sleeping, curled-up cat has much

smoother boundaries than a playing cat.

We create subclass specific situations by taking all im-

ages of a certain class, model their global image appearance

as described in Section 3.3, and apply k-means clustering.

Class agnostic. Finally, the appearance of object bound-

aries may be more influenced by context than by the object

class itself. For example, as visualised in Figure 3c, pho-

tographs taken through a fence yield spurious edges which

are not object boundaries. Detecting such situation allows

for using an object boundary detector which ignores edges

from this fence. Furthermore, various object classes occur

in similar contexts and share characteristics. Indeed, the

second row shows furry animals in a forest environment,

giving rise to a similar appearance of object boundaries.

Therefore the last situation type we consider is class ag-

nostic. We ignore all class labels and cluster all images of

the training set using k-means on global image appearance.

As shown in Figure 3c, this leads to clusters of objects in

similar contexts, some with predominantly instances of a

single class.

3.3. Image Classification

For each situation Sj ∈ S we need to predict P (Sj |I).
We do this using either Bag of Visual Words [8, 37] or Con-

volutional Neural Net (CNN) features [21].

Bag of Visual Words. We extract SIFT descriptors [26]

of 16 × 16 pixels on a dense regular grid [20] at every 4

pixels using [39]. We use PCA to reduce SIFT to 84 dimen-

sions. We train a GMM with diagonal covariance of 64 clus-

ters. We then create Fisher Vectors following [30]: we use

derivatives only with respect to the means and standard de-

viations of the GMM. Vectors are normalized by taking the

square root while keeping the sign, followed by L2 norm.

We use a spatial partitioning [22] using the whole image

and a division into three horizontal regions (e.g. [39]). The

final Fisher representation has 43008 dimensions.



(a) Class specific (b) Subclass specific (c) Class agnostic

Figure 3. Visualisation for the three types of situations used in this paper. Each row per subfigure depicts three example images of a single

situation on ImageNet (Section 4.1). Figure 3a shows class specific situations, where each situation is a single object class. Figure 3b show

subclass specific situations, beneficial for classes with significant context or pose variation such as the killer-whale. Finally, Figure 3c

shows class agnostic situations, which results in contextually similar clusters, some containing predominantly images of a single class.

CNN features. We use the publicly available software for

deep Neural Networks of Jia et al. [19]. Instead of train-

ing a specialized network for each dataset, we choose the

more flexible option of using a pre-trained network, remov-

ing the final classification layer, and using the last layer as

global image appearance features. This was shown to yield

excellent features by e.g. [11, 15, 33].

In particular, we use the pre-trained network modelled

after Krizhevsky [21] that comes with [19], trained on the

training set of the ILSVRC classification task [35]. This

network takes as input RGB images rescaled to 227 × 227
pixels. It consists of five convolutional layers, two fully

connected layers, and a final classification layer which we

discard. Hence we use the outputs of the 7-th layer as CNN

features, yielding features of 4096 dimensions.

Classification. For both the Fisher Vectors and CNN fea-

tures, we train linear SVMs with Stochastic Gradient De-

scent using [40]. We use cross-validation to optimize the

slack-parameter and, following [1], to optimize the relative

sampling frequency of positive examples.

3.4. Boundary Detector

As boundary detector we use the Structured Edge Forests

of Dollár and Zitnick [10], as these are extremely fast and

yield state-of-the-art performance. Using their standard set-

tings, their detector predicts 16× 16 pixel boundary masks

from 32 × 32 pixel local image patches. From each local

image patch a variety of colour and gradient features is ex-

tracted. They train a random forest directly on the structured

output space of segmentation masks: at each node they sam-

ple 256 random pixel pairs and perform binary tests check-

ing if both pixels come from the same segment. The result-

ing 256 dimensional vector is reduced to a single dimension

using PCA, where its sign is used as a binary label. This al-

lows for the calculation of information gain as usual.

Unless mentioned otherwise, we use their framework

with standard settings except for the number of training

patches. We lower these from 1 million to 300,000 resulting

in similar performance as shown in Section 4.1.

4. Results

In Section 4.1 to 4.3, we evaluate our method on

object boundary detection on ImageNet [35], Microsoft

COCO [24], and Pascal VOC 2012 segmentation [13]. We

use the evaluation software of [29], average results over all

images and report precision/recall curves, precision at 20%

and 50% recall, and average precision (AP).

In Section 4.4, we evaluate our method on semantic con-

tour detection on the SBD database [17] using their evalua-

tion software and report average precision (AP).

4.1. ImageNet

Dataset. While ImageNet has no manually annotated ob-

ject boundaries, Guillaumin et al. [16] obtained good seg-

mentations using a semi-supervised segmentation transfer

strategy, applied to increasingly difficult image subsets. As

our training set, we use their most reliable segmentations

created from bounding box annotations. As test set, we use

the ground-truth segmentations collected by [16].

To keep evaluation time reasonable we randomly sam-

ple 100 classes from the set of [16]. This results in 23,457

training and 1,000 test images. Since each image is anno-

tated with one object class, this experiment evaluates only

boundaries of that class.

Number of situations. For subclass specific situations,

we choose to cluster classes into 10 subclasses, yielding

1000 situations. For good comparison, we choose to also

have the same number of 1000 class agnostic situations.

Number of detectors at test time. We now establish the

number of object boundary detectors to apply to get opti-

mal performance using Equation (2). Table 1 shows results

when varying n for subclass specific object boundary de-

tection (other situations yield similar results). As can be

seen, starting from n = 5 results saturate for both meth-

ods. Looking at the probability mass Z, at n = 5 it is 61%

for Fisher vectors and 71% for CNN features. However,

Z greatly differs per image. Hence for stable and efficient

computation time with optimal performance, we fix n = 5



n = 1 n = 3 n = 5 n = 25

Z - CNN - subclass specific 47% 65% 71% 85%

Z - Fisher - subclass specific 29% 51% 61% 79%

AP - CNN - subclass specific 0.274 0.289 0.296 0.295

AP - Fisher - subclass specific 0.267 0.283 0.290 0.291

AP - Monolithic 0.258 0.259 0.260 0.260

Table 1. Influence of number of situational object boundaries de-

tectors applied at test time. Results saturate in average precision

(AP) after applying 5 object boundary detectors.

precision at precision at average

20% recall 50% recall precision

monolithic 0.382 0.282 0.260

CNN - class specific 0.435 0.311 0.289

CNN - subclass specific 0.451 0.317 0.296

CNN - class agnostic 0.446 0.315 0.295

Fisher - class specific 0.426 0.305 0.283

Fisher - subclass specific 0.442 0.312 0.290

Fisher - class agnostic 0.429 0.307 0.284

GT - class specific 0.433 0.311 0.290

monolithic - CNN enhanced 0.385 0.278 0.259

Table 2. Results on ImageNet show that situational object bound-

ary detection significantly outperforms a monolithic strategy.

random forest detectors (of 8 trees) for all subsequent ex-

periments.

Baseline. Our baseline (monolithic) is a single mono-

lithic detector. However, for a fair comparison our baseline

should be trained on the same number of training patches

and use the same number of decision trees. This is equiv-

alent to training multiple monolithic detectors [10]. As

shown in Table 1, results are affected little by training more

monolithic detectors, and stabilize at n = 5 at 0.260 AP.

We also trained a random forest with the recommended

1M training examples [10] instead of 300k. This yields

0.262 AP. Since this is not significantly different, for con-

sistency of all experiments we choose as baseline n = 5
random forests trained on 300k examples per tree.

Situational Object Boundary Detection. Figure 4 and

Table 2 show that situational object boundary detection

significantly outperforms the monolithic approach. Using

CNN features, at 20% recall, the precision for monolithic is

0.38, while it is respectively 0.44, 0.45, and 0.45 for class

specific, subclass specific, and class agnostic situations.

Figure 4 shows that subclass specific situations slightly

outperform class specific situations. This is because sub-

division into subclasses by clustering yields more special-

ized object boundary detectors, which are especially helpful

when the object class can occur in different contexts. In-

deed, looking at performance increase of individual classes,

the use of subclasses yields an increase in AP of 0.04, 0.08,

and 0.14 for respectively killer-whale, airship, and basket-

ball. The variety of contexts of the killer-whale can be seen

in Figure 3b, airships occur on the ground and against the

sky, while basketball images range from basketball close-

ups, to indoor competition (see Figure 5), to outdoor play.

Note that the monolithic boundary detector is trained ex-

clusively on the objects of interest. Hence if a local image

patch causes a false boundary prediction, it is necessarily
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Figure 4. Performance of object boundary detection on ImageNet.

Situational object boundary detection significantly outperforms

monolithic. The black line is occluded by the blue.

similar in appearance to a local image patch of a true object

boundary. Now notice in Figure 5 that monolithic bound-

ary detection fires on many non-object boundary edges: the

crowd of the basketball player, the shade behind the dog, the

dog’s internal boundaries, and the water of the killer-whale.

Therefore such background edges are necessarily similar in

appearance to true object boundaries. This means a mono-

lithic approach can never work well in all situations.

In contrast, situational object boundary detection per-

forms much better, especially when using subclass specific

situations. On the basketball image, our method ignores not

only the crowd but also the player, which is good since the

player is not the object of interest. For the dog our method

focuses primarily on the dog boundaries ignoring shadow

and its interior boundaries. For the killer-whale spurious

edges caused by the water are ignored.

We conclude that by using object boundary detectors

specialized for the identified situation, we effectively con-

strain the expected local appearance of object boundaries,

which helps resolving ambiguities. This yields significant

improvements: whereas a monolithic approach results in

0.260 AP, our subclass specific situation yield 0.296 AP, a

relative improvement of 14%.

CNNs vs Fisher Vectors. Table 2 shows that CNN fea-

tures work generally better than Fisher vectors for situa-

tional object boundary detection. This confirms other ob-

servations on the strength of CNN features (e.g. [7, 11, 33]).

For class-agnostic situations improvements are especially

good since it improves both the creation of situations and

the classification. We use CNN features for the remainder

of this paper.

Using ground-truth image labels. Table 2 includes an

experiment where we use the ground-truth label to deter-

mine which class-specific boundary detector should be ap-

plied (GT - class specific). This helps assessing the quality

of the global image appearance classifier within our frame-
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Figure 5. Qualitative comparison for monolithic versus situational object boundary detection. The upper row shows object boundary

predictions. The lower row shows the ground truth boundaries and evaluation at 50% recall, with true positives in green, false positives

in red, and undetected boundaries in grey. Monolithic boundary detection fires on many false object boundaries caused by the background

and internal boundaries, while situational object boundary detection focuses much better on the boundaries of the object of interest.

work. As the table shows, there is almost no difference be-

tween GT - class specific and CNN - class specific. Hence

within our framework global image classification achieves

what can be maximally expected from it.

CNN features inside the Random Forest. Theoretically,

the Random Forests can learn from any features of different

modalities. So it would arguably be simpler to directly pro-

vide global image features to the Structured Edge Forests

and bypass the intermediate step of classifying images into

situations. We tried this with CNN features, which are

stronger and have a lower dimensionality than Fisher vec-

tors. We name this setting monolithic - CNN enhanced. Ta-

ble 2 shows that this does not work better than the baseline

monolithic detector.

4.2. Microsoft COCO

Dataset. Microsoft COCO [24] provides accurate seg-

mentations for its 80 object classes such as person, banana,

bus, cat, and others. We use v0.9 consisting of 82,783 train-

ing and 40,504 validation images. Images contain on aver-

age 7.7 different object classes. Since evaluation of bound-

ary predictions is relatively slow by necessity [29], we limit

evaluation to the first 5,000 images of the validation set

(which comes already randomized).

Number of situations. For our subclass specific situa-

tions, we choose 10 subclasses per class, leading to a total

of 800 situations. We also use 800 class agnostic situations.

Results. In contrast to the previous experiment, here most

images contain multiple object classes. Now the first ques-

tion is: should we train (sub)class specific object boundary

detectors on only the object boundaries of the target class

or on the boundaries of all object classes present in the im-

age? Results are shown in Table 3. Interestingly, results are

slightly better for true single class object boundary detectors

in the theoretical setting where we use the Ground Truth to

determine the class label (GT - class specific). In contrast,

when using CNN features results are slightly better when

the detectors are trained on all object boundaries in the im-

ages. This suggests that mistakes made by object classifi-

cation can be partially amended by having object boundary

predictors specialized to a certain context rather than to a

certain object class. For the rest of this paper, we therefore

train situational object boundary detectors always on all ob-

ject boundaries present in the images of a situation.

Figure 6 compares situational object boundary detection

with the monolithic baseline. Whereas a monolithic ap-

proach yields an AP of 0.368, our situational approaches

yield a substantial higher AP at 0.408, 0.424, and 0.434 for

respectively class specific, subclass specific, and class ag-

nostic situations. The best AP improvement is almost 0.07

for class agnostic situations.

As before, subclass specific situations outperform class

specific situations. But unlike ImageNet, on COCO the

class agnostic situations slightly outperform the subclass

specific. This is likely because in our ImageNet subset only
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Figure 6. Performance of object boundary detection on the first

5000 images of the COCO validation set.
Detectors trained on class object boundaries only

precision at precision at average

20% recall 50% recall precision

GT - class specific 0.566 0.460 0.422

CNN - class specific 0.543 0.443 0.407

CNN - subclass specific 0.560 0.459 0.418

Detectors trained on all object boundaries within images

precision at precision at average

20% recall 50% recall precision

monolithic 0.494 0.406 0.368

GT - class specific 0.556 0.454 0.416

CNN - class specific 0.544 0.446 0.408

CNN - subclass specific 0.567 0.465 0.424

CNN - class agnostic 0.578 0.474 0.434

Table 3. Results on Microsoft COCO. Situational object boundary

detection significantly outperforms a monolithic strategy.

a single class is annotated, whereas COCO images often

contain multiple classes The fact that class agnostic situa-

tions are superior suggests that the whole context of the im-

age is more important for determining which object bound-

aries to expect than the specific object classes depicted.

Figure 7 shows qualitative results. In contrast to a mono-

lithic approach, our situational object boundary detector

correctly ignores grass/gravel transitions in baseball, con-

tours of buildings (which are not objects of interest) in

streets, and interior boundaries of the train.

We conclude that by identifying a situation, we can avoid

many false positive object boundary predictions made by

a monolithic detector. This leads to significant improve-

ments: whereas a monolithic approach yields 0.368 AP,

class agnostic situations yield 0.434 AP, a relative improve-

ment of 18%.

4.3. Pascal VOC 2012 segmentation

Dataset. We use the 1,464 training and 1,449 validation

images of Pascal VOC 2012 segmentation, annotated with

contours for 20 object classes for all instances in all images.

Number of situations. Since the dataset is a lot smaller

than Microsoft COCO, we choose to have 5 subclasses per

class to still have sufficient training data per situation, lead-
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Figure 8. Performance of object boundary detection on the Pascal

VOC 2012 segmentation database.
precision at precision at average

20% recall 50% recall precision

monolithic 0.514 0.433 0.396

GT - class specific 0.576 0.470 0.430

CNN - class specific 0.573 0.469 0.426

CNN - subclass specific 0.582 0.475 0.426

CNN - class agnostic 0.578 0.472 0.422

Table 4. Results on validation of Pascal VOC 2012 segmentation.

ing to 100 subclass specific situations. For fair comparison,

we also cluster 100 class agnostic situations.

Results. Results are presented in Figure 8 and Table 4.

Again, with 0.426 AP the situational object boundary detec-

tion significantly outperforms the monolithic performance

of 0.396 AP. This is a relative 8% improvement.

On this dataset, class specific situations have about the

same performance as subclass specific and class agnostic.

This is different than on ImageNet and COCO, most likely

because the training set is smaller. Hence fine-grained sit-

uations yield fewer benefits since both training appearance

based classifiers and training object boundary detectors is

more difficult with less data.

4.4. Semantic Boundaries Dataset (SBD)

In some applications one may want do ‘semantic contour

detection’ [17], i.e. generating class-specific object bound-

ary maps. Our class-specific boundary detectors can pro-

duce such maps Dc(I), specific to class c, using (1) but

with the summation running only over class j = c:

Dc(I) = P (Sc|I) ·Dc(I) (3)

where P (Sc|I) is the probability that class c occurs in im-

age I according to CNN-based classification. Dc(I) is the

output of the class-specific boundary predictor for class c.

We use the Semantic Boundaries Dataset of [17], which

consists of 11,318 images from the Pascal VOC 2011

trainval dataset, divided in 8498 training and 2820 test

images. All instances of its 20 object classes were anno-

tated with accurate figure/ground masks by crowdsourcing.

We use the official evaluation software provided by [17].
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Figure 7. Examples from COCO. Odd rows: input image and boundary predictions. Even rows: ground truth boundaries and precision at a

recall of 50%. True positives are green, false positives red, and undetected boundaries grey. While the monolithic detector often incorrectly

fires on the background and internal boundaries, our situational object boundary detectors focus better on true object boundaries.
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Hariharan et al. [17]

Ours: CNN − class specific

Figure 9. Semantic Contour Detection on BSD. [17] versus our

CNN-based class specific situational object boundary detector.

As figure 9 shows our method considerably outper-

forms [17] on most classes. While [17] report a mean AP

of 0.207, we obtain 0.316 mAP.

4.5. Computational Requirements

Runtime on a test image is essentially constant for

any reasonable number of situations: the most expensive

component is the boundary detector [10] which takes 73

ms/image on an Intel Core i5-3470. At test time we al-

ways apply n = 5 detectors (Equation (2)). Extracting

CNN features takes about 2 ms/image on a modern GPU.

Linear classification on 4096 dimensions takes less than 2

ms/image for 1000 situations. Hence our situational object

boundary prediction takes around 0.37 s/image, which is

still very fast for an object boundary detector (see e.g. [10]).

5. Conclusion

The appearance of true object boundaries varies from

situation to situation. Hence a monolithic object bound-

ary prediction approach which predicts object boundaries

regardless of the image content is necessarily suboptimal.

Therefore this paper introduces situational object bound-

ary detection. First the situation is determined based on

global image appearance. Afterwards only those boundary

detectors are applied which are specialized for this situa-

tion. Since we build on [10], our situational object boundary

prediction is fast and takes only 0.37 ms/image. More im-

portantly, results on object boundary detection show consis-

tent improvements on three large datasets: on Pascal VOC

2012 segmentation [13], the automatically segmented Ima-

geNet [16, 35], and Microsoft COCO [24], we obtained rel-

ative improvements of respectively 8%, 14% and 18% AP.

Furthermore, on semantic contour detection our approach

substantially outperforms [17] on their SBD dataset.



Acknowledgements. This work was supported by the

ERC Starting Grant VisCul.

References

[1] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid.

Good practice in large-scale learning for image classifica-

tion. TPAMI, 2014. 4
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