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Abstract

Background COVID-19 pandemic has currently no vaccines. Thus, the only feasible solution for prevention relies on the 

detection of COVID-19-positive cases through quick and accurate testing. Since artificial intelligence (AI) offers the powerful 

mechanism to automatically extract the tissue features and characterise the disease, we therefore hypothesise that AI-based 

strategies can provide quick detection and classification, especially for radiological computed tomography (CT) lung scans.

Methodology Six models, two traditional machine learning (ML)-based (k-NN and RF), two transfer learning (TL)-based 

(VGG19 and InceptionV3), and the last two were our custom-designed deep learning (DL) models (CNN and iCNN), were 

developed for classification between COVID pneumonia (CoP) and non-COVID pneumonia (NCoP). K10 cross-validation 

(90% training: 10% testing) protocol on an Italian cohort of 100 CoP and 30 NCoP patients was used for performance evalu-

ation and bispectrum analysis for CT lung characterisation.

Results Using K10 protocol, our results showed the accuracy in the order of DL > TL > ML, ranging the six accuracies 

for k-NN, RF, VGG19, IV3, CNN, iCNN as 74.58 ± 2.44%, 96.84 ± 2.6, 94.84 ± 2.85%, 99.53 ± 0.75%, 99.53 ± 1.05%, 

and 99.69 ± 0.66%, respectively. The corresponding AUCs were 0.74, 0.94, 0.96, 0.99, 0.99, and 0.99 (p-values < 0.0001), 

respectively. Our Bispectrum-based characterisation system suggested CoP can be separated against NCoP using AI models. 

COVID risk severity stratification also showed a high correlation of 0.7270 (p < 0.0001) with clinical scores such as ground-

glass opacities (GGO), further validating our AI models.

Conclusions We prove our hypothesis by demonstrating that all the six AI models successfully classified CoP against NCoP 

due to the strong presence of contrasting features such as ground-glass opacities (GGO), consolidations, and pleural effusion 

in CoP patients. Further, our online system takes < 2 s for inference.

Keywords COVID-19 · Pandemic · Lung · Computer tomography · Deep learning · Transfer learning · Machine learning · 

Bispectrum · Accuracy · Performance · Validation · Ground-glass opacities

Introduction

The coronavirus disease 2019 (COVID-19) is highly infec-

tious (Ro = 3) and caused by SARS-CoV-2, the single-

stranded RNA virus referred to as “severe acute respiratory 

syndrome coronavirus.” This disease leads to complications 

like pneumonia, acute respiratory distress syndrome 

(ARDS), damage to the heart, acute strokes, or even sys-

temic hyper-inflammation syndrome, which, in turn, leads 

to multiorgan failure [1]. As of 20 August 2020, nearly 23 

million people have been infected by COVID-19, and nearly 

800,000 subsequent deaths have been recorded worldwide 

[2]. Most of the mortalities have occurred within eight 

countries—namely the USA, Brazil, the UK, Mexico, Italy, 

France, India, and Spain [2].

COVID-19 affects the lungs and causes respiratory 

difficulties. Common symptoms of COVID-19 include 
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breathlessness, dry cough, fatigue, and fever [3]. Some rel-

atively uncommon symptoms of COVID-19 include a loss 

of taste or smell, sore throat, and vomiting [4]. The dan-

ger posed by COVID-19, as well as its spread, is worsened 

by the fact that many people infected with COVID-19 are 

asymptomatic [3]. COVID-19 impacts the pulmonary tis-

sues of the lungs, resulting in ARDS, [5] and a considerable 

percentage of the patients end up needing ventilator sup-

port [6]. Many of the initial victims of COVID-19 in China 

were hospitalised because they exhibited lower respiratory 

tract (LRT) symptoms [3,7] though these symptoms var-

ied considerably among patients. Some patients exhibited 

minimal symptoms, while others suffered from hypoxia due 

to ARDS. For some patients, LRT transformed into ARDS 

within nine days [7]. It has also been discovered that patients 

suffering from COVID-19-induced ARDS are prone to organ 

failure [8,9].

Radiologists primarily use radiography, computerised 

tomography (CT), or ultrasounds to diagnose lung disease 

[10–12]. These methods allow symptomatic patients to 

be tested for COVID-19 quickly when tests like real-time 

transcription polymerase chain reaction (RT-PCR) are not 

available [13]. Researchers have demonstrated that CT is 

a more sensitive COVID-19 detection method than tradi-

tional techniques for symptomatic patients [14]. One recent 

study showed that chest radiography could not be used to 

detect the opaque image features of COVID-19 [15]. Lung 

ultrasounds can be used as an alternative to CT to detect 

COVID-19, although CT is still considered the gold standard 

for detecting pulmonary infections [16].

Apart from conventional techniques, many research-

ers have also employed artificial intelligence (AI)-based 

machine learning (ML), deep learning (DL), and transfer 

learning (TL) techniques to diagnose COVID-19. One 

group of researchers provided a novel technique to classify 

COVID-19 infection from lung CT images using weakly 

supervised DL; this method was also utilised to localise 

the inflammation caused by COVID-19 [17]. In other work, 

Xiao et al. developed a multiple instance learning module 

based on ResNet34 to predict the severity of COVID-19 

cases using lung CT scans [18].

Meanwhile, other researchers used UNet +  + architec-

ture for segmenting COVID-19-infected lung areas using 

CT images [19]. They transformed their study into an online 

platform to provide fast COVID-19 diagnostic tools that are 

accessible worldwide [20]. Another group of researchers 

created a DL and “deep reinforcement learning” model that 

can automatically quantify COVID-19-related lung abnor-

malities such as ground-glass opacities and consolidations 

[21]. Their proposed architecture produces two metrics that 

can accurately quantify the spread of COVID-19.

Several other pieces of research have proposed new meth-

ods for diagnosing COVID-19 using TL on lung CT scans. 

TL is used when COVID-19 data are very less, or exist-

ing deep learning models can be improved by artistically 

utilising it [22–24]. However, TL works efficiently only if 

the model is trained using data that are similar to the target 

problem [25] (i.e., COVID-19 lung CT data). Otherwise, 

performance gains are minimal or insignificant.

In this study, we compared six state-of-the-art AI models 

(two traditional ML models, two TL models, and two DL 

models) using K-fold cross-validation to solve the COVID-

19 detection problem related to lung CT data. To the best 

of our knowledge, no study has benchmarked the compara-

tive efficacy of traditional machine learning, deep learning, 

and transfer learning architectures on COVID-19 lung CT 

data. As such, doing so is one of the objectives of the pre-

sent study. Another important objective is to design COVID 

severity using output class probability values using AI mod-

els and then clinically validate against radiologist’s greyscale 

feature scores. As part of the clinical validation, we demon-

strate the association of AI’s correlation with ground-glass 

opacities (GGO) values, thus validating the hypothesis on 

COVID severity estimation. We also performed 2D and 3D 

bispectrum analyses to classify COVID pneumonia (CoP) 

patients using CT images. Our results show that even though 

TL can reduce the training time of the model, DL and ML 

models match or surpass TL regarding the performance 

benchmarks of COVID-19 classification.

The aggressiveness of the COVID-19 severity can be seen 

using the imaging-based tests. If the Troponin is released, 

we know that it is likely to cause a heart attack. Similarly, 

if CT images can infer to tell the COVID-19 severity due to 

hyper-intensity distribution in the lung CT (which cannot be 

known from the swap sample), more aggressive care can be 

given to the patient. Therefore, the main clinical advantage 

of CT-based imaging is the determination of aggressiveness 

of the care which needs to be given to the patient.

Second benefit of doing this study is the development 

of the AI-based tool to avoid bias by the expert radiolo-

gist or pulmonologist. Due to fatigue of the over-length stay 

of the physicians at the hospital, the results can vary from 

radiologist to radiologist, so-called inter- and intra-observer 

variability. Thus, using the AI-based solutions, this major 

weakness can also be overcome. Third, if tropin is released 

when COVID-19 pneumonia CT has GGO, we know that 

it is likely to cause a heart attack too. Lastly, if CT shows 

pathology that means you, we have pneumonia, it is there-

fore important to quantify the risk using CT.

The rest of the paper is organised as follows. Section 2 

discusses the pathophysiology of COVID-19 cases that 

develop into ARDS. Section 3 overviews the methodol-

ogy. Section 4 discusses the experimental results using 

the K10 protocol and bispectrum analysis. The AI mod-

els’ performance is evaluated in Sect. 5 based on the ROC 

curve, and multiple classification metrics. We discuss our 
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findings in Sect. 6. Sections 7 and 8 provide conclusions 

and references, respectively.

Methodology

Patient demographics

The CT images of 130 patients were collected. There were 

100 CoP patients (68 males and 32 females) from the 

17–93 age group (mean age = 61.49 ± 16). The remaining 

30 cases (nine males and 21 females) from the age group 

of 17–93 (mean age = 51.4 ± 2 years) were NCoP patients.

Data acquisition and baseline characteristic

The methodology of this study consists of the design and 

development of a CADx that has three components. These 

components are divided based on their functionality. 

The first component is the region-of-interest extraction, 

which envelops the CT lung region. The second compo-

nent of the system consists of the automatic classifica-

tion of CoP patients and non-COVID pneumonia (NCoP) 

patients. The final stage of the CADx system consists of 

a performance evaluation that implements (1) a standard-

ised analysis (e.g., ROC), (2) DOR validation (see Fig. 

S8 Online Resources 1), and (3) CoP validation using a 

bispectrum analysis paradigm. Before we dive into these 

three subsystems, we present the patient demographics 

and data acquisition systems.

Data acquisition

CT images were collected using a Philips Ingenuity Core CT 

Scanner, while patients were in a deep inspiration breath-

hold (DIBH) supine position. The patients were not given 

any oral contrast or intravenous agents. The CT scan was 

done at 120 kV, 225 mAs. The spiral pitch factor, gantry 

rotation time, and detector configurations were fixed at 1.08, 

0.5 s, and 65 × 0.625, respectively. A 768 × 768 lung win-

dow and a 512 × 512 mediastinal window size, were used to 

reconstruct 1-mm-thick images with soft tissue kernel. The 

CT images were reviewed using twin 35 × 43 EIZO PACS 

displays with a 2048 × 1536 matrix. The final data comprised 

2788 CT images for CoP patients and 990 CT images for 

NCoP patients. For 100 COVID-19 patients, we took 27–28 

scans per patient which helped us obtain 100*27–100*28, 

i.e., 2758 CT scans. Similarly, for healthy patients, we 

took around 33 scans for each of 30 patients, resulting in 

30*33 = 990 CT scans.

Baseline characteristics

The baseline characteristics of the Italian cohort’s COVID-

19 data are presented in Table 1. We have utilised the “R 

package” to perform a t-test on the data, with the level of 

significance set to P <  = 0.05. The table shows the essential 

characteristic traits of CoP patients. The baseline character-

istics reflect the visual characteristics of the CT lung data 

(row #3 to row #6). The ground-glass opacity (GGO) is sig-

nificant in differentiating between CoP and NCoP classes 

(P  = 0.00001). Lung consolidations (CONS) also differ-

entiates the two classes from one another (P  = 0.00453). 

The pleural effusion (PLE) attribute is also significant in the 

Table 1  Baseline characteristics of CoP and NCoP patients

S. no. Characteristic Acronym Description CoP (N = 100) NCoP (N = 30) p-values

1 Age (years) – – 61.49 51.4 0.02131

2 Gender (M) – – 0.30 0.68 0.43840

3 GGO Ground-glass opacities An area charactersed by hazy lung opacity through 

which vessels and bronchial structures may still 

be seen

4.42 1.77 0.00001

4 CONS Consolidations A pulmonary consolidation is a region of compress-

ible lung tissue that has filled with fluid instead 

of air

3.07 2.53 0.00453

5 PLE Pleural effusion The collection of excess fluid between the layers of 

the pleura outside the lungs

0.12 0.63 0.00413

6 LNF Lymph nodes A kidney-shaped organ of the lymphatic system and 

a part of adaptive immune system

0.19 0.20 0.36280

7 Cough – – 0.62 0.40 0.03834

8 Sore throat – – 0.09 0.06 0.67040

9 Dyspnoea – Shortness of breath 0.57 0.40 0.10770

10 BT + – – 37.89 37.42 0.00313
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classification of CoP and NCoP patients (P  = 0.00413). The 

most common physiological symptom of CoP is fever, which 

is also be correlated with body temperature (P  = 0.00313).

Three kinds of AI architectures for classification

We have shortlisted two representative candidates from ML 

algorithms—namely k nearest neighbours (k-NN) and ran-

dom forest (RF). The developed framework is a modified 

version of our previous work [26].

For TL, we utilised VGG19 and InceptionV3 pre-trained 

models [27] (see Fig. S5, S6 (Online Resources 1) and 

changed only the model top. VGG19 is a 19-layered deep 

model consisting of sixteen convolution layers to extract 

visual features, five max pool filters to reduce the spatial size 

of the extracted features, and three fully connected layers 

for classifying the image. InceptionV3 is a 42-layered deep 

model consisting of 11 inception modules (each comprising 

of multiple convolution layers and max-pooling filters), fol-

lowed by three fully connected layers and a softmax activa-

tion layer.

The initial layers of TL were made nontrainable, and only 

last layers were made trainable. The reason for not training 

the entire network in case of transfer learning is that it can 

save computation time because the network would already 

be able to extract generic features from images. The net-

work will not have to learn extracting generic features from 

scratch. A neural network works by abstracting and trans-

forming information in steps. In the initial layers, the fea-

tures extracted are generic, and independent of a particular 

task. It is the latter layers which are much more tuned spe-

cific for a particular task. So, by freezing the initial stages, 

we get a network which can already extract meaningful 

general features. We would unfreeze the last few stages (or 

just the new untrained layers), which would be tuned for 

our paradigm. It is not recommended to unfreeze all layers 

if we have any new/untrained layers in our model. These 

untrained layers will train as if initialised by random (and 

not pre-trained) weights which would lose the basic idea of 

transfer learning.

For DL, we developed our custom architectures (CNN 

and iCNN), consisting of a multi-layer convolution net-

work (see Fig. S7, Table S5 (Online Resources 1). It con-

tains three convolution layers, each of which is followed 

by a max-pooling filter, and two fully connected layers. A 

two-class probability score is obtained by passing the out-

put to a softmax activation function. In iCNN, we slightly 

changed the “ReLU” activation function in the hidden layers 

to σ = (max(0, x))1.00001. Here, x is the input value, sigma is 

the activated output value, max is a function that gives the 

maximum value between zero and the input value, and the 

exponent 1.00001 slightly scales the output.

Several lightweight convolution neural network models 

have been experimented with 3, 4, 5 convolution layers for 

COVID disease identification, and it has been shown that 

these models provide very good results with 3 convolution 

layer model giving best accuracy. In the proposed three con-

volution layer model, 32, 16, and 8 hidden units are there 

in hidden layers 1, 2, and 3, respectively. Moreover, each 

convolution layer is followed by a max-pooling layer. After 

the last max-pooling layer, the flattened layer is present 

which converts the 2-D matrix to 1-D column vector which 

is densely connected with a layer having 128 hidden units, 

followed by the output layer. To provide nonlinearity in 

the model, the standard ReLU activation function has been 

modified and used in hidden layers.

Results

Accuracy of the two ML, two TL, and two DL models

We compared the K10 classification accuracy of all the six 

AI models for the COVID-19 data, as shown in Table S2 

(Online Resources 1). Our observations demonstrate that 

accuracies are in the following order DL > TL > ML. Fur-

ther, DL-based iCNN and CNN architectures had accuracies 

of 99.69 ± 0.66% and 99.53 ± 1.05%, respectively, making 

them the two most accurate models among the six tested 

models. Of the TL architectures, only VGG19 fared well 

against DL architectures, as it had a classification accu-

racy of 99.53 ± 0.75%. The other TL architecture (i.e., 

InceptionV3) achieved a classification accuracy of only 

94.84 ± 2.85%. The two ML architectures varied consider-

ably in terms of their performance; their RF scoring was 

96.84 ± 1.28%, and their k-NN scoring was 74.58 ± 2.24%. 

The mean accuracy figures of all six AI models are sum-

marised in Fig. 1.

CT lung characterisation using bispectrum analysis

We characterised CoP and NCoP CT lung tissues using 

bispectrum analysis based on a higher-order spectrum 

(HOS). Bispectrum analysis is based on the principle of 

coupling of components of spectral signals. If there is a 

sudden change in grayscale image density (as is the case 

for COVID-19-infected tissues), then higher bispectrum (or 

B) values are generated. This property of bispectrum analy-

sis can be exploited to identify COVID-19-infected tissue 

quickly. This study is intended to identify NCoP and CoP 

patients without using AI-based techniques.
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Fig. 1  Mean K10 classification 

accuracies (in %) of two ML, 

two TL, and two DL architec-

tures. The bar chart is presented 

in increasing order of accuracy

Fig. 2  Comparison of bispectrum (2D) plots of CoP and NCoP patients

Fig. 3  Comparison of bispec-

trum (3D) plots of CoP and 

NCoP patients



428 International Journal of Computer Assisted Radiology and Surgery (2021) 16:423–434

1 3

Generally, COVID-19-infected lungs are characterised 

by a hyper-intensity region. We separated those pixels from 

lung CT images and passed them into a Radon transform, 

which acts as a signal for HOS to generate B values. The 

images of CoP patients have much higher B values. The 

2D and 3D bispectrum plots for CoP and NCoP patients are 

shown in Figs. 2 and 3.

Performance evaluation of AI models and its 
clinical validation

Receiver operating characteristics

The ability of all six AI models to differentiate CoP and 

NCoP data sets is illustrated in Fig. 4. We used the K10 

protocol to compute receiver operating characteristic (ROC) 

curves. As expected, the simplest ML model (i.e., k-NN) 

performed the worst in this regard, achieving a score of just 

0.744 area under the curve (AUC) (P < 0.0001). The best-

performing model was the novel iCNN DL, whose AUC 

score was 0.993 (P < 0.0001). Other AI models based on 

their increasing AUC values are TL-based InceptionV3, 

machine learning-based RF, transfer learning-based VGG19, 

and our custom deep learning CNN.

A comparison of six AI models based on multiple 
classification metrics

We compared six AI models based on a COVID-19 data set 

containing 377 samples (99 NCoP patients and 278 CoP 

patients). We choose ten classification metrics for this com-

parison: sensitivity, specificity, precision, negative predic-

tion value (NPR), false positive rate (FPR), false discovery 

rate (FDR), false negative rate (FNR), F1 score, Matthews 

correlation coefficient (MCC), and Cohen’s Kappa coeffi-

cient. Cohen Kappa and F1 score are measure of AI methods 

performance metrics calculated based on true positive, false 

positive and true negative and false negative values. F1 score 

[37] can be calculated using the formula:

We adopted Matthew’s correlation coefficient [28] for 

quantifying the quality of binary classification since it is 

typically used in machine learning. It was in 1975 that the 

biochemist Brian W. Matthews had introduced this measure. 

Given the truth table values represented as TP: true positive, 

FP: false positive, TN: true negative, FN: false negative, we 

mathematically express MCC as shown in Eq. 2.

Note that MCC represents the correlation between predicted 

and observed binary classification. It returns a value between 

−1 or +1. The perfect prediction is represented when MCC 

is +1, and −1 represents total disagreement between predic-

tion and observation.

The results of the study are summarised in Table 2. Both 

the DL models (CNN and iCNN) and one of the TL models 

(VGG19) performed equally well. Both ML models (RF and 

(1)
F

1
=

TP

TP +
1

2
(FP + FN)

(2)MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Fig. 4  ROC plots for the six AI models (two ML, two TL, and two 

DL), along with their corresponding AUC values

Table 2  Comparison of the 

six AI models on the basis of 

multiple classification metrics

*Arch: architecture; Sens: sensitivity; Spec: specificity; Prec: precision MCC: Mathew’s correlation coef-

ficient; F1: F1-score; IV3: InceptionV3;

Arch* Sens Spec Prec NPR FPR FDR FNR F1 MCC Kappa

k-NN 0.5097 0.9099 0.798 0.7266 0.0901 0.2020 0.4903 0.6220 0.4692 0.444

RF 0.9065 0.9926 0.9798 0.964 0.0074 0.0202 0.0935 0.9417 0.9212 0.920

IV3 0.8624 0.9813 0.9495 0.946 0.0187 0.0505 0.1376 0.9038 0.8692 0.867

VGG19 0.9899 0.9964 0.9899 0.9964 0.0036 0.0101 0.0101 0.9899 0.9863 0.986

CNN 0.9899 0.9964 0.9899 0.9964 0.0036 0.0101 0.0101 0.9899 0.9863 0.986

iCNN 0.9899 0.9964 0.9899 0.9964 0.0036 0.0101 0.0101 0.9899 0.9863 0.986
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k-NN) and the second TL model (InceptionV3) did not per-

form well in comparison with the DL models.

COVID risk stratification

Figure 5 presents the COVID-19 risk levels of patients as 

predicted by our custom CNN DL model. We created the fre-

quency distribution (Fig. 5a) by using a softmax function in 

the output layer of the model such that the model produced 

a probability score (ranging from 0 to 1) that indicates a 

patients’ COVID-19 risk. We divided the overall probability 

range into ten bins and added each CT image sample to one 

of the bins based on the output of the model. We considered 

three levels of risk: low risk (probability score of 0 to 0.3), 

moderate risk (0.3 to 0.7), and high risk (0.7 to 1). A cumu-

lative distribution plot of all 3788 lung CT samples is given 

in Fig. 5b. This distribution was computed by summing all 

the CT samples for each bin by adding the previous total of 

samples until all the COVID-19 risk probability bins are 

completed.

Clinical validation of COVID risk stratification

The ground-glass opacity values (GGO) correlation with 

CNN model was determined for each patient. For this, 

the mean of all CT scan slices of patient probability score 

was calculated and compared with GGO values. Similarly, 

bispectrum mean for each patient was calculated and com-

pared with GGO values. CONS values were also tested for 

their correlation with COVID severity and bispectrum val-

ues. A list of all patients’ values of GGO, CONS, sever-

ity, and bispectrum B values is given in Table S3 (Online 

Resources 1). The correlation between these fields among 

themselves is also given in Table S4 (Online Resources 1).

The association linear curve between COVID severity 

and GGO is shown in Fig. 6 and that between bispectrum 

(B) value and GGO is shown in Fig. 7. Similarly, the curve 

between bispectrum and COVID severity is also shown in 

Fig. 8.

Fig. 5  COVID risk assessment: a frequency distribution of COVID-19 risk for CoP and NCoP patients; b cumulative distribution of COVID-19 

risk

Fig. 6  Association between GGO and COVID severity

Fig. 7  Association between GGO and bispectrum B values
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Discussion

In this study, we tested our two custom DL models against 

two state-of-the-art TL models, using two popular ML 

models as baselines to resolve the CoP vs NCoP clas-

sification problem. We used the K10 protocol and com-

pared these models’ accuracy. We used COVID-19 data 

that we collected from patients, following specific privacy 

laws. Our relatively simple nine-layered iCNN model was 

the most accurate among the investigated models, and it 

achieved the highest AUC score of 0.993 (P < 0.0001). 

Surprisingly, we found that architectures that are even 

more straightforward compared to iCNN model (e.g., RF) 

can match which are comparable to the state-of-the-art TL 

models (e.g., InceptionV3) in terms of accuracy and AUC 

score when used for COVID-19 classification. TL models’ 

unremarkable performance could be because these models 

were not trained on CT images or any other radiology data. 

Moreover, the high separability in training data, which is 

being caught by other AI models, is not noticed by TL 

models.

The COVID risk stratification for each patient was vali-

dated by showing a strong correlation with ground-glass 

opacity values of the patient’s CT scans. Similarly, bispec-

trum was also validated against GGO values. The clinical 

tests also show the AI models which are having similar 

classification capabilities and which are significantly dif-

fering in accuracy values. This is more clear than visual 

inspection of accuracy and standard deviation values of 

each AI-model.

Benchmarking

Table 3 presents benchmarking data to compare the six AI 

models examined in our research with those considered in 

existing work on COVID classification. We have shortlisted 

four criteria for benchmarking: (1) the COVID-19 dataset 

used, (2) the AI model used by the researchers, (3) the accu-

racy of their proposed models, and (4) any other perfor-

mance measures used by the authors. Rows R1 to R5 present 

the research done by other researchers, and row R6 repre-

sents our research. It can be observed that the performance 

of our custom iCNN model is on par with models proposed 

by other researchers.

3D validation

The lung CT data of our Italian cohort was processed so 

that we could evaluate the degradation and fibrosis of lung 

parenchyma of CoP vs NCoP patients (Fig. 9). We used the 

image segmentation tool to process data in DICOM format. 

Using profile lining, we applied segmentation based on the 

Fig. 8  Association between COVID severity and bispectrum B values

Table 3  Benchmarking of six AI models with the existing work on COVID-19 classification

Row# Authors Dataset Model Accuracy Performance

R1 Polsinelli et al. [29] 360 CT scans of COVID-19 subjects and 397 CT scans of 

other kinds of illnesses

SqueezeNet 0.83 0.8333 of F1 Score

R2 Hasan et al. [30] 321 chest CT scans (118-COVID, 96, pneumonia, 107 

healthy)

LSTM 1.00 X

R3 Jaiswal et al. [24] 1262 CT COVID-19-positive CT images, 1230 CT images 

of non-COVID patients

DenseNet201 0.962 0.97 AUC 

R4 Loey et al. [31] 345 images—COVID, 397 images—non-COVID CT scans ResNet50 0.829 Sensitivity of 

77.66% and 

specificity of 

87.62%

R5 Apostolopoulos et al.  [32] 224 images—COVID-19, 714—bacterial pneumonia, 504—

normal patients X-ray

MobileNet v2 0.967 Sensitivity of 

98.66% and 

specificity of 

96.46%

R6 Proposed Study 2788 CoP/990 NCoP

CT scans

iCNN 1.00 0.993 AUC 
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Hounsfield value (grey value) of the pixels belonging to the 

lung section [33]. A stacking process [34] was then applied 

to obtain a union, forming a 3D volume of the segmented 

region of interest [35]. This process was followed by region 

growing to develop the region of interest (in this case, the 

lung). The 3D volume was computed for the grown region to 

evaluate the volume and spatial distribution of lung paren-

chyma. We computed the spatial distribution of parenchyma 

associated with the rear end of the lung because the influ-

ence of spike proteins of COVID-19 is more significant in 

the deeper volume of the lung parenchyma [36].

Interpretation

DL models, particularly the CNN model that we used, are 

very good at recognising the spatial features of images with-

out human intervention, which supports our hypothesis. Both 

of our custom models ran well likely because of the visual 

features of COVID-19 in the lung CT images (e.g., ground-

glass opacities, consolidations, and pleural effusions). These 

features are very distinct for CoP when compared to NCoP. 

This notion is supported by the data representing the base-

lines characteristics of patients. If traditional ML classifiers 

are to work efficiently, their features need to be handcrafted, 

and their performance depends on the ingenuity of the mod-

el’s designer. TL models work better than DL models when 

there are relatively little data and training time. However, 

they must be pre-trained using similar dataset for which they 

are expected to be used. This limits the application of TL 

models in medical imaging unless such a model has been 

pre-trained on similar data.

Strengths, weakness, and extensions

Strengths: The architectures that we designed and developed 

in this work are relatively simple and easy to use in research 

and clinical settings. Even without augmentation, we dem-

onstrated that their classification accuracies are high enough 

to be considered within the clinical range according to recent 

publications. Although the pilot trials were successful, the 

data sets that we used could be more balanced and could be 

multi-ethnic.

Weakness: Due to lack of non-COVID pneumonia data 

sets, the current models could not be tried. We intend to 

extend this to multiclass paradigms in future research [37]. 

Due to the limitation on the data sets regarding the “cen-

sorship” and “survival”, it was not possible to compute the 

survival analysis such as hazard curves and survival curves. 

However, in future, we will be collecting this information 

even though vaccines distributions have started.

Extensions: Even though the pilot study showed powerful 

results, one can design more robust automated segmentation 

step using stochastic segmentation strategies [38–40]. Exten-

sive ML features can be computed under ML framework in 

future [41,42]. More validations using multimodality spatial 

images can be conducted such as PET and CT based on reg-

istration methods [43,44]. Superior lung CAD models can 

be designed to improve scientific validation [12,45]. Since 

AI has fast developed and more transfer learning approaches 

have been developed, one can try extending the TL mod-

els using the pre-trained weights [37]. While six AI models 

were tried on a single set of data, multi-centre study could 

be conducted using the same models to avoid any bias. Thus, 

Fig. 9  (a1), (a2), and (a3): 

CoP lung samples showing the 

degradation and fibrosis of lung 

parenchyma; (b1), (b2), and 

(b3): three NCoP lung samples
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the current study can be a launching pad for multi-centre, 

multimodality, multi-ethnic, and multi-regional analysis.

Conclusion

We presented six types of AI-based models for CoP vs NCoP 

classification via CT lung scans taken from an Italian cohort. 

The proposed CNN-based AI-model outperformed the TL 

and ML systems that were investigated. Further, we showed 

that when using higher-order spectra, bispectrum could dif-

ferentiate CoP patients from NCoP patients, thus further 

validating our hypothesis. As part of clinical validation, a 

novel COVID risk factor calculation was introduced using 

CNN output probability values and validated against GGO 

values of all patients.

Our AI system was implemented on a multi-GPU system 

such that the online system was a few seconds per scan. The 

system can be extended to multiclass data sets where data 

can also be taken from community pneumonia or interstitial 

viral pneumonia. The system was validated against the well-

accepted existing data sets (e.g., a biometric data set and a 

DL animal data set).
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