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Abstract

Algorithms for full 3D robotic visual tracking of moving targets whose motion is 3D
and consists of translational and rotational components are presented. The objective
of the system is to track selected features on moving objects and to place their projec-
tions on the image plane at desired positions by appropriate camera motion. The most
important characteristics of the proposed algorithms are the use of a single camera
mounted on the end-effector of a robotic manipulator (eye-in-hand configuration), and
the fact that these algorithms do not require accurate knowledge of the relative dis-
tance of the target object from the camera frame. The detection of motion is based on a
cross-correlation technique known as Sum-of-Squares Differences (SSD) algorithm.
The camera model used introduces a number of parameters that are estimated on-line,
further reducing the algorithms’ reliance on precise calibration of the system. An
adaptive control algorithm compensates for modeling errors, tracking errors, and
unavoidable computational delays which result from time-consuming image process-
ing. Experimental results are presented to verify the efficacy of the proposed algo-
rithms and to highlight the limitations of the approach. These experiments were
performed using a multi-robotic system consisting of Puma 560 manipulators.
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1. Introduction

The ability to track moving objects using visual feedback is an important characteristic that many

intelligent robotic systems must possess. This ability is often necessary if robotic systems are to

inspect, grasp, or assemble objects in environments that are dynamically varying or inherently

difficult to calibrate. Workspaces in which objects are transported on conveyer belts or in another

moving robot’s grasp fall into this category, as well as underwater, toxic, and outer space environ-

ments. The main advantages that distinguish visual sensors from other types of sensors and make

them particularly useful for these kinds of tasks, are that vision is a non-contact sensing mode that

is able to provide information over a relatively large region of a system’s workspace. Even so,

statically located visual sensors have a very limited working region when one considers the lim-

ited depth-of-field and spatial resolution that vision sensors typically possess. However, the work-

ing region of a visual sensor such as a CCD camera can be greatly extended if the camera is

allowed to move while tracking and observing objects of interest. Simple 2D planar tracking of

objects with a camera that can also move in 2D is a well understood and easily implemented task.

The tracking of objects with full 3D (six degree-of-freedom) motion using a single camera with

full 3D motion, conversely, has proven to be an extremely difficult task to achieve with actual

eye-in-hand robotic servoing systems. This paper shows how several cases of full 3D object

motion can be tracked and presents experimental results which demonstrate an eye-in-hand sys-

tem successfully tracking full 3D motion.

The problems that make full 3D eye-in-hand tracking difficult to achieve include the need to com-

pensate for the noise that exists in all images, the time consuming image processing algorithms

that must be used, the large amounts of data that must be processed, the nonlinearities inherent in

a camera-lens system, and the difficulty in inferring full 3D motion from a series of single 2D

images. From a control theory standpoint these problems translate into large delays in the feed-

back loop, unreliable sensor data, inadequately modeled or difficult to model plants or systems,

and poorly-conditioned transformations.

Through proper modeling of the eye-in-hand system, by employing adaptive control techniques,

and by using robust and fast image processing routines on commercially available image process-

ing hardware, we have experimentally demonstrated that tracking an object with full 3D motion

(both translational and rotational components) by a camera that also possesses full 3D motion

capabilities can be achieved. Our experimental tracking system consists of several important char-

acteristics that contribute to the system’s usefulness and success. We use a single camera mounted

on the end-effector of a six degree-of-freedom manipulator in order to demonstrate that relatively

unsophisticated off-the-shelf hardware can be used to solve the 3D tracking problem. Visual mea-
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surements are based on a pyramidal Sum-of-Squares Differences (SSD) algorithm [1]. A properly

formulated adaptive control algorithm (designed on several simplifying assumptions) uses these

measurements to determine the correct input to a cartesian robot controller. Numerical issues

related to the strong coupling that exists between the rotational and translational degrees of free-

dom of the object being tracked are, for the first time, treated in a way that guarantees tracking of

the object in the majority of the cases. However, our algorithms for full 3-D tracking fail in sev-

eral cases that are discussed in the experimental section (one of them is the case of an object that

is spinning much faster than the camera system can roll about its optical axis). It should be

pointed out that we propose algorithms for an approximation of a very nonlinear problem.

The major differences of our system from similar research efforts [3][4][5][19][20][21] are the

use of a single moving camera, the ability to compensate for inaccurate camera parameters and

unknown depth (distance from the camera to the target), full 3D tracking ability, the small number

of parameters that are estimated on-line, and the integration of the characteristics of the motion

detection algorithm into a mathematical model for tracking.

These differences allow the system to be used in environments that are inherently difficult to cali-

brate, such as underwater, in toxic environments, or in outer space. This paper extends our previ-

ous work [14][15][16] in Controlled Active Vision by allowing full 3D tracking of objects, by

reducing the number of parameters that are estimated on-line, and by presenting experimental

results from tests performed using commercial manipulators. The experiments were performed on

the Rapid Assembly System which consists of three Puma 560’s. In order to test our approach, a

tracking Puma holds a camera and responds to arbitrary full 3D motion of an object held by a sec-

ond Puma, based solely on the visual feedback provided by the camera mounted on the tracking

Puma’s end-effector.

We begin by describing the mathematical framework under which our problem is solved. The

control, filtering, and estimation strategies are discussed in the next section, followed by a presen-

tation of experimental results and a summary.

2. Modeling of the Visual Servoing Problem

To model the 3-D visual servoing problem, we first assume a pinhole model for the camera with a

frame {C} placed at the focal point of the lens. This formulation was presented in [16] and is

reviewed here. A feature on an object atP1 with coordinates (Xo,Yo,Zo) in the camera frame

1. Bold symbols denote vectors or matrices.
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projects onto the camera’s image plane at

where (xi,yi) are the image coordinates of the feature,f is the focal length of the lens,sx andsy are

the horizontal and vertical dimensions of the pixels on the CCD array, and (xp,yp) is the piercing

point of the optical axis on the CCD. In addition, it is assumed thatZo >> f. This assumption holds

because the maximum focal length of our camera is 16mm, whileZo is approximately 300mm.

Initially, let us assume that the camera moves in a static environment with a translational velocity

T=[ ]T and a rotational velocityR=[ωxc ωyc ωzc]
T with respect to the camera frame {C}.

The velocity of pointP in the camera frame {C} induced by camera motion is then

If we letx=(xi - xp) andy=(yi - yp) represent the projection ofP on the image plane, then the veloc-

ity of the projection ofP on the image plane ( ) is equivalent to the camera induced image

motion ofP which we represent by (uc,vc). By explicitly calculating  from (3) and determining

the projection of  on the image plane using (1) and (2), the camera induced image motion of the

pointP can be determined to be (assuming, for the moment, that the object is stationary)

The image motion that can actually be observed on the image plane, however, is due to both the

image motion induced by camera motion (uc,vc) and the image motion induced by object motion

(uo,vo). The observed image motion, which we represent by (u,v), can only be determined for suc-

cessive image frames which are separated in time by a sampling periodT, and can be written as

The above equations do not account for the computational delays that occur when calculating the

observed image motion and in determining the camera induced image motion. When we include

xi
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Zosx
xp+= (1)
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fYo

Zosy
yp+= (2)

ẏc żcẋc
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dP
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v kT( ) vo kT( ) vc kT( )+= (7)
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these delays in our model, (6) and (7) become

whered is the delay factor (d∈{1,2,...}), q-1 is the backward shift operator, and we letk=kT in

order to simplify notation without any loss of generality. It can easily be seen that the observed

image motion between successive images can also be represented by

If we substituteu(k) andv(k) in (8) and (9) with their equivalent expressions from (10) and (11),

and if we assume model inaccuracies due to neglected accelerations and inaccurate robot control

can be represented as white noise, then (8) and (9) can be rewritten as

wherevx(k) and vy(k) are zero-mean, mutually uncorrelated, stationary random variables with

variancesσx
2 andσy

2, respectively. Equations (12) and (13) can be written in state-space form as

where1 AF=HF=I2, EF=TI2, xF(k)∈R2, dF(k)∈R2, u(k)∈R6, and vF(k)∈R2. The matrix

BF(k)∈R2x6 is derived by discretizing (4) and (5) and writing the terms representing the camera-

lens geometry separate from the camera motion terms, which are the control inputs of the system.

The resulting matrix is

The vectorxF(k)=[x(k) y(k)]T is the state vector,u(k)=[ ]T is the control input

vector,dF(k)=[uo(k) vo(k)]T is the exogenous deterministic disturbances vector, andvF(k)=[vx(k)

vy(k)]T is a white noise vector. The measurement vectoryF(k)=[yx(k) yy(k)]T for the feature is

given by

wherewF(k)=[wx(k) wy(k)]T is a white noise vector  andCF=I2. The measurement

1. The symbolIn denotes the identity matrix of ordern.

u k( ) uo k( ) q d− 1+ uc k( )+= (8)

v k( ) vo k( ) q d− 1+ vc k( )+= (9)

u k( )
x k 1+( ) x k( )−

T
= (10)

v k( )
y k 1+( ) y k( )−

T
= (11)

x k 1+( ) x k( ) Tq d− 1+ uc k( ) Tuo k( ) vx k( )+ + += (12)

y k 1+( ) y k( ) Tq d− 1+ vc k( ) Tvo k( ) vy k( )+ + += (13)

xF k 1+( ) AFxF k( ) BF k d− 1+( )u k d− 1+( ) EFdF k( ) HFvF k( )+ + += (14)

BF k( )

f
Zo k( )sx

− 0
x k( )
Zo k( )

x k( )y k( )sy

f
f
sx

x2 k( )sx

f
+ 

 −
y k( )sy

sx

0
f

Zo k( )sy
−

y k( )
Zo k( )

f
sy

y2 k( )sy

f
+ 

  x k( )y k( )sx

f
−

x k( )sx

sy
−

= (15)

ẏcẋc żcωxc ωycωzc

yF k( ) CFxF k( ) wF k( )+= (16)

w k( ) N 0 W,( )∼
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yF(k) is computed using the SSD algorithm described in [14]. In addition, a method for automatic

selection of features and on-line evaluation of visual measurements (useful in cases of sudden

occlusion of features) is presented in [14].

In order to solve for the manipulator control input, it can be shown that at least three feature points

which are not collinear are needed [17]. In other words, less than three feature points do not pro-

vide enough measurements in order to reliably compute the manipulator control input. The state

space model forM (M ≥ 3) feature points can be written as

whereA=H=I2M, E=TI2M, x(k)∈R2M, d(k)∈R2M, u(k)∈R6, v(k)∈R2M. The matrixB(k)∈R2Mx6

and is

The superscript (j) denotes each of the feature points (j∈{1,2,...,M}). The vectorx(k)=[x(1)(k)

y(1)(k)... x(M)(k) y(M)(k)]T is the new state vector,d(k)=[uo
(1)(k) vo

(1)(k)... uo
(M)(k) vo

(M)(k)]T is

the new exogenous deterministic disturbances vector, andv(k)=[vx
(1)(k) vy

(1)(k)... vx
(M)(k)

vy
(M)(k)]T is the new white noise vector. The new measurement vectory(k)=[yx

(1)(k) yy
(1)(k)...

yx
(M)(k) yy

(M)(k)]T for the feature is given by

wherew(k)=[wx
(1)(k) wy

(1)(k)... wx
(M)(k) wy

(M)(k)]T is a white noise vector  and

C=I2M.

We can combine (17) and (19) into a MIMO (Multi-Input Multi-Output) model (it is assumed that

d(k) is constant)

wheren(k) is the white noise vector, and corresponds to the measurement noise, modeling errors,

and noise introduced by inaccurate robot control. We can assume thatB(k-d)≈B(k-d-1) if camera

and object motion between successive samples is sufficiently small. This reduces the complexity

of (20), and allows us to rewrite this equation as a MIMO ARX (AutoRegressive with eXternal

input) model. This model consists of 2M MISO (Multi-Input Single-Output) ARX models. The

new model’s equation is

x k 1+( ) Ax k( ) B k d− 1+( )u k d− 1+( ) Ed k( ) Hv k( )+ + += (17)

B k( )
BF

1( ) k( )
…

BF
M( ) k( )

= (18)

y k( ) Cx k( ) w k( )+= (19)

w k( ) N 0 W,( )∼

1 2q 1−− q 2−+( ) y k( ) B k d−( )u k d−( ) B k d− 1−( )u k d− 1−( )− n k( )+= (20)

1 2q 1−− q 2−+( ) y k( ) B k d−( ) u∆ k d−( ) n k( )+= (21)
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where∆u(k-d) is defined as

It is important to note the need to create a single MIMO model or multiple MISO models for the

system, rather than multiple SISO models, due to the strong coupling that exists between transla-

tional and rotational motion along and about the camera X and Y axes. Although multiple SISO

models are computationally far easier to implement, these models are unable to account for this

coupling. This problem has been extensively studied in [14][16] and is related to the accurate

computation of individual translational and rotational tracking motions.

In the next section we present the control and estimation techniques for the 3D visual tracking

problem.

3. Control and Estimation

The control objective is to move the manipulator holding the camera so that the features on the

object being tracked move to some desired positions on the image plane, or that these features

remain at some desired positions as the object being tracked moves. Adaptive control techniques

can be particularly effective for visually servoing a manipulator that tracks a moving object when

the depth of the object with respect to the hand-held vision sensor is not precisely known (the suc-

cess of tracking does not depend on the accurate knowledge or accurate estimation of the depth).

These techniques use the estimated values of the unknown parameters in order to compute the

control signal. This approach is calledcertainty equivalence adaptive control [8]. A variety of

tracking algorithms can be created depending on the parameter estimation schemes and control

laws chosen. The rest of this section is devoted to a description of the control and estimation

schemes, and highlights the differences from the techniques reported in [16].

3.1. Selection of an Efficient Control Law

As stated previously, the control objective is to track the motion of certain features on the target

and place the projection of these features at some desired positions on the image plane. The track-

ing of the features’ projections is realized by an appropriate motion of the robot-camera system

described by the model in (21). A simple control law can be derived by the minimization of a cost

function that allows weights to be placed on the positional error of the features, the control signal,

and the change in control signal

The vectoryD(k) represents the desired positions of the projections of theM features on the image

u∆ k d−( ) u k d−( ) u k d− 1−( )−= (22)

J k d+( ) y k d+( ) yD k d+( )−[ ] TQ y k d+( ) yD k d+( )−[ ] uT k( )Lu k( ) u∆ T k( )Ld u∆ k( )+ += (23)
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plane. This vector is knowna priori and may be constant or time-varying. In (23),

 represents the cost of the feature or servoing

error,  is the cost of providing a control input, and  is the cost of

changing the control input. The selection of the weighting matricesL, Ld, andQ allows one to

place more or less emphasis on the control input, the control input change, and the servoing error

when attempting to satisfy the control objective. The control law is derived from the minimization

of the cost function (23) by taking the derivative ofJ(k+d) with respect to the vectoru(k), setting

the derivative ofJ(k+d) to zero, combining the result with the system model in (21), and solving

for u(k) (the procedure can be found in [8][14]). The resulting control law is

An important characteristic of this control law is that we impose constraints on the components of

required camera tracking motionu(k), which is a constraint existing in the camera frame space,

rather than imposing constraints on the image motion induced by camera motion, which is a con-

straint represented in the image plane space. Thus, we directly control the magnitudes of the con-

trol signal and the control signal change. This results in a control law that is more robust and

feasible than the one proposed in [5].

It should be noted that the term∆u(k)Ld∆u(k) in the cost function (23) introduces an integral term

into the control law. This term is desirable since our mathematical model (21) has a deterministic

disturbance component. However, this term can lead to possible saturation of the control inputs,

so it becomes necessary to determine when saturation has occurred in order to turn off the integra-

tor.

The design parameters in our control law include the elements of the matricesL, Ld, andQ. We

often setL=0 andLd≠0 in order to achieve a fast and bounded response. The matrixQ must be

positive definite, whileL andLd must be positive semi-definite. If the matrixB(k) is full rank,

then the matrix [BT(k)QB(k) + L + Ld] is invertible. The matrixB(k) loses rank when theM fea-

ture points are collinear [5][14]. An extensive study of other conditions which cause a loss of rank

in B(k) can be found in [14]. Finally, several researchers [7][9][11][18] in computer vision have

studied this problem from the pose estimation perspective.

Unfortunately, no standard procedure exists for choosing the individual elements ofL, Ld, andQ.

A common technique to employ is the optimization technique [12]. This is a straightforward way

y k d+( ) yD k d+( )−[ ] TQ y k d+( ) yD k d+( )−[ ]
uT k( )Lu k( ) u∆ T k( )Ld u∆ k( )

dB k d−( )u k d−( )− B k m−( )u k m−( )
m 1=

d 1−

∑+ } Ldu k 1−( )− (24)

u k( ) BT k( )QB k( ) L L d+ +( )− 1−
BT k( )Q d 1+( ) y k( ) yD k d+( )− dy k 1−( )− ∑−{=
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to include the constraints that the robotic device imposes on the control amplitudes in the control

law, so that the control signals are bounded and feasible. This also allows us to account for the

limited search region of the SSD algorithm, so that control inputs will not cause the manipulator

to move the camera beyond the maximum feature displacement of 32 pixels that our vision sys-

tem can measure between successive frames.

The control law derived previously (24) did not account for noise or inaccuracies in the camera

and depth related parameters contained inB(k). Noise and inaccurate parameter values can cause

the system to exhibit sluggish and even unstable tracking behavior. When these factors are taken

into account, the control objective (23) becomes

where the symbolE{ X} denotes the expected value of the random variableX andFk is the sigma

algebra generated by the past measurements and the past control inputs up to timek. The new con-

trol law is (based on thecertainty equivalence principle [8])

where  is the estimated value of the matrixB(k). The matrix  is dependent on the esti-

mated values of the features’ depth  (j ∈ {1,2,...,M}) and the coordinates of the features’

image projections. In particular, the matrix  is defined as

where  is given by

J k d+( ) E y k d+( ) yD k d+( )−[ ] TQ y k d+( ) yD k d+( )−[ ] +{= (25)

uT k( )Lu k( ) u∆ T k( )Ld u∆ k( )|Fk+ + }

dB̂ k d−( )u k d−( )− B̂ k m−( )u k m−( )
m 1=

d 1−

∑+ } Ldu k 1−( )− (26)

u k( ) B̂
T

k( )QB̂ k( ) L L d+ +( )−
1−

B̂
T

k( )Q d 1+( ) y k( ) yD k d+( )− dy k 1−( )− ∑−{=

B̂ k( ) B̂ k( )
Ẑo

j( )
k( )

B̂ k( )

B̂ k( )
B̂F

1( )
k( )

…

B̂F
M( )

k( )

= (27)

B̂F
j( )

k( )

B̂F
j( )

k( )

f

Ẑo
j( )

k( )sx

− 0
x j( ) k( )

Ẑo
j( )

k( )

x j( ) k( )y j( ) k( )sy

f
f
sx

x j( ) k( )( ) 2
sx

f
+ 

 
−

y j( ) k( )sy

sx

0
f

Ẑo
j( )

k( )sy

−
y j( ) k( )

Ẑo
j( )

k( )

f
sy

y j( ) k( )( ) 2
sy

f
+ 

  x j( ) k( )y j( ) k( )sx

f
−

x j( ) k( )sx

sy
−

= (28)
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3.2. Estimation of Depth Related Parameters

There are several methods which can be used to estimate the depth related parameters that appear

in . In this section, we describe one technique which we have successfully implemented, and

in [14] we describe two other techniques which are related to the following scheme. The estima-

tion scheme that is described is simpler and more effective than the one that we reported in [16].

For the technique used to produce the experimental results given in Section 4, we define

( ) as  so that (21) can be rewritten as

where ,

and

By defining  and  as  and ,

respectively, equation (29) can be transformed into

For the final transformation of (29) we first define the vector  to be

Equation (29) can now be rewritten in a convenient form for estimating the depth related parame-

ter

B̂ k( )

f sxZo
j( ) k( )( )⁄ ζo

j( ) k( )

BFr

j( ) k d−( ) R k d−( )∆ nF
j( ) k( )+ (29)

yF
j( ) k( ) 2yF

j( ) k 1−( ) yF
j( ) k 2−( )− ζo

j( ) k d−( )BFt

j( ) k d−( ) T k d−( )∆+ +=

n k( ) N 0 N,( )∼

BFt

j( ) k( ) T
1− 0

x j( ) k( )sx

f

0
sx

sy
−

y j( ) k( )sy

f

= (30)

BFr

j( ) k( ) T

x j( ) k( )y j( ) k( )sy

f
f
sx

x j( ) k( )( )
2
sx

f
+ 

 
−

y j( ) k( )sy

sx

f
sy

y j( ) k( )( )
2
sy

f
+ 

  x j( ) k( )y j( ) k( )sx

f
−

x j( ) k( )sx

sy
−

= (31)

T k( )∆ T k( ) T k 1−( )−= (32)R k( )∆ R k( ) R k 1−( )−=
ht

j( ) k( ) hr
j( ) k( ) ht

j( ) k( ) BFt

j( ) k( ) T k( )∆= hr
j( ) k( ) BFr

j( ) k( ) R k( )∆=

yF
j( ) k( ) 2yF

j( ) k 1−( ) yF
j( ) k 2−( )− ζo

j( ) k d−( )ht
j( ) k d−( ) hr

j( ) k d−( ) nF
j( ) k( )+ + += (33)

yF
j( ) k( )∆

yF
j( ) k( )∆ yF

j( ) k( ) 2yF
j( ) k 1−( )− yF

j( ) k 2−( ) hr
j( ) k d−( )−+= (34)

yF
j( ) k( )∆ ζo

j( ) k d−( )ht
j( ) k d−( ) nF

j( ) k( )+= (35)
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The vector  consists of values from past feature measurements and past rotational control

inputs, and  consists of values from past translational control inputs. Therefore, these two

vectors are known, while the scalar  is continuously estimated.

It is possible to successfully implement a full 3D eye-in-hand tracking system by assuming that

the depth related parameter can be updated by standard recursive estimation equations to be given

later, including the parameter update equation

where the superscript (-) denotes the predicted value, the superscript (+) denotes the updated

value). The schemes presented in [14] make this assumption, however, a more accurate form for

the updated parameter equation (36) can be obtained.

We propose a modified scheme based on the equation

where  represents the change in depth of the target due to its motion and

This represents the change of depth of the features on the object due solely to motion of the cam-

era and is a known quantity since it is based on past control inputs. The value is derived by substi-

tuting the equivalent expression for  and  from (1) and (2) into (3). Equation (37) is

actually an approximation of the changing depth of the object from the camera, since accelera-

tions of the object and camera are ignored. If the sampling time between images is sufficiently

small, however, this approximation is quite reasonable. We can rewrite (37) as

Through algebraic manipulation, (39) becomes

where

Substituting the estimated values of  into (40), the parameter update equation given by (36)

yF
j( ) k( )∆

ht
j( ) k( )

ζo
j( ) k( )

ζ̂
- j( )

o
k( ) ζ̂

+ j( )

o
k 1−( )= (36)

Zo
j( ) k 1+( ) Zo

j( ) k( ) Zobj
j( ) k( )∆ q d− 1+ Zcam

j( ) k( )∆+ +≈ (37)

Zobj
j( ) k( )∆

Zcam
j( ) k( )∆ żc k( ) ωx k( )y j( ) k( )sy ωy k( ) x j( ) k( )sx( )−[ ]

Zo
j( ) k( )
f

+{ } T−= (38)

Xo
j( ) k( ) Yo
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Zo
j( ) k( ) 2Zo

j( ) k 1−( ) Zo
j( ) k 2−( )− Zcam
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ζo
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ζo
j( ) k 2−( )

− ζo
j( ) k 1−( )
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∆'Zcam

j( ) k d−( ) ∆'Zcam
j( ) k d− 1−( )−[ ]+

= (40)

∆'Zcam
j( ) k( ) żc k( ) ωx k( )y j( ) k( )sy ωy k( )x j( ) k( )sx−[ ] 1

sxζ
o

j( ) k( )
+{ } T−= (41)
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becomes

The term  is derived from  in (33) by substituting  with .

The depth related parameter  is estimated by the following equations. An initial estimate of

,  must be given. We also assume that a covariance scalar  which represents

is initially given and is represented by . The value of the covariance scalarpo can be

interpreted as a measure of the confidence we have in our estimate of . Accurate knowl-

edge of  corresponds to a small value forpo. The term  is a covariance scalar which

corresponds to the white noise that characterizes the transition between states and is assumed con-

stant.N(j)(k) is the constant predefined covariance matrix of the gaussian noise vector .

The recursive equations are given by [13]

The depth related parameter  is time-varying since the target and the camera move in 3D.

The estimation scheme described by equations (44)-(48) can compensate for the time-varying

nature of , because the scheme was designed under the assumption that the estimated vari-

able undergoes a random change.

This estimation scheme requires the use of one parameter per feature point making it computa-

tionally realistic for real-time control. Some researchers, for example [5], propose the use of an

adaptive scheme which estimates all of the elements of the matrixB(k) on-line. As reported in [5],

ζ- j( )
o

k( )
ζ+ j( )

o
k 1−( )

2
ζ+ j( )

o
k 1−( )

ζ+ j( )
o

k 2−( )
− ζ+ j( )

o
k 1−( )

sx

f
∆'+ Zcam

j( ) k d−( ) ∆'+ Zcam
j( ) k d− 1−( )−[ ]+

= (42)

∆'+ Zcam
j( ) k( ) ∆'Zcam

j( ) k( ) ζo
j( ) k( ) ζ+ j( )

o
k( )

ζo
j( ) k( )

ζ̂o

j( )
k( ) ζ̂o

j( )
0( ) p j( ) k( )

p j( ) k( ) E ζo
j( ) k( ) ζ̂o

j( )
k( )−

2
{ }= (43)

po p j( ) 0( )=
ζo

j( ) 0( )
ζo

j( ) 0( ) s j( ) k( )

nF
j( ) k( )

ζ̂
- j( )

o
k( )

ζ̂
+ j( )

o
k 1−( )

2
ζ̂

+ j( )

o
k 1−( )

ζ̂
+ j( )

o
k 2−( )

− ζ̂
+ j( )

o
k 1−( )

sx

f
∆'+ Zcam

j( ) k d−( ) ∆'+ Zcam
j( ) k d− 1−( )−[ ]+

= (44)

p- j( )
k( ) p+ j( )

k 1−( ) s j( ) k 1−( )+= (45)

p+ j( )
k( ) p- j( )

k 1−( ){ }
1−

ht
j( ) T k d−( ) N j( ) k( ){ }

1−
ht

j( ) k d−( )+
1−

= (46)

kT k( ) p+ j( )
k( )ht

j( ) T k d−( ) N j( ) k( ){ }
1−

= (47)

ζ̂
+ j( )

o
k( ) ζ̂

- j( )

o
k( ) kT k( ) yF
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o
k( )ht
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this approach is computationally difficult to perform in real-time. Our proposed approach allevi-

ates these computational problems.

4. Experiments

The ability of the eye-in-hand system to successfully track objects whose motion is fully three

dimensional using the vision, control, and estimation algorithms presented in this paper has been

experimentally verified. These experiments are extensively described in [14]. The results of one

of these experiments are presented in this section. For the experiments, the objective of the eye-

in-hand system is to move the camera so that the image projections of the four features on the

object being tracked remain at their initial positions on the camera’s image plane, though, the sys-

tem has the capability to allow the coordinates of the features to be placed at some desired coordi-

nates other than their original locations. The objects that are used for tracking include books,

blocks, and general items with distinct features. One Puma 560 holds the camera while the other

(both Puma 560’s are components of the Rapid Assembly System) holds the target.

For the experiments performed, the maximum permissible translational speed of the Puma hold-

ing the camera is 10cm/sec (maximum translational speed of the targets is 7cm/sec), and the rota-

tional components are limited to 0.3rad/sec. The target’s initial depth is approximately 290mm

from the camera frame. The camera’s CCD array has pixel dimensionssx andsy of 11µm and

13µm, respectively, and the camera lens has a focal length of 16mm. The controller gains are

Q=0.9I8, L=0, andLd=diag{0.04,0.04,1.0,5x105,5x105,5x105}. It has been experimentally deter-

mined that the diagonal elements ofQ, L, andLd can vary by a factor of between 2 and 3 and the

system will continue to track successfully. The delay factord is 2. The vector of the desired coor-

dinates of the features on the image plane,yD(k), is constant and is set toyD(k)=y(0). The initial

values for the depth related parameters  and their associated covariance scalars  can

be found in [14]. In particular, the initial values for the depth related parameters  are differ-

ent from the actual values by a factor of 4.

The four features (one in each image quadrant) on the object being tracked are selected by the

user with a mouse, and the tracking quality of the features are then evaluated on-line based on the

confidence measures described in [14]. In our experiment, the features are the four corners of the

target. If a feature does not satisfy a confidence threshold, the user is asked to select a replacement

object feature. In addition, the option of invoking an automatic feature selector is available. A

scheme for dealing with suddenly partially occluded targets is also presented in [14].

Figures 1 through 6 show the results from the experiment. The trajectory of the target is shown in

ζ̂o

j( )
k( ) p j( ) k( )

ζ̂o

j( )
k( )
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Figure 1 by plotting the difference in the target Puma’s end-effector frame at time instantk from

the initial end-effector frame atk=0, versuskT. At k=0, the Z axis of the target Puma’s end-effec-

tor frame is aligned with the optical axis of the camera. Four parameters (one parameter per fea-

ture) are estimated during tracking using the estimation scheme described by (44). Figure 2 shows

the actual tracking errors recorded during the experiment. The errors were calculated by determin-

ing the relative transformation between end-effectors of the tracking and target manipulator and

recording the change in this transformation from its initial value atk=0. This error transformation

is significant to within the accuracy of the calibration of the Rapid Assembly System, which is

less than 1mm. The translational errors are always within 15mm, and rotational errors remain

within 6o. The deviations of the four feature coordinates from their initial positions on the image

plane are shown in Figures 3 through 6. Deviations from desired X and Y positions never exceed

20 pixels during tracking, with the maximum deviations occurring immediately after the target’s

direction of motion abruptly changes. The maximum search range of the SSD algorithm presented

in [14] is 32 pixels, so the errors in pixel position fall well within the tracking capabilities of the

vision system. From the graphs, one can observe that the tracking and feature errors reach their

maximum values immediately after the target trajectory changes direction to return to its initial

pose. It can be seen that it takes approximately 10 seconds for the destabilizing effects of the

change in the target trajectory velocity to be overcome, and the tracking errors to return to their

steady-state behavior. The robustness of our algorithms has also been tested by adding artificial

noise to the images and the results can be found in [14].

Two interesting observations can be made concerning the system based on the experimental

results. First, error in the Z direction, along the optical axis, is relatively large when compared to

errors along other directions. This is mainly due to the camera geometry, which makes tracking

along the optical axis difficult. Another interesting observation is that an error in yaw appears in

Figure 2, even though the target’s motion did not have a yaw component. This occurs because of

the strong coupling that exists between motion about X (yaw) and along Y. To track an object

moving in the Y direction, the camera could move along Y, or it could rotate about X. The same is

true for motion along X and about Y (pitch). Numerically, this implies that the matrix  is

poorly conditioned. Features appropriately positioned on the image plane and an appropriate rela-

tive initial position of the camera with respect to the target can reduce the condition number of

, and decrease errors due to this coupling. Given the camera-lens system used in the experi-

ments, initial target locations in excess of 2m from the camera make the system too poorly condi-

tioned to track reliably. If all feature points are chosen too near the center of the image,  can

also be too poorly conditioned to allow reliable tracking.

B̂ k( )

B̂ k( )

B̂ k( )
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5. Conclusions

Visually tracking objects with full 3D motion by a single camera which also possesses full 3D

motion capabilities is an ability many autonomous robotic systems need in order to provide more

effective visual input for performing robotic tasks. This ability, however, has proven a difficult

one to attain. The reasons that full 3D visual tracking is difficult include the noise characteristics

that vision sensors and image processing algorithms possess, the inevitable delays that image pro-

cessing algorithms introduce into the control loop because of the large amounts of data that must

be processed, the nonlinearities inherent in camera-lens and manipulator systems, and the diffi-

culty in inferring full 3D motion from a sequence of 2D images. We have shown that appropriate

application of modern control theory combined with recent advances in computer vision theory

can solve several cases of the full 3D robotic visual servoing and tracking problem. By properly

modeling the eye-in-hand system, by using a unique adaptive control formulation for eye-in-hand

parameter estimation, and by incorporating fast and robust computer vision algorithms, a system

has been experimentally verified which successfully tracks objects with full 3D motion. Success-

ful tracking occurs despite the strong coupling of control inputs inherent in systems that allow

simultaneous translational and rotational tracking. Experimental results have been presented and

the limitations of our approach have been discussed. These results demonstrate the robustness of

the system to inaccurate initial estimates of system parameters, as well as the ability of the system

to track different types of target trajectories. This work also demonstrates that the Controlled

Active Vision paradigm [14] can be successfully used to extend the capabilities of eye-in-hand

systems where other tracking methods have failed.
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Figure 1. Translational and rotational trajectories of the moving object with respect to its
initial pose.
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Figure 2. Translational and rotational tracking errors.
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Figure 3. Deviation of feature A from its desired position.
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Figure 4. Deviation of feature B from its desired position.
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Figure 5. Deviation of feature C from its desired position.
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Figure 6. Deviation of feature D from its desired position.
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