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1. Introduction. Every orientable 6-dimensional immersed submanifold
M of R® possesses an almost complex structure [7]. In fact R® (as a vector
space) possesses two nonisomorphic 3-fold vector cross products; each of these
induces an almost complex structure on M. In general the two almost complex
structures are distinct, and the manifolds thus obtained are not Kihlerian.
However, the almost complex structures do have some properties that are similar
to, but more complicated than, those of Kihler manifolds.

In this paper we investigate the topology and differential geometry of three
of the most important typss of these almost Hermitian manifolds, namely those
which are nearly Kihlerian, Hermitian, and quasi-Kdhlerian. We assume
throughout this paper, unless stated otherwise, that M is an orientable
6-dimensional submanifold of R®. The almost complex structure is defined by
means of a 3-fold vector cross product [2],[7], and the induced metric from R®.

In §2 we discuss nearly Ké&hler manifolds. The canonical example of a
non-Kéhler nearly Kihler manifold is S*. However, according to [7], the nearly
Kihler structure of S® is not unique. Nonetheless, it seems plausible that every
compact nearly Kdhler manifold M obtained by means of a 3-fold vector cross
product is isometric to S°. We show that this is the case if M is Einstein and
has positive sectional curvature.

If the almost complex structure of M is integrable, so that M is Hermitian,
then M is a minimal variety of R® [7]. This implies that M is noncompact.
We give more detailed information about the homotopy type of M in §3.
Furthermore we show that the curvature operator of M satisfies certain identities
which are satisfied by Kihler manifolds, but not by all Hermitian manifolds.

In §4 we investigate principal distributions defined in [5] on quasi-Kihler
manifolds and generalize some results of [7].

2. Nearly Kahler manifolds. Let M be a C~ almost Hermitian manifold
with metric tensor <<, >, Riemannian connection ¥/, and almost complex structure

J. Denote by F(M) the real valued C= functions on M and by X(M) the C=
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vector fields of M. Then M is said to be a nearly Kihler manijfold provided
Vi(JJ)X)=0 for all Xe Z(M).

The following notions will also be useful. Let M be any almost Hermitian
manifold, and for m € M denote by M,, the tangent space to M at m. Then M
is said to be of constant type at m € M provided that for all x <€ M, we have
[ V(D)) = V() 2)| whenever <zx,y>=<Jx,y>=<zx,2>=<Jzr,z2>=0
and [yl = |zll. If this holds for all me M we say that M has pointwise
constant type. If M has pointwise constant type and for X,Y e Z(M) with
<X, Y>=<JX,Y>=0 the function |Vx(J)(Y)| is constant whenever
IX|| =Yl =1, then we say that M has global constant type.

PROPOSITION 2.1. Let M be a nearly Kdihler manifold. Then M has
pointwise constant type if and only if there exists a< F(M) such that

IV DO = al WP X]* - <W,X>*— <W,JX>"}

Jor all W, X e X(M). Furthermore M has global constant type if and only
if this equation holds with a constant function a.

The proof of proposition 2.1 is easy, and so we omit it. We agree to call
a the constant type of M.

Now let M be a 6-dimensinal orientable immersed submanifold of R Denote
by P the 3-fold vector cross product on R? then P determines an almost complex

structure on M by the formula

JA = P(N,JN, A)

for A< X(M). Here N and JN are unit normal vector fields with <N, JN> =0
defined locally on M (see [7]).

THEOREM 2.2. If M is nearly Kéihlerian, then M has pointwise constant
type.

PROOF. Let 1" denote the configuration tensor of M in R® [4]. According

to [7, theorem 6. 13] there exists a 1-form 8 defined on the normal bundle of M
such that

(1) TJN + JT.N = B(JN)A+B(N)JA

for all A< X(M). (Here+ or — is determined by the isomorphism class of the
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3-fold vector ¢ross product P.) Furthermore by [7, theorem 6.4] we have
<VaJ)(B),C> = < PN, T,JN+JI',N, B),C>
for A, B,Ce X(M). Therefore
VaJXB)=PWN,T,JN =+ JTsN, B) + <T,JN + JT N, JB>JN.
Hence

(2) [VaJIXB)|?= |P(N, T4JN + JT4N, B)|>* — < T,JN + JT,N, JB>"*
= |TWN + JT.N|*|B|* = < TN + JT,N, B>*
— < TN+ JT.N, JB>*
= |B(JN)A £ B(N)JA|* — <B(JIN)A £ B(N)JA, B>*
— <B(JN)A + B(N)JA, JB>*
— (BUN) +B(N)} {|A|* — <A, B>*— <JA, B>}
= [IBI*{IAI*|B|* — <A,B>*—<JA,B>"}.

Hence the theorem follows.

We remark that the homogeneous space F,/A,x A, has a nearly Kihler
structure which is not of constant type.

THEOREM 2.3. Suppose the hypotheses of theorem 2.2 hold. In order
that M have global constant type, it is necessary and sufficient that the
mean curvature vector of M in R® have constant length.

PROOF. The mean curvature of M in R® is defined by H = 3}, T E;, where
{E,, «++,E is any local orthonormal frame field on M. It is not hard to see
that

<TA+T;JJA, N> = —2B8(N)|A|* for A< X(M),

and so <H,N> = —68(N). Hence |H]|®= 36|8|>. Now theorem 2.3
follows from theorem 2. 2.

We now give sufficient conditions that a nearly Kéhler manifold be isometric
to a sphere.
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THEOREM 2.4. Let M be a 6-dimensional orientable immersed submani-
fold of R®, and assume that M has the induced metric, and the almost
complex structure derived from a 3-fold wvector cross product on R®. In
addition assume that M is a compact nearly Kihler Einstein manifold with
positive sectional curvature. Then M is isometric to a 6-dimensional sphere.

PROOF. According to Theorem 2.2 M has pointwise constant type. The
theorem is now a consequence of [8, Theorem 8.1].

3. Hermitian manifolds. In this section we assume that the almost
complex structure on M defined by a 3-fold vector cross product on R® is
integrable. We shall need the following lemma, which is proved in [7].

LEMMA 3.1 For all X,Y €« ¥(M) we have
TXY + TJXJY - 0.

As an immediate consequence, we have the following theorem.

THEOREM 3.2. M has the homotopy type of a CW-complex with no
cells of dimension greater than 3.

1

PROOF. Lemma 3.1 implies that for each me M and each z<M,, at
least 3 of the eigenvalues of x— T,z are nonpositive. Hence by [6, Lemma 3. 2],
the theorem follows.

Next we prove that the curvature operator Ryy(X,Y) € (M) satisfies certian
identities. Also let k2, R, K and B denote the Ricci curvature, Ricci scalar
curvature, sectional curvature, and holomorphic bisectional curvature of M. The
last is defined by Byxy|X|*|Y|* = < Ry;xY,JY > for X,Y € X(M), whenever
X and Y are non zero. (See [3),[8]).

THEOREM 3.3. We have
(1) Byy = Kyy + Kxyr = — [TxY||" — | TRJY|* =0,
Sfor X, Y e X(M) whenever |X|=|Y|=1, <X, Y>=0:
(1) <RxyX,Y> = <Ry X, JY> — <Ry JX,Y> — <RyyyX,JY >,

Sfor X, Y e X¥(M) :
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(iii) <RyxY,Z> = <RyysxJY,JZ >,

for W, X, Y, ZecX(M):
(iv) KX, X)= Z Byy, = — Z UTxE|* + [TxJE|*} =0,

for XeX¥(M) with |X| =1, where {E,E,, E,,JE, JE, JE,} is any local
Sframe field on M:

. 1
(Vl) V(S?) ‘/;mBmdx = R,

where S, denotes the unit sphere in M, for any me M, dx is the canonical
measure on S, and V(S°) denotes the volume of the unit 5-dimensional sphere.

PROOF. The Gauss equation [4] states that <R,xY,Z> = <T\Y,TxZ>
— <TWZ, TxY> for W,X,Y,Z<cX(M). In particular for X,Y € 2(M),

<RXyX,Y> = <TxX, Yva> - HTxYHz .
<Rx,jyx, JY> B <TxX, TJYJY> - HTxJYHZ
<RXJXY,JY> = <TXY, TJXJY> - <T1’JY, TJXY> .

Now (i) follows from Lemma 3.1 and these equations. Similar applications of
Lemma 3.1 and the Gauss equation yield (ii). Then (iii), (iv), and (v) follow
from (i). For (vi) we note that Berger [1] has proved exactly the same formula
for Kdhler manifolds. An examination of Berger’s proof shows that (i) is all
that is needed to prove (vi) for the case we are considering.

As an immediate consequence of Theorem 3.3 and [7] we obtian the
following result.

THEOREM 3.4. In order that the Hermitian manifold M be Kihlerian
and totally geodesic, it is necessary and sufficient that any of the following
vanish on M : the sectional curvature, holomorphic sectional curvature,
holomorphic bisectional curvature, Ricci curvature, Ricci scalar curvature.

4. Quasi-Kihler manifolds. Recall that an almost Hermitian manifold
M is quasi-Kihlerian provided Vx(J)Y) + V(I )NJY) =0 forall X,Y € X(M)
(see [6]). A nearly Kiahler manifold is quasi-Kéhlerian [4].
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We shall also need some results of [5]. Let M be a Riemannian submanifold
of a Riemannian manifold M, and let M, denote the tangent space at m € M.
We call a subspace C(m)c M,, a principal subspace if dim C(m)=1 and there
exists a l-form 7Y on the normal bundle of M such that T,z=Yz)x for
xeCm), z€ My M is said to be principally reducible provided each tangent
space M,, is the direct sum of principal subspaces. The distribution m— C(m)
is said to be parallel provided x(YXZ)=0 for X< ¥(M), Z<¥(M), where
</ denotes the Riemannian connection of M.

Now we resume our consideration of 6-dimensional orientable submanifolds
of R%.

THEOREM 4. 1. Suppose M is quasi-Kihlerian and principally reducible.
Then
(i) each principal subspace is closed under J ;
(ii) T4B=T,4JB for all A,Bc¥(M);
(ii1) <R,3C, D> = <R;4,8JC,IJD> for all A,B,C, DeX¥(M);
(iv) Bup|A2|B|? = |T4B)* + |[TWJB|*=0 whenever A,BeX(M) are
nonzero,

(v) VaJI)A)=0 if A always lies in a principal subspace.
PROOF. According to [7], M is quasi-Kidhlerian if and only if

for all A€ X¥(M). Now assume that A is in a principal distribution m— C(m).
Then there exists a 1-form ¥ on the normal bundle of M such that for N X(M)L,

(4) TN =vN)A.

From (4) it follows easily that 7",JA = 0. Thus, since M is principally reducible,
(ii) follows from (3). Furthermore (i) is a conequence of (ii). Also (iii) and
(iv) follow from (ii) and the Gauss equation [4]. Finally (v) is an easy
calculation from (2 ).

Next we combine Theorem 4.1 with a result of [5]. This generalizes a
result of [7].

THEOREM 4.2 Suppose M is quasi-Kéihlerian and principally reducible.
Also, assume that each principal distribution is parallel and has the same
dimension on all of M. Then each principal distribution is integrable and
there are at most three of them. Furthermore each of the integral manifolds
is a totally geodesic quasi-Kihler submanifold of M.
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PROOF. That the principal distributions are integrable and totally geodesic
follows from [5]. The rest is a consequence of Theorem 4. 1.

Finally we state some further results. The proofs are similar to those of
Theorems 4.1 and 4. 2.

THEOREM 4.3. (i) Assume that M is principally reducible. Then M is
Kéhlerian if and only if M is totally geodesic.

(ii) Suppose M is nearly Kihlerian and principally reducible. Then
there is exactly one principal distribution. This distribution is parallel
if and only if (a) the mean curvature vector of M has constant length, or
(b) M has global constant type.
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