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1. Introduction

A method to systematically understand and construct a large class of four-dimensional

N = 2 superconformal field theories (SCFTs) was recently presented by Gaiotto in

[1]. By means of a clever rewriting of the known Seiberg-Witten curves for quiver

theories based on SU gauge groups [2], Gaiotto showed that such a theory arises as

a compactification on a Riemann surface of the six-dimensional AN−1 theory with

(2, 0) supersymmetry, with punctures associated to defect operators. The marginal

couplings of a quiver theory are encoded in the moduli of the punctured Riemann

surface, and both weakly-coupled and strongly-coupled limits were shown to correspond

to degenerations of the Riemann surface. This approach gave a unified perspective on

the S-dualities of SU(2) gauge theory with four flavors [3], which involved the triality of
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SO(8) flavor symmetry, and of SU(3) gauge theory with six flavors, the strongly-coupled

limit of which is dual to the mysterious isolated SCFT with E6 flavor symmetry [4]

coupled to an SU(2) gauge group with one flavor [5]. It also predicted a whole new

family of SCFTs with SU(N)3 flavor symmetry which are isolated, i.e. have no marginal

couplings. The holographic description of these theories was found and discussed in [6].

We call this Riemann surface with punctures the G-curve of the theory, in order to

avoid confusion and to distinguish it from the Seiberg-Witten curve, which is, roughly

speaking, an N -sheeted cover of the G-curve. In this framework, vacuum expectation

values (vevs) of dimension-d Coulomb branch operators are encoded in a degree-d

differential on the Riemann surface, which is allowed to have poles at each of the

punctures. These differentials are the scalar fields of the six-dimensional AN−1 theory.

Therefore, from the six-dimensional viewpoint, each puncture corresponds to a defect

operator that introduces singularities to fields, much like ’t Hooft loops or surface

operators do in four-dimensional gauge theory.

It was observed in [1] that the punctures of the AN−1 theory are naturally labeled by

Young tableaux with N boxes, which also specify embeddings of SU(2) into SU(N). It

was also found that there is a natural mapping between tableaux and tails of conformal

quivers. In other words, we can obtain information about the elusive six-dimensional

conformal field theory from the study of the quiver theories with SU gauge groups.

The main objective of this paper is to repeat Gaiotto’s analysis for the quivers with

USp and SO gauge groups, by realizing them using M5-branes at an M-theory orien-

tifold. Recall that six-dimensional AN−1 theory is realized as the low-energy effective

theory on the N coincident M5-branes; one can then introduce M-theoretic orientifold-

ing, which flips five directions of the spacetime. 2N M5-branes on top of the orientifold

singularity realize in the low energy limit the six-dimensional DN theory.

We first show that the Seiberg-Witten curves of these quivers can be recast into a

form which makes manifest their correspondence to compactifications of the DN theory

on Riemann surfaces with punctures. We construct new isolated SCFTs with SO(2N)3

flavor symmetry, which appears when the Riemann surface on which the DN theory is

compactified degenerates and develops a sphere with three necks attached.

We then study defects of the DN theory via an analysis of the tails of superconfor-

mal quivers. We find that defects are naturally labeled by embeddings of SU(2) into

either SO(2N) or USp(2N − 2).

We will see, along the way, that the compactification of the A3 theory and of the

D3 theory on the same surface gives the same four-dimensional theory. The way it

works is rather nontrivial: in the four-dimensional description the A3 theory involves

hypermultiplets in the 4 of SU(4) while the D3 theory contains multiplets in the 6 of

SO(6). In the M-theory description, the A3 theory is defined on a stack of four M5-
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branes, whereas the D3 theory is realized by six M5-branes on the M-theory orientifold.

We will find that subtle properties of the M-theory orientifold [7,8] play crucial roles in

this equivalence. All these facts support non-perturbative equivalence of the A3 theory

and the D3 theory as six-dimensional superconformal theories.

Finally we will see that the isolated SCFT with E7 flavor symmetry [9] arises from

a strongly-coupled limit of a particular quiver with a USp(4) factor, as anticipated

in [5].

The paper is organized as follows: we start by reviewing the analysis of SU(N)

quivers and their relation to the AN−1 theory in Sec. 2. We then analyze the SO–

USp quivers and their relation to the DN theory in Sec. 3. We conclude with some

discussion in Sec. 4. There are two appendices: Appendix A is an analysis of SO(4)–

USp(2) quivers in our framework. Appendix B contains a detailed derivation of the

G-curve of SO–USp quivers from the corresponding Seiberg-Witten curve.

2. Review: 6d AN−1 theory and SU(N) quivers

2.1 Superconformal quivers, G-curve and Young tableaux

Let us start by considering an N = 2 supersymmetric linear quiver gauge theory with

a chain of SU groups

SU(d1) × SU(d2) × · · · × SU(dn−1) × SU(dn), (2.1)

a bifundamental hypermultiplet between each pair of consecutive gauge groups SU(da)×

SU(da+1), and ka extra fundamental hypermultiplets for SU(da). To make every gauge

coupling constant marginal, we require

ka = da−1 + da+1 − 2da = (da−1 − da) − (da − da+1), (2.2)

where we defined d0 = dn−1 = 0. Since ka is non-negative, we have

d1 < d2 < · · · < dl = · · · = dr > dr+1 > · · · > dn. (2.3)

Let us denote N = dl = · · · = dr; we refer to the parts to the right of dr and to the

left of dl as the two tails of this superconformal quiver. Consider the tail on the right

hand side of (2.3),

N = dr > dr+1 > · · · > dn. (2.4)

da − da+1 is monotonically non-decreasing because ka ≥ 0; therefore we can associate

naturally a Young tableau to the tail by requiring that it has a row of width da − da+1

for each a ≥ r. For illustration, the possible types of tails for N = 4 are shown in
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Tableau Alias Flavor poles Quiver G-curve

(p2, p3, p4)

⊙ SU(4) (1, 2, 3)

SU(2) × U(1) (1, 2, 2)

SU(2) (1, 1, 2)

• U(1) (1, 1, 1)

none (0, 0, 0)

Table 1: Young tableaux with N boxes label the punctures of the six-dimensional AN−1

theory. The case N = 4 is shown here. Each tableau has its associated flavor symmetry, and

worldvolume fields φk are allowed to have poles of degree pk at the puncture. A puncture

whose tableau consists of one row of width N is also known as a full puncture and marked

by ⊙. A puncture whose tableau consists of one column of height N − 1 and another of

height 1 is the same as a simple puncture marked by •. For each tableau, a four-dimensional

quiver gauge theory with the corresponding tail is shown. ‘SU(1)’ gauge groups need to be

understood as a shorthand for the brane construction, as explained in the text.

Table 1. As is customary, a circle or a box with n inside stands for an SU(n) gauge

group or flavor symmetry respectively, and a line connecting two objects stands for a

bifundamental hypermultiplet.

The Seiberg-Witten curves for these quivers were originally found in [2], and rewrit-

ten into the following form in [1]: We start from a Riemann surface Σ, in this case

Σ = CP
1, with several punctures on it. Then the Seiberg-Witten curve is realized as a

subspace of the total space T ∗Σ of the bundle of holomorphic differential on Σ, given

as follows:

0 = xN + xN−2φ2 + xN−3φ3 + · · ·+ φN (2.5)

where x is a holomorphic differential on the Riemann surface Σ, and φd is a degree-d
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differential with poles at the punctures, encoding vevs of Coulomb branch operators

of dimension d. Then the Seiberg-Witten differential is x itself. This form makes the

superconformal property of the theory manifest: one can assign the scaling dimension

of the various fields to be equal to the degree of the corresponding differentials. One

finds that, for the general quiver (2.3), one has n + 1 punctures of the same type,

which we call the simple punctures and denote by •, and two extra punctures each

of which encodes the type of the tails. We label these two punctures by the Young

tableaux associated to the corresponding tails. In Table 1, the curves with punctures

are shown along with the corresponding quiver gauge theories. The puncture whose

tableau consists of one row of width N is called the full puncture and labeled by ⊙.

As explained in [1], this system can be thought of as a compactification of the

six-dimensional AN−1 (2, 0)-theory on Σ with defects at the punctures. Recall that the

AN−1 theory is the low-energy limit of the theory of N coincident M5-branes, or of the

compactification of type IIB strings on the four-dimensional asymptotically locally Eu-

clidean (ALE) space of type AN−1; this theory has operators of dimension 2, 3, . . . , N .

Compactifications on a Riemann surface which preserves the supersymmetry involve

twisting as usual, which turns an operator of dimension d into a meromorphic differ-

ential of degree d. Another way to understand this twisting is to recall that the space

in which the M5-branes are embedded needs to be hyperkähler to preserve N = 2

supersymmetry in four dimensions. The neighborhood of Σ in such a space can be

approximated by T ∗Σ, which is exactly the space used in (2.5). Then N solutions of

(2.5) determine the position of N M5-branes in the fiber direction x, at each point of

the base Σ.

This construction generalizes the realization of Seiberg-Witten curves as compact-

ifications of the AN−1 theory discussed in [10,11]: the φd are now allowed to have poles

at a finite number of punctures on Σ. These describe conformal defects of the AN−1

theory.

At a simple puncture φd is allowed to have a simple pole. The orders of poles

φd at a general puncture can be determined from the Seiberg-Witten curve of the

corresponding superconformal quiver, and can be easily read off from the associated

tableau. Given a tableau with rows of width w1 ≥ w2 ≥ w3 · · · , we define a sequence

of integers νi as follows

(ν1, ν2, . . .) = (1, . . . , 1︸ ︷︷ ︸
w1

, 2, . . . , 2︸ ︷︷ ︸
w2

, · · · , ). (2.6)

Then, φd is allowed to have poles of order pd = d−νd. The set of orders pd define the pole

structure of the puncture. Again for illustration, the tableaux and the corresponding

pole structures (p2, p3, p4) are listed in Table 1 for the case N = 4.
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Figure 1: Brane configuration involving “SU(1)” part. Vertical lines stand for NS5 branes

extended along x0,1,2,3,4,5, and horizontal lines are D4-branes extended along x0,1,2,3,6 where

the extent x6 is bounded by two NS5-branes. It would correspond to a quiver with gauge

groups · · · × SU(3) × SU(2) × “SU(1)”.

One notable property is that the puncture associated to the tail whose tableau

consists of one column of height N − 1 and another of height 1 has the same pole

structure as the simple puncture. Furthermore, the rightmost gauge group of the tail is

SU(2) coupled effectively to four flavors, and the S-duality of this gauge group exchanges

the puncture associated to the tail with the simple puncture. We therefore identify the

simple puncture with the puncture associated to this tableau.

We call this set consisting of a Riemann surface Σ and punctures marked by Young

tableaux the G-curve of the system, to distinguish it from the Seiberg-Witten curve.

Given pole structures at the punctures, the number of moduli in φd is the dimension

of the space of the holomorphic differentials of degree d with prescribed singularities,

given by the formula

# moduli in φd = (
∑

punctures

p
(i)
d ) − (2d − 1) (2.7)

where (p
(i)
d ) is the pole structure of the i-th puncture. The use of this formula will be

illustrated in Sec. 2.3.

In Table 1, the tableau with one column of height 4 is also listed. In general,

a tableau with one column of height N does not apparently have a corresponding

superconformal tail, because the rule explained above would associate a tail of the

form

· · · × SU(N) × SU(N − 1) × · · · × SU(2) × “SU(1)”. (2.8)

One also finds that none of the φd are allowed to have poles at the ‘puncture’ corre-

sponding to this tableau.

This sounds problematic, but by using a string-theoretic construction one can make

sense of it. Consider a brane configuration in type IIA string theory shown in Fig 1.

There, vertical lines represent NS5-branes and horizontal lines D4-branes suspended
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between them, as discussed in [2]. Thus this configuration shows the tail of a quiver

with the gauge groups (2.8) where the “SU(1) part” just decouples in the infrared

limit. Still, this configuration can be lifted to a configuration of a connected M5-brane

in M-theory. Its rewriting produces a Riemann surface with simple punctures and one

extra ‘puncture’, at which none of φd has poles. This extra puncture is not totally

devoid of physical meaning, as its position encodes the separation of the last two NS5-

branes, which roughly corresponds to the ‘gauge coupling’ of the ‘SU(1) gauge group’.

Therefore we find that it is natural to associate the Young tableau with one column of

height N to this type of puncture.

2.2 Punctures and associated flavor symmetries

Let us now consider the flavor symmetry associated to a puncture labeled by a given

Young tableau. As we saw, a tail (2.4) of the SU(N) quiver gives a number of simple

punctures and a puncture associated to the Young tableau with rows of width dr−dr+1,

dr+1 − dr+2, . . . , dn−1 − dn. One finds that the U(1) symmetry acting on each of

the bifundamental hypermultiplets is carried by the simple punctures, and the flavor

symmetries of ka fundamental hypermultiplets of SU(da) gauge groups are associated to

the punctures labeled by the tableau. We can easily read off the flavor symmetry from

a given tableau: Let lh be the number of columns of height h. Then, for each lh 6= 0

there are lh fundamental hypermultiplets coupled to one of the gauge groups in the

tail, which gives U(lh) symmetry. The overall U(1) is carried by the simple puncture

closest to the puncture labeled by the tableau. Therefore the flavor symmetry is given

by

S

[
∏

lh>0

U(lh)

]
. (2.9)

For the tails of SU(4) quivers, these flavor symmetries are listed in Table 1.

Let us note one curious mathematical fact: for a given tableau, we may associate

an embedding of SU(2) into SU(N) described by the decomposition of the fundamental

representation of SU(N) into the irreducible representations of SU(2), given by

N → 1 + 1 + · · ·+ 1︸ ︷︷ ︸
l1

+ 2 + · · ·+ 2︸ ︷︷ ︸
l2

+ · · · . (2.10)

Then, its commutant inside SU(N) is easily seen to agree with (2.9).

2.3 SCFT with SU(N)3 flavor symmetry

With the interpretation of the G-curve as the compactification of the AN−1 theory, one

can easily derive various new types of S-duality, generalizing the ones found in [5]. As an
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⇓ ⇓

⇓ ⇓

Figure 2: Construction of TSU(4). A circle or a box with n inside is an SU(n) gauge group or

flavor symmetry, respectively. A line connecting two objects is a bifundamental hypermulti-

plet. The symbol ⊂ means that the subgroup of the flavor symmetry indicated couples to the

corresponding gauge field. The triangle with three SU(4) flavor symmetry attached stands

for the TSU(4) theory.

example, let us recall the construction of a class of SCFTs with SU(N)3 flavor symmetry

in [1], whose gravity dual was found in [6]. The general method was detailed in these

papers, so we use a specific example of an SU(4) quiver to illustrate the procedure.

We start from the linear quiver shown in the first row of Fig. 2, and go to the

region of the moduli space where three necks develop in the G-curve. Originally one

has a CP
1 with nine punctures of type •; we split off three spheres, each with three

simple punctures. Each endpoint of the necks becomes a full puncture ⊙. Let us first

split one sphere with three simple punctures, see the second row of Fig. 2. The SU(3)

group in the tail

SU(3) × SU(2) (2.11)

becomes weakly coupled, and gauges the subgroup of the SU(4) flavor symmetry asso-
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ciated to the puncture. We repeat the process three times, and arrive at the situation

shown in the third row of Fig. 2. The resulting theory was called T [A3] in [1] and T4

in [6]. We call it TSU(4) to reduce possible later confusion.

TSU(4) does not have a marginal coupling constant, because a configuration con-

sisting of three points on a sphere has no modulus. The pole structure at each of the

punctures is that φ2,3,4 has poles of order 1, 2, 3. Applying the formula (2.7), one con-

cludes that TSU(4) has one operator of dimension 3 and two operators of dimension 4.

Then one can check that the quivers shown in Fig. 2 have the same number of Coulomb

branch operators for each scaling dimension.

The central charges a and c of this theory can also be easily calculated because they

are independent of exactly marginal deformations. It is more intuitive to parametrize

the central charges a and c using the effective number of hyper- and vector multiplets

nv and nh, as defined by the relation:

a =
5nv + nh

24
, c =

2nv + nh

12
. (2.12)

nv and nh of the total theory are obtained by counting the number of multiplets at the

original weakly-coupled limit:

nv(total) = 52, nh(total) = 64. (2.13)

In the regime where the three necks develop, one has three tails, each with

nv(tail) = 11, nh(tail) = 8, (2.14)

Therefore we have

nv(TSU(4)) = 52 − 3 × 11 = 19, nh(TSU(4)) = 64 − 3 × 8 = 40. (2.15)

3. 6d DN theory and SO–USp quivers

3.1 Preliminary comments on SO and USp gauge groups

Having reviewed the construction the SU quivers, here we start the analysis of the

SO–USp quivers. First we need to recall rudiments of these gauge groups, and also a

few properties of hypermultiplets.

What is usually called a hypermultiplet in the representation R of a group G

consists of an N = 1 chiral multiplet in the representation R and another in the

conjugate representation R∗. When we have N copies of them the flavor symmetry is

at least U(N). When R is strictly real, it enhances to USp(2N), as can be understood
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from the form of the N = 1 superpotential. When R is pseudo-real, one N = 1 chiral

multiplet in R forms an N = 2 hypermultiplet, which is called a half-hypermultiplet in

R. When we have N copies of them, the flavor symmetry is SO(N).

Now let us consider an SO(n) gauge theory with Nf massless hypermultiplets in the

vector representation of dimension n. It has USp(2Nf) flavor symmetry because the

vector representation is strictly real. Here and in the following we use the convention

that the fundamental representation of USp(2n) is of dimension 2n; thus in our notation

USp(2) ≃ SU(2) and USp(4) ≃ SO(5) at the level of Lie algebra. The gauge coupling

constant is marginal when Nf = n − 2.

Next consider a USp(2n) gauge theory with Nf hypermultiplets in the vector rep-

resentation. The flavor symmetry is then SO(2Nf ), and the theory becomes supercon-

formal when Nf = 2n + 2. It will be important that the vector representation, which

is 2n-dimensional, is pseudo-real. This implies that one can form half-hypermultiplets,

although one cannot have an odd number of half-hypermultiplets because of Witten’s

global anomaly. One can still gauge the subgroup SO(d) × SO(2Nf − d) ⊂ SO(2Nf)

for odd d, preserving N = 2 supersymmetry.

Therefore one can naturally consider a quiver theory with alternating gauge groups

· · · × SO(da) × USp(da+1 − 2) × SO(da+2) × USp(da+3 − 2) × · · · (3.1)

with bifundamental half-hypermultiplets between consecutive gauge groups, and pos-

sibly with extra hypermultiplets in the fundamental representation for the a-th gauge

group. Here the bifundamental representation is the tensor product of the vector rep-

resentation of SO group and the fundamental representation of USp group. We let ka

be twice the number of hypermultiplets in the vector representation if the a-th gauge

group is SO, while we let it be the number of half-hypermultiplets in the fundamental

representation if the a-th gauge group is USp. Then the flavor symmetry is USp(ka)

and SO(ka), respectively. For convenience we define δa = 0 when the a-th gauge group

is SO, and δa = 2 when it is USp.

The requirement of marginality of each of the gauge coupling constants can be

written succinctly as

ka = da−1 + da+1 − 2da, (3.2)

exactly as in the case of the quiver of SU gauge groups (2.2). One such superconformal

quiver is shown in Fig 3. There, a box stands for a flavor symmetry, and a circle a gauge

symmetry; a gray one with n inside is an SO(n) group, and a black one is an USp(n)

group; a line stands for a half-hypermultiplet in the bifundamental representation. The

theory shown thus has the gauge group

SO(4) × USp(2) × SO(3) (3.3)
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Figure 3: On the left: an example of SO–USp quiver gauge theory. A circle or a box stands

for a gauge group or a flavor symmetry, respectively. A gray object with n inside is an SO(n)

group, a black object with n inside is a USp(n) group. On the right: the brane configuration

realizing the quiver. The vertical lines stand for NS5-branes, the horizontal lines D4-branes

suspended between them, and ⊗ D6 branes. The dotted line represents the O4-plane. The

color distinguishes two types of O4-planes.

with bifundamentals, one extra hypermultiplet in the vector representation of SO(4),

and one extra half-hypermultiplet in the fundamental representation of USp(2).

3.2 From type IIA brane configuration to the G-curve

Let us realize the quiver theory introduced in the previous subsection via a system of

NS5, D4 and D6 branes with orientifolds in type IIA string theory, which is schemat-

ically shown in Fig. 3. These systems and the corresponding Seiberg-Witten curves

were first analyzed by [12–14]; the subtler aspects of the orientifolding procedure was

later clarified in [7, 8, 15].

We start from the flat ten-dimensional spacetime, and put n + 1 NS5 branes ex-

tending along directions x0,1,2,3,4,5. We perform the orientifolding, flipping directions

x4,5,7,8,9, which introduces an O4-plane in the system. One important aspect is that

an O4−-plane becomes an O4+-plane when it crosses an NS5-brane, and vice versa.

We define δa to be 0 or 2 depending on the type of the O4-plane between a-th and

(a+1)-st NS5 brane, so that we have an SO gauge group when δa = 0 and a USp gauge

group when δa = 2. We analogously define δ0 and δn+1. δa accounts the difference of

D4-charge carried by an O4−-plane and an O4+ plane.

We then suspend da − δa D4-branes between the a-th and (a + 1)-th NS5-branes.

The a-th gauge group is Ga = SO(da) if δa = 0 and = USp(da − δa) if δa = 2. We

denote by ka the number of D6-branes, extending along x0,1,2,3,7,8,9, between the a-th

and (a + 1)-th NS5-branes; for simplicity we put all D6-branes on top of the O4-plane.

This configuration realizes in the low-energy limit the quiver gauge theory specified by

the sequences of numbers (da), (δa) and (ka), as discussed in the previous subsection.
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One example is depicted in Fig. 3: There, a vertical line stands for a NS5-brane,

a horizontal solid line a D4-brane, a horizontal dotted line an O4-plane and an ⊗ a

D6-brane. An O4−-plane is in blue and an O4+-plane is in red. We have the gauge

group SO(4)×USp(2)×SO(3) with bifundamentals between consecutive gauge factors,

and extra hypermultiplets in the fundamental representations for SO(4) and USp(2).

The properties of the O4+ plane to the left and to the right of the D6-brane on top of

it is known to be slightly different, and the plane to the right is, properly speaking, an

Õ4+-plane, which is important to guarantee that there is no Witten’s global anomaly

in the low energy gauge theory, see [8] for details.

Let us now consider a quiver with the gauge groups

USp(2N − 2) × SO(2N) × USp(2N − 2) × · · · × SO(2N) × USp(2N − 2), (3.4)

with a total of n = 2s + 1 gauge factors, and with 2N massless half-hypermultiplets in

the fundamental representation for each of the two USp(2N) gauge groups at the ends

to make them superconformal. The Seiberg-Witten curve is given by [13]

F (v, t) = v2N tn+1 + P1(v
2)tn + P2(v

2)tn−1 + · · · + Pn(v
2)t + v2N = 0, (3.5)

where

Pi(v
2) = civ

2N + u
(2)
i v2N−2 + u

(4)
i v2N−4 + · · · + u

(2N)
i . (3.6)

Here u
(2k)
i is the Casimir of degree 2k of the i-th gauge group, except for u

(2N)
i when

the i-th gauge group is USp(2N − 2), for which no such Casimir exists. In fact, the

zeros of F (v, t) at v = 0 all need to be double zeros:

F (0, t) = u
(2N)
1 tn + u

(2N)
2 tn−1 + · · ·+ u(2N)

n t = αt2
s−1∏

i=1

(t − qi)
2 (3.7)

for some choice of α and qi. In particular this forces u
(2N)
1 = u

(2N)
n = 0. This condition

leaves s independent parameters α and qi, which encode the Casimir operators of s

SO(2N) gauge factors.

This condition is necessary to prevent a so-called “t-configuration,” i.e. a transver-

sal intersection of a single M5-brane with the M-theory orientifold plane [7, 8].

The Seiberg-Witten curve can be rewritten in Gaiotto’s form

0 = x2N + ϕ2x
2N−2 + ϕ4x

2N−4 + · · ·+ ϕ2N , (3.8)

where x = vdt/t is a holomorphic differential on the G-curve Σ = CP
1 parametrized

by t. ϕ2k encodes the vevs of Coulomb branch operators:

ϕ2k =
u

(2k)
1 tn + u

(2k)
2 tn−1 + · · ·+ u

(2k)
n t∏

(t − ta)

(
dt

t

)2k

. (3.9)
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1)

2)

3)

Figure 4: Examples of SO–USp quivers and their G-curves. Simple punctures are marked

by ×. There are two types of full punctures. Each of the punctures labeled by ⊙ or ⋆ has

one SO(2N) or USp(2N − 2) flavor symmetry, respectively.

Here the ta are defined by

∏
(t − ta) = tn+1 + c1t

n + · · ·+ cnt + 1 (3.10)

which encodes the gauge coupling constants. We see that ϕ2k is allowed to have a

simple pole at n + 1 points where t = ti, whereas it is allowed to have poles of order

2k − 1 at two points t = 0 and t = ∞.

As for ϕ2N , the condition (3.7) means that it can be written as

ϕ2N = ϕ2
Ñ

where ϕÑ =
t
∏

(t − qi)∏
(t − ta)1/2

(
dt

t
)N . (3.11)

ϕÑ has Z2 monodromy around t = ta, with a pole of order 1/2; whereas it has no

monodromy around t = 0,∞ and has poles of order N − 1.

The G-curve is shown as the first example in Fig. 4; there, we have taken 2N = 6

and n = 3. ϕ2k has simple poles and ϕÑ behaves as ∼ 1/t1/2 at the punctures denoted

by × with the local coordinate t chosen such that the puncture is at t = 0. ϕ2k has

poles of order 2k − 1 and ϕÑ has poles of order N − 1 at the punctures denoted by ⊙.

Again, this system can be thought of as the compactification of the six-dimensional

DN theory on Σ, with prescribed sets of singularities for the worldvolume fields. Recall

that the six-dimensional DN theory arises as the low-energy theory on a stack of 2N M5-

branes on top of the R
5/Z

2 M-theory orientifold, or equivalently of the compactification

of type IIB string theory on an ALE space of type DN . This theory has operators of

dimension 2, 4, . . . , 2N − 2 and one extra operator of dimension N , which become the

differentials ϕ2, ϕ4, . . . , ϕ2N−2 and ϕÑ , respectively. The Lie algebra of type DN has

one outer automorphism, under which operators of dimension 2, 4, . . . , 2N −2 are even
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but the extra one of dimension N is odd; it is the Pfaffian. The analysis above shows

that the simple puncture × has a Z2 monodromy of this outer automorphism associated

to it. This agrees with the known fact that the transversal intersection of an M5-brane

with the M-theory orientifold R5/Z2 screened by an even number of M5-branes has an

associated Z2 charge [8].

Let us next consider the quiver with the gauge groups

SO(2N) × USp(2N − 2) × · · · × USp(2N − 2) × SO(2N), (3.12)

with a total of 2s+1 gauge groups. There are bifundamental hypermultiplets as always,

and N − 1 hypermultiplets in the fundamental representation for each of the SO(N)

groups at the ends. The Seiberg-Witten curve is given again by (3.5), but the condition

on the double zeros is now

F (0, t) = u
(2N)
1 tn + u

(2N)
2 tn−1 + · · ·+ u(2N)

n t = αt

s∏

i=1

(t − qi)
2. (3.13)

There are s simple punctures at ti as before, but the pole structure at t = 0,∞ is now

different: ϕ2k still has poles of order 2k − 1, but ϕÑ has a pole of order N − 1/2. In

particular there is a Z2 monodromy around t = 0,∞. We label this type of punctures

by ⋆. The case 2N = 6 is shown in the second line of Fig. 4.

The same exercise can be repeated with the quiver of the form

USp(2N−2)×SO(2N−1)×USp(2N−4)×SO(2N−3)×· · ·×USp(2)×SO(3), (3.14)

with bifundamentals between each pair of two consecutive gauge groups as always, and

2N + 1 extra fundamental half-hypermultiplets on the leftmost USp(2N − 2) gauge

group. This quiver theory has a total of 2N − 2 gauge groups, and we find that

the resulting G-curve has 2N punctures of type × and one puncture of type ⊙; see

Appendix B for details. The case 2N = 6 is shown as the third example in Fig. 4.

3.3 SCFT with SO(2N)3 flavor symmetry

By making use of the interpretation of SO–USp quivers as compactifications of the

six-dimensional DN theory, one can easily find their various infinitely strongly-coupled

limits. As an exercise let us construct a theory with no marginal coupling constant and

with SO(2N)3 flavor symmetry, which we denote as TSO(2N). The construction for the

AN theory was reviewed in Sec. 2.3, which we closely follow.

For concreteness, let us first consider the case 2N = 6. Take two copies of the

quiver theory of the third example of Fig. 4, and introduce an SO(6) gauge group

which gauges the SO(6) flavor symmetry of the original one. One then has the linear
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⇓ ⇓

⇓ ⇓

Figure 5: Construction of TSO(6). The triangle with three SO(6) flavor symmetries attached

stands for the TSO(6). The symbol ⊂ between the SO(6) flavor symmetry and the SO(5) gauge

symmetry signifies that SO(5) ⊂ SO(6) is gauged.

quiver shown in the first row of Fig. 5, whose associated G-curve is a CP
1 with twelve

punctures of type ×. Let us go to the region of the moduli space where three necks

develop. We split off three spheres, each with four punctures of type ×. Each of the

endpoints of the necks becomes a full puncture marked by ⊙.

Let us first split off one sphere with three simple punctures, see the second row of

Fig. 5. The group SO(5) in the tail

SO(5) × USp(2) × SO(3) (3.15)

becomes weakly coupled, and gauges the subgroup of the SO(6) flavor symmetry asso-

ciated to the puncture. We repeat the process three times, and arrive at the situation

shown in the third row of Fig. 5. Again, nv and nh of the total theory are obtained by

counting the number of multiplets: first, the total theory has

nv(total) = 67, nh(total) = 64. (3.16)
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In the regime where the three necks develop, one has three tails, each with

nv(tail) = 16, nh(tail) = 8. (3.17)

Therefore we have

nv(TSO(6)) = 67 − 3 × 16 = 19, nh(TSO(6)) = 64 − 3 × 8 = 40. (3.18)

These numbers are exactly the same as those for TSU(4), (2.15). Recall that the

SU(4) quivers arose from the compactification of the worldvolume theory on four co-

incident M5 branes, whereas the SO(6)–USp(4) quivers arose from six coincident M5

branes on top of the R5/Z2 orientifold singularity. These two systems give the same

low-energy six-dimensional A3 ≃ D3 (2, 0) theory. Therefore, they should result in the

same SCFT in four dimensions, because we compactified the same theory on the same

surface, with the same number of the same type of defects. The agreement of nv and

nh of TSU(4) and TSO(6) is expected from the six-dimensional viewpoint, but is quite

nontrivial from the perspective of four-dimensional gauge theory.

The construction of TSO(2N) can be done analogously. We start from a linear quiver

with 6N − 9 gauge groups

SO(3) × USp(2) × · · ·USp(2N − 4) × SO(2N − 1)×

USp(2N − 2) × SO(2N) × · · · × SO(2N) × USp(2N − 2)×

SO(2n − 1) × USp(2N − 4) × · · · × USp(2) × SO(3), (3.19)

with a bifundamental half-hypermultiplet between each pair of two consecutive groups,

and one half-hypermultiplet in the fundamental for the first and the last USp(2N − 2)

gauge groups. The G-curve then is a sphere with 3(2N − 2) punctures of type ×. One

can split off three spheres with 2N − 2 punctures each, thus decoupling three tails of

the form

SO(3) × USp(2) × · · ·USp(2N − 4) × SO(2N − 1). (3.20)

This results in a theory described by a G-curve with three punctures of type ⊙. We

then have

nv(TSO(2N)) =
8N3

3
− 7N2 +

10N

3
, nh(TSO(2N)) =

8N3

3
− 4N2 +

4N

3
. (3.21)

Now we can paste multiple copies of TSO(2N) by gauging SO(2N) groups to find

a four-dimensional realization of the compactification of the six-dimensional DN the-

ory. It would be interesting to extend the holographic analysis of [6] to this case and

reproduce nh and nv from the gravity solution.
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It is natural ask if there is a theory whose G-curve is a sphere with three punctures

of type ⋆ and with USp(2N − 2)3 flavor symmetry. This is impossible because one

cannot have Z2 monodromy at three points on the sphere. Instead it is possible to

construct a theory whose G-curve is a sphere with two punctures of type ⋆ and one

punctures of type ⊙, by performing a similar procedure to the one presented above.

The flavor symmetry is then SO(2N) × USp(2N − 2)2. The important point is that

two punctures of type ⋆ appear when a G-curve degenerates and develops a neck with

Z2 monodromy around it.

3.4 Tails, tableaux and flavor symmetries

Let us now classify possible types of superconformal tails of the SO–USp quivers. We

found in Sec. 3.1 that the requirement of the marginality of coupling constants implies

d1 < d2 < · · · < dl = dl+1 = · · · = dr > dr+1 > · · · dn. (3.22)

We let 2N = dl = · · · = dr. Then we can associate a Young tableau with rows of

widths dr − dr+1, dr+1 − dr+2,. . . , as was the case for the tails of SU quivers. There are

two crucial differences, however. One is that we need to distinguish the cases for which

the last gauge group is SO or USp; the other is that not all of the tableaux are allowed

because da for a USp gauge group needs to be even.

For a given tail, let us then associate a tableau with the following rule:

• If it ends with a USp group, associate a tableau, with gray boxes, whose rows are

of width dr − dr+1, dr+1 − dr+2, . . . . One has 2N boxes in total.

• If it ends with an SO group, associate a tableau, with black boxes, whose rows

are again of width dr − dr+1, dr+1 − dr+2, . . . , except the last row, for which we

let the width be dn − dn+1 − 2 = dn − 2. This procedure is consistent because the

smallest SO group one can have is SO(3). One has 2N − 2 boxes in total.

To help grasp the procedure, we list all the tails of SO(6)–USp(4) quivers in Table 2

and in Table 3. Note that a tableau with one row of 2N gray boxes corresponds to the

puncture of type ⊙, the tableau with one column of 2N −2 black boxes to the puncture

of type ×, and the tableau with one row of 2N − 2 black boxes to the puncture of type

⋆ that we used in the previous subsection; we use these notations interchangeably.

Let lh be the number of columns of height h in a given tableau. One finds in general

that

• lh for even h is even for a gray tableau; it just guarantees that da be even for

USp gauge groups. Then one can associate an embedding of SU(2) into SO(2N),
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Tableau Alias Flavor Quiver G-curve

⊙ SO(6)

USp(2) × SO(2)

SO(3)

SO(2)

none

Table 2: One class of punctures of the six-dimensional DN theories are marked by SO

tableaux, which encode embeddings of SU(2) into SO(2N). On the right of the each tableau

are the associated flavor symmetry and a quiver theory whose G-curve has a corresponding

puncture. A puncture whose tableau consists of one row of width 2N is a full puncture

⊙. Quivers with USp(0) ‘gauge group’ need to be understood as a shorthand for the brane

configurations, as explained in the text.

ρ : SU(2) → SO(2N), given by the decomposition of the vector representation

2N of SO(2N) under SU(2) via

2N → 1 + 1 + · · ·+ 1︸ ︷︷ ︸
l1

+ 2 + · · · + 2︸ ︷︷ ︸
l2

+ · · · . (3.23)

Recall that the irreducible representation of SU(2) of dimension h for even h is

pseudo-real. The embedding above is possible because lh copies of this irreducible

representation can be strictly real, lh being even. Thus we call such a tableau an

SO(2N) tableau.

• Similarly, lh for odd h is even for a black tableau. Again, this just guarantees that

da is even for USp gauge groups. Let us then associate an embedding ρ of SU(2)

into USp(2N −2), given by the decomposition of the fundamental representation
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Tableau Alias Flavor Quiver G-curve

⋆ USp(4)

USp(2)

SO(2)

× none

Table 3: Another class of punctures of the six-dimensional DN theories are marked by USp

tableaux, which encode SU(2) embeddings into USp(2N−2). On the right of the each tableau

are the associated flavor symmetry and a quiver theory whose G-curve has a corresponding

puncture. A puncture whose tableau consists of one column of height 2N − 2 is a simple

puncture ×, and a puncture whose tableau consists of one row of width 2N − 2 is a full

puncture ⋆.

2N − 2 of USp(2N − 2) under SU(2) via

2N − 2 → 1 + 1 + · · · + 1︸ ︷︷ ︸
l1

+ 2 + · · · + 2︸ ︷︷ ︸
l2

+ · · · . (3.24)

Recall that the irreducible representation of SU(2) of dimension h for odd h is

strictly real. The embedding above is possible because lh copies of this irreducible

representation can be pseudo-real, lh being even. Thus we call such a tableau a

USp(2N − 2) tableau.

In this way, we associate a tableau for each superconformal tail, which encodes its

information concisely. One can observe the following facts concerning superconformal

tails and the flavor symmetries associated to them:

• For a tail ending in a USp group, the flavor symmetry associated to it is
∏

h:odd,lh≥2

SO(lh) ×
∏

h:even,lh≥2

USp(lh), (3.25)

which coincides exactly with the commutant inside SO(2N) of the SU(2) embed-

ding associated to the tableau labeling the tail.
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Figure 6: Brane configuration involving “USp(0)” part. It would correspond to a quiver

with gauge groups · · · × SO(6) × USp(4) × SO(4) × “USp(0)”.

• Similarly, for a tail ending in an SO group, the flavor symmetry is
∏

h:odd,lh≥2

USp(lh) ×
∏

h:even,lh≥2

SO(lh), (3.26)

which agrees with the commutant inside USp(2N − 2) of the SU(2) embedding

associated to the tableau.

Conversely, given a USp(2N−2) tableau one can always construct a superconformal

tail ending in an SO gauge group, and given an SO(2N) tableau one can write down a

tail ending in a USp gauge group. However, there is one class of exceptions which are

SO(2N) tableaux consisting of just two columns, associated to the decomposition

2N → (2N − k) + k. (3.27)

Here k is odd unless N is even, in which case k = N is also allowed. Naive application

of the algorithm above associates a superconformal tail of the form

· · · × SO(6) × USp(4) × SO(4) × “USp(0)” (3.28)

which does not make sense in a purely gauge-theoretic setting. However, as was the

case for SU quivers, one can still write down a brane configuration corresponding to

this situation (Fig 6) and consistently lift it to M-theory.1

Finally let us discuss the behavior of ϕ2k and ϕÑ at the punctures, which can

be found by a careful analysis of the Seiberg-Witten curves. One finds that it is

not sufficient to specify the degrees of the poles for each ϕ2k or ϕÑ , contrary to the

case of the AN theory. For example, at the puncture associated to the SO(6) tableau

corresponding to 6 → 3+3, we find the following two conditions, whose derivation can

be found in Appendix B:

1This situation might be related to the appearance of the gluino condensate for USp(0) in the

framework of Dijkgraaf-Vafa [16]. It would be interesting to clarify the relation; the author thanks

Masaki Shigemori for discussion.
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• ϕ2, ϕ3̃ and ϕ4 have poles of degree 1, 1, 2 respectively; and

• (ϕ2)
2 − 4ϕ4 has only a simple pole.

The second condition guarantees that the M5-brane wrapping the Seiberg-Witten curve

does not have a single, transversal intersection with the M-theory orientifold.

This sounds slightly puzzling, considering the fact that the D3 theory in six di-

mensions is equivalent to the A3 theory, for which the defects were classified and such

a polynomial constraint was not found. Indeed, the decomposition 6 → 3 + 3 of the 6

of SO(6) corresponds to 4 → 3 + 1 of the 4 of SU(4), for which the pole structure was

just that all φ2,3,4 have simple poles at the puncture, see Table 1. But upon further re-

flection this is exactly what is expected. Say that an element of the Cartan subalgebra

of SO(6) acts on the 6 as

diag(a,−a, b,−b, c,−c); (3.29)

then it acts on the 4 as

diag(a + b + c, a − b − c,−a + b − c,−a − b + c)/2. (3.30)

Therefore φ4 and ϕ4 cannot be just equated; instead they satisfy

2φ2 = ϕ2, 16φ4 = ϕ2
2 − 4ϕ4. (3.31)

Thus we find that the condition on the worldvolume fields as found from the D3 theory

is the same as the one found from the point of view of the A3 theory.

3.5 Duality with SCFT with E7 flavor symmetry

Having analyzed general punctures of the DN theory, we can now have some more

fun. Let us start from the quiver with gauge groups USp(4)× SO(5) ×USp(2), shown

in the first row of Fig. 7. As before, we can go to a region where four punctures

of type × collide, decoupling a tail with gauge groups SO(5) × USp(2) × SO(3). The

resulting strongly-coupled theory has no marginal coupling because there are only three

punctures on the sphere. There is only one Coulomb branch operator and its dimension

is four, because the original theory contained three operators of dimension two and

two of dimension four, whereas the decoupled tail has three dimension-two and one

dimension-four operators.

This suggests that this theory is the E7 SCFT of Minahan-Nemeschansky [9]. One

can perform many tests of the proposal: one can easily check that the central charges

a and c agree with what were found in [5]; and the flavor symmetry manifest in this

description is naturally a subgroup of E7,

SO(6)2 × SO(3) ≃ SU(4)2 × SU(2) ⊂ E7. (3.32)
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before:

⇓ ⇓

after:

Figure 7: S-duality involving the SCFT with E7 flavor symmetry

Figure 8: Extended Dynkin diagram of E7 showing subgroup SU(4)2 × SU(2)

This subgroup comes from the decomposition of the extended Dynkin diagram, see

Fig. 8. The flavor symmetry central charges of this subgroup agree with those of E7,

which were found in [5].

The S-duality found in [5] involving the E7 SCFT started from USp(4) gauge theory

with twelve half-hypermultiplets, which is exactly the first example in Table 2. The

infinitely strongly-coupled limit corresponds to collapsing two singularities of type ×.

The analysis above indicates that this procedure results in one Young tableau with

columns of height 3, 1, 1, 1. It would be fruitful to analyze which defects can arise when

two defects of general type collide. Such collisions should provide a wealth of new

S-dualities.

4. Discussion

In this paper, we generalized the construction of [1], which realized many four-dimensional

SCFTs as compactifications of the six-dimensional AN−1 theory, to the DN theory. We

utilized this construction to find a new class of isolated SCFTs with SO(2N)3 flavor

symmetry, which arise in strongly-coupled limits of linear quivers of SO and USp gauge

groups. We also saw how the E7 SCFT of Minahan and Nemeschansky arises from this

construction.
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In [1], it was noted that the types of tails of SU superconformal quivers for six-

dimensional AN−1 theory can be naturally associated to Young tableaux; we can nat-

urally associate an embedding of SU(2) into SU(N) to such Young tableau, whose

commutant inside SU(N) gave the flavor symmetry of that tail. In this paper, the

analysis was extended to alternating SO–USp quivers for the six-dimensional DN the-

ory and it was found that the tails of such quivers can naturally be associated to an

embedding of SU(2) into either SO(2N) or USp(2N − 2); again, the flavor symmetry

associated to the tail is given by the commutant of that embedding of SU(2).

We also saw that the simplest kinds of defects of the DN theory have Z2 monodromy

for the Pfaffian operator. This is suggestive in that the Pfaffian is odd under the outer

automorphism of the DN Lie algebra, whose quotient is exactly USp(2N−2), which was

used in the labeling of the tails. It would be interesting to consider defects associated to

other outer automorphisms of AN−1 or D4, and identify their realizations using quiver

gauge theory.

The most pressing issue is to find out how the association to the defects of an

embedding of SU(2) into SU, SO or USp groups can be intrinsically understood from

a six-dimensional point of view, and how these embeddings control the behavior of

the scalar fields around them. These defects are of codimension two. Therefore, if

we compactify the six-dimensional (2, 0) theory on a torus parallel to the worldvolume

of the defects, we obtain surface operators of the N = 4 super Yang-Mills in four

dimensions. The study of such surface operators was initiated in [17]. There, it was

found that embeddings of SU(2) naturally appear which specify the singular part of the

field configuration around the defect. Therefore, the problem seems to be in identifying

which of the possible defects of four-dimensional N = 4 super Yang-Mills descend from

those of six-dimensional theories. It would be interesting to pursue this relation further.
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A. SO(4)–USp(2) quivers

It is instructive to analyze the simplest case of the SO–USp quiver, namely the case
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1)

2)

Figure 9: An SO(4)–USp(2) quiver and the same quiver as an SU(2) generalized quiver.

Corresponding G-curves are also shown. In the first description the curve is a sphere with

eight punctures; in the second it is a hyperelliptic genus-three curve.

with SO(4)–USp(2) using our formalism. Consider a linear quiver theory with the

gauge group

SO(3) × USp(2) × SO(4) × · · ·USp(2) × SO(3), (A.1)

with s SO(4), s + 1 USp(2) and two SO(3) factors. The case s = 1 is shown in the

diagram 1) of Fig. 9. Following the procedure explained in the main part, we find that

the Seiberg-Witten curve is specified by the G-curve Σ = CP
1 with 2s + 6 punctures

of the same type; we have two quadratic differentials on Σ, ϕ2 and ϕ2̃ corresponding

to two Casimirs of SO(4), namely the trace of the square and the Pfaffian. At each

puncture, ϕ2 ∼ (dt)2/t and ϕ2̃ ∼ (dt)2/t1/2 where t is a local coordinate for which the

puncture is at t = 0.

Now let us recall that SO(4) ≃ SU(2) × SU(2), and the vector representation of

SO(4) is the tensor product of the doublets of each of the SU(2) factors; also that

SO(3) ≃ SU(2) and the vector representation of SO(3) is in the tensor product of two

doublets. We neglect possible issues coming from the global structure of the groups.

This should not cause any problems as long as we consider theories on the flat R4.

Then the quiver can also be presented as in the diagram 2) of Fig. 9 in the notation

of [1]. In this case the G-curve is a genus-(s + 2) Riemann surface Ξ and there is a

quadratic differential φ2 on it. An important constraint is that in the description as

an SO(4)–USp(2) quiver, we cannot independently vary the coupling constants of two

SU(2) factors of SO(4). It is natural to guess that this requirement translates to the

fact that the curve Ξ is hyperelliptic. Indeed, it gives the correct number of marginal

coupling constants because the number of the moduli of hyperelliptic curves of genus

s + 2 is 2s + 3, which agrees with the number of gauge factors in the quiver (A.1).

Now Ξ is equipped with the hyperelliptic involution ι which flips the two sheets;

the fixed points are exactly the branch points on Σ. We can split φ2 on Ξ into even
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and odd parts under ι:

φ2 = φ+
2 + φ−

2 . (A.2)

We then regard φ±
2 as differentials on Σ.

Pick a puncture on Σ and take the local coordinate t so that the puncture is at

t = 0. The local coordinates on Ξ is then s = t1/2. φ+
2 is holomorphic and even in s,

which translates to the condition

φ+
2 ∼ (ds2) ∼ (dt2)/t, (A.3)

implying that φ+
2 has a simple pole at the branch points. Similarly, φ−

2 behaves as

φ−
2 ∼ s(ds2) ∼ (dt2)/t1/2. (A.4)

Therefore we can identify ϕ2 with φ+
2 and ϕ2̃ with φ−

2 .

B. Curves for general SO–USp quivers

Here we provide some details of the derivation of the Seiberg-Witten curves for general

linear quiver gauge theories with alternating SO and USp gauge groups. The brane

construction was reviewed in Sec. 3.2, see Fig. 3 for a drawing of the system.

Let us first recall how D6 branes lift to a Taub-NUT space in M-theory. Let Nf

be the total number of D6 branes. When all of them are at x4 = x5 = 0, the resulting

Taub-NUT space is given as a complex manifold by the equation

yz = vNf , (B.1)

and the orientifolding in M-theory acts by sending v → −v. The action of orientifolding

on y and z depends on the quiver; for simplicity we assume that y is fixed for now.

The origin y = z = v = 0 is blown up as long as the positions of D6-branes along x6

directions are distinct. The blown-up, smooth manifold is given by introducing extra

pairs of local coordinates (yi, zi) at the i-th nut i = 1, 2, . . . , Nf , such that

y1z1 = y2z2 = · · · = v, (B.2)

and

y = y1, z1 = 1/y2, z2 = 1/y3, . . . , zNf
= z. (B.3)

There are Nf − 1 CP
1’s parametrized by y2,3,...,Nf

which we call Ci, see Fig. 10. We

analogously define the loci z = 0 and y = 0 to be C0, CNf
. The relations (B.2), (B.3)

imply that the orientifolding fixes Ceven but that it acts by multiplication by −1 on

Codd. Therefore the M-theory orientifold exists at Ceven, but not at Ceven.
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Figure 10: Schematic description of the Taub-NUT space, the lift of D6-branes. C1 to CNf

are blown-up two-cycles.

Now let us consider an SO–USp superconformal quiver gauge theory for the DN

theory, specified by integers (da), (δa) and (ka), see Sec. 3.2 for notations. The Seiberg-

Witten curve is a curve in the Taub-NUT space discussed above [13, 14], given by

F (v, t) = v2N tn+1 + v2N−d1P1(v)tn + v2N−d2P2(v)tn−2 + · · ·

+ v2N−dnPn(v)t + v2N = 0. (B.4)

where t = yk and k is the number of D6-branes of the left hand tail of the superconformal

quiver. Pa(v) is a polynomial of degree da, even or odd in v according to the parity of

da:

Pa(v) = cav
da + u(2)

a vda−2 + u(4)
a vda−4 + · · · . (B.5)

In the semi-classical regime, ca encodes the gauge coupling constant, whereas u
(2k)
a

encodes the vacuum expectation values of the adjoint scalar field of the a-th gauge

groups, except the constant term of Pa(v) for which the gauge group is USp. These

constant terms are determined by the requirement that the resulting M5-brane inter-

sects the cycles Ci in a manner consistent with orientifolding in M-theory. The main

condition is that an M5 brane cannot intersect with the M-theory orientifold five-plane

transversally; an even number of M5-branes need to intersect at a point on an ori-

entifold five-plane. This condition was first formulated in [7]. Refer to [8] for more

details.

Let us define x = vdt/t and

ϕ2k =
u

(2k)
1 tn + u

(2k)
2 tn−1 + · · ·+ u

(2k)
n t∏

(t − ta)

(
dt

t

)2k

, (B.6)

where we defined u
(2k)
a = 0 when da < 2k, and

∏
(t − ta) = tn+1 + c1t

n + · · ·+ 1. Then

one can rewrite the curve above into Gaiotto’s form:

0 = x2N + ϕ2x
2N−2 + ϕ4x

2N−4 + · · ·+ ϕ2N . (B.7)
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Figure 11: A quiver, and the corresponding Taub-NUT space in which its Seiberg-Witten

curve is embedded. Orientifolding fixes C1, but acts as multiplication by −1 on C0 and C2.

The structure of the poles at the punctures at t = 0,∞ can be readily found from

the form (B.6), but the conditions imposed on the constant terms of Pa(v) by the

consistency of the M-theory orientifold are rather intricate, and the author has not

found a concise way to express them for a general sequence of gauge groups. Instead

they are illustrated through two examples, which were used in the main part of the

paper.

The first example is the quiver drawn in Fig. 11, which was the main topic of

Sec. 3.3. The Taub-NUT space yz = v2 is given in the right hand side of the same

figure. The red broken arrow on C0 and C2 indicates that the orientifolding sends

y → −y and z → −z. The Seiberg-Witten curve was given in (B.4). t is the local

coordinate of C1. Let n = 2b + 7 be the total number of gauge groups; b is the number

of SO(6) gauge groups. The consistent way to eliminate extra parameters in Peven is

then to set the constant parts of P2, P4, P2b+4 and P2b+6 to zero, and to require

F (0, t) = αt5
b−1∏

i=1

(t − qi)
2 (B.8)

for some complex numbers α, qi. Indeed, the intersection of C1 with the Seiberg-Witten

curve is given by the double zeros qi, as required by the consistency of the M-theory

orientifold [8]. Furthermore, the intersection with C0 is given by

u
(2)
1 y2 − u

(4)
3 = 0 (B.9)

which is compatible with the orientifolding action. The same can be said for C2. Under

these constraints, one finds that ϕ2, ϕ4, . . . , ϕ2N all have simple poles at t = 0. This

translates to the behavior ∼ 1/t1/2 for ϕÑ .

The second example is the quiver drawn in Fig. 12; USp(0) needs to be taken as

a shorthand for the corresponding brane configuration. This time C0 and C2 are both

fixed by the orientifolding. The Seiberg-Witten curve is
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Figure 12: Another quiver, and the corresponding Taub-NUT in which its Seiberg-Witten

curve is embedded. Orientifolding fixes C0 and C1, but acts as multiplication by −1 on C1.

0 = v6y4 + (c1v
6 + u

(2)
1 v4 + u

(4)
1 v2 + u

(6)
1 )y3

+ v2(c2v
4 + u

(2)
2 v2 + u

(4)
2 )y2 + v4(c3v

2 + u
(2)
3 )y + v6. (B.10)

The intersection of this curve with C2 parameterized by z is determined by

u
(6)
1 + u

(4)
2 z + u

(2)
3 z2 + z3 = 0. (B.11)

Now, C2 is a fixed locus of the M-theory orientifold, and no M5-brane is wrapped on

it. Therefore, the intersection needs to be a double zero when an M5-brane intersects

on it. This requires u
(6)
1 = 0 and 4u

(4)
2 = (u

(2)
3 )2, which leads to a simple pole in ϕ2

and a double pole in ϕ4 such that 4ϕ4 − (ϕ2)
2 only has a simple pole. This property

was crucial when we matched this defect of the D3 theory with the simple puncture

of the A3 theory. In a similar manner, one finds that a quiver ending with groups

SO(2k)–USp(k − 2) will allow a simple pole in ϕk and a double pole in ϕ2k, such that

4ϕ2k − (ϕk)
2 only has a simple pole.
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