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ABSTRACT

Constructing accurate global potential energy surfaces (PESs) describing chemically reactive molecule-molecule collisions of
alkali metal dimers presents a major challenge. To be suitable for quantum scattering calculations, such PESs must repre-
sent accurately three- and four-body interactions, describe conical intersections, and have a proper asymptotic form at the
long range. Here, we demonstrate that such global potentials can be obtained by Gaussian Process (GP) regression merged
with the analytic asymptotic expansions at the long range. We propose an efficient sampling technique, which allows us to
construct an accurate global PES accounting for different chemical arrangements with <2500 ab initio calculations. We apply
this method to (NaK)2 and obtain the first global PES for a system of four alkali metal atoms. The resulting surface exhibits
a complex landscape including a pair and a quartet of symmetrically equivalent local minima and a seam of conical intersec-
tions. The dissociation energy found from our ab initio calculations is 4534 cm−1. This result is reproduced by the GP models
with an error of less than 3%. The GP models of the PES allow us to analyze the features of the global PES, representative
of general alkali metal four-atom interactions. Understanding these interactions is of key importance in the field of ultracold
chemistry.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5082740

I. INTRODUCTION

A major thrust of recent experimental research in molec-
ular physics has been to create a gas of stable diatomic
molecules at ultracold temperatures.1,2 Multiple experiments
have demonstrated the formation of ultracold molecules by
photoassociation of ultracold atoms.3–9 Here we consider the
NaKmolecule. The reaction NaK + NaK→Na2 + K2 is endother-
mic,10 and NaK molecules are therefore believed to be
chemically stable at ultracold temperatures. However, the
experiments with ultracold NaK molecules report losses,8

which have been attributed to the formation of long-lived

collision complexes.11,12 In order to understand the origin
of these losses, it is necessary to perform quantum scat-
tering calculations of cross sections for NaK–NaK collisions.
Such calculations require an accurate global potential energy
surface (PES) for the NaK–NaK collision complex.

Constructing this PES is a complex task. The endoergicity
of the NaK + NaK→Na2 + K2 reaction is only 120 cm−1, whereas
the dissociation energy of the NaK–NaK complex is calculated
here to be 4534 cm−1. This implies that a global PES suitable
for scattering calculations must account for the configura-
tion space corresponding to the exchange of atoms. At the
same time, the PES must describe accurately the three- and
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four-body interactions and have a proper asymptotic form.
While high-level accurate ab initio calculations for (NaK)2
are feasible, it is a major challenge to construct an analyt-
ical fit of the PES describing fully and accurately the com-
plexity of NaK–NaK interactions in a wide range of energies
(from the ultracold collision asymptote, to the reactive com-
plex, to all reaction channels) required for ultracold scattering
calculations.

An alternative to an analytical fit is a non-parametric
machine-learning (ML) model, such as Gaussian Process (GP)
regression.13 This method provides an interpolation of ab ini-
tio points that does not rely on any functional form to rep-
resent the PES and is, therefore, completely general. The
PES is obtained as a mean of a multi-variate Gaussian dis-
tribution. This generality makes GP regression a very use-
ful and powerful method for obtaining the PES. For exam-
ple, the same code without any additional programming effort
can be applied to construct a PES for systems with different
atoms (e.g., RbCs vs NaK) and, even, with different dimen-
sions (e.g., NaK–NaK vs Na–NaK). As shown recently,14–18 GP
regression can produce accurate PESs for polyatomic systems
with a small number of ab initio points. However, as any ML
method, GP regression is designed for interpolation and can-
not extrapolate outside the range of available ab initio energy
points. The conventional implementation of GP regression is,
thus, not suitable for describing the asymptotic behaviour of
the PES that is critically important for ultracold scattering
calculations.

The present work pursues three goals: (i) extend the pre-
vious work on GP regression to design a general method for
constructing a multi-dimensional reactive PES with correct
asymptotic behaviour suitable for ultracold scattering calcula-
tions (Secs. II, III, and IV B); (ii) obtain an accurate PES for the
NaK–NaK interactions; and (iii) examine the general features
of this PES (Sec. IV A), which we expect to be characteristic of
PESs for other alkali metal tetramers in the ground electronic
state.

II. AB INITIO CALCULATIONS

The coordinate system most suitable for a non-reactive
diatom-diatom system is the set of Jacobi coordinates
depicted in Fig. 1. At the long range in the NaK–NaK asymp-
totic arrangement, we use these Jacobi coordinates and an
associated Legendre expansion to describe the dependence of
the PES on the polar angles θ1, θ2 and the dihedral angle φ.

FIG. 1. The Jacobi coordinates of the complex in one of the NaK–NaK arrange-
ments.

This expansion diverges at the short range. Furthermore, the
Jacobi coordinates do not describe the different chemical
arrangements of the four-atom complex equivalently, mak-
ing it difficult to fit the reactive part of the PES. There-
fore, at the short range, we use the inverse atomic distance
coordinates.

In the region where the Jacobi coordinate R < 25 a0, the
ab initio points were calculated using a configuration inter-
action (CI) method. At R ≥ 15 a0, the ab initio points were
calculated using coupled-cluster theory. Note that there is
an overlap between both regions, to ensure a smooth transi-
tion between the two areas. The computational approaches for
both regions are summarized below. For all calculations, we
employ effective core potentials (ECPs) and core polarization
potentials (CPPs) for Na and K such that only the four valence
electrons are treated explicitly. We use MOLPRO19 for all the
ab initio calculations.

We use the effective core potentials (ECPs) developed by
Nicklass et al.,20 to represent all but a single valence electron
for each sodium and potassium atom. The core polarizability
(and therefore also most of the core-valence correlation21)
is accounted for using the CPPs developed by Fuentealba
et al.22 and implemented in MOLPRO.19 The CPP parameters are
the dipole polarizability α = 0.9947 (5.354)a3

0
and the expo-

nential cutoff parameter δ = 0.62 (0.29)a0, in atomic units, for
sodium (potassium).22 First, we roughly optimized the one-
electron basis sets as follows. We use uncontracted Gaussian
orbitals throughout. The s, p, and d orbitals are represented
by identical sets of five even-tempered orbitals. Two addi-
tional f atomic orbitals are included. The exponents were very
roughly optimized by variationally lowering the energy of the
NaK–NaK dimer at a head-to-tail collinear geometry. We
chose not to optimize the basis sets for the one-electron
atoms because this corresponds to a special case with no elec-
tron correlation and effectively optimizes only the included
valence orbitals. This procedure leads to Gaussian exponents
(1.0, 0.3162, 0.1, 0.0316, 0.01) for the s, p, d orbitals and
(0.08, 0.008) for the f orbitals.

When applied to the isolated Na or K atom, the atomic
energy levels can be obtained from Hartree-Fock calculations
for the effective one-electron atoms. We perform such cal-
culations for both 2S and 2P atomic states, which yields the
valence S → P transitions at 16 826.85 (13 015.17) cm−1 for Na
(K). These agree to an accuracy of 0.8 (0.07)% with the experi-
mental23 transition wave number of 16 967.63 (13 023.66) cm−1.
Note that the error on the S→ P transition of the Na-atom is a
factor 10 higher than the error for the K-atom. After complet-
ing the PES, we performed additional tests of the one electron
basis. We independently optimized the Na and K basis sets on
the minima of the Na2 and K2 diatoms by scaling the expo-
nents. This resulted in roughly two times bigger exponents
for Na than used now, whereas the exponents for K were
already optimal. Choosing this basis set for Na would reduce
the error of the Na S → P transition to 0.04% and lower the
minimum energy of the PES by 30 cm−1. Since the effect of
this basis set change is smaller than the typical GP fitting error
such as shown in Tables III and V, we did not recompute the
PES.
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TABLE I. Spectroscopic parameters of NaK.

State Parameter This work Experiment References Error (%)

X1
Σ
+ De/cm−1 5319.89 5273.62 24 0.9

Re/a0 6.59 6.61 24 0.3
~ω/cm−1 122.79 124.01 24 1.0

a3Σ+ De/cm−1 209.81 207.82 24 1.0
Re/a0 10.26 10.29 24 0.3
~ω/cm−1 22.715 23.01 24 1.3

b3Π De/cm−1a 6869.68 6735.10 25 2.0
Re/a0 6.59 6.62 25 0.5
~ω/cm−1 120.19 119.70 25 0.4

aRelative to the Na(3s) + K(4p) asymptote.

Next, we calculated the potential energy curves for the
two-electron NaK molecule at the full (single and double) CI
level. The spectroscopic parameters obtained from these cal-
culations are compared to experimental results in Table I.
Most of the spectroscopic parameters are found to be accu-
rate to within one percent.

For the four-valence electron NaK–NaK dimer, we find
that the computational cost of the full CI approach increases
too rapidly to obtain convergence with respect to the one-
electron basis set. Therefore, we use truncated CI and
coupled-cluster approaches as outlined below.

In the short range, multi-reference CI calculations were
performed as follows. The ECPs and CPPs discussed above
are employed throughout. A complete-active space self-
consistent field (SCF) calculation was performed for the four
valence electrons. Subsequently, we perform an internally
contracted multireference CI step, where single and double
excitations from this active space are taken into account.
We applied the Pople size-consistency correction.26 We note
that we find that the Pople correction is much more accu-
rate than the more commonly used Davidson correction27

for this system, which contains only four explicit electrons.
We also include the Boys and Bernardi counterpoise correc-
tion28 to reduce the basis set superposition error by subtract-
ing the energies of the four separate atoms calculated in the
dimer basis set. These were calculated at a Hartree-Fock level,
which gives the same results as the full CI for these effectively
one-electron atoms.

In the long-range, we performed coupled-cluster calcula-
tions including single and double excitations and perturbative
triples [CCSD(T)], based on Hartree-Fock reference determi-
nants. This again treats only the four valence electrons and
effectively accounts for the core electrons using ECPs and
CPPs. This approach gives a more accurate account of the
long-range interaction but is not applied in the reactive short-
range region where the single-determinant description is not
generally applicable.

III. FITTING THE GLOBAL PES

The general strategy used in this work aims to merge
a non-parametric machine-learning model of the PES at the
short range with a proper analytical form of the PES at the long

range. In order to achieve this, one must overcome several
issues, discussed below.

Note that throughout the paper we use the energy of two
isolated NaK diatoms at their equilibrium bond lengths as the
zero of energy.

A. GP regression

Gaussian process (GP) regression is a kernel-based prob-
abilistic non-parametric supervised ML algorithm.13 The
application of GP regression to constructing a PES for poly-
atomic molecules has been described in detail in the previous
work of one of the authors.14 The GP model is trained by an
ensemble of ab initio points distributed in the relevant config-
uration space and provides a prediction of the energy as a nor-
mal distribution characterized by a mean µ(·) and a standard
deviation σ(·) in the following form:

µ(x∗) = K(x∗, x)⊤
[
K(x, x) + σ2

nI
]−1

y, (1)

σ(x∗) = K(x∗, x∗) − K(x∗, x)⊤
[
K(x, x) + σ2

nI
]−1

K(x∗, x). (2)

Here, x = (x1, x2, . . . , xn)
⊤ is a vector of n points in the six-

dimensional configuration space of the NaK–NaK complex,
where the GP model is trained, y is a vector of ab initio points
at the positions specified by xi, x∗ is a point in the configu-
ration space where the prediction y∗ is to be made, K(x, x) is
the n × n square matrix with the elements Ki ,j = k(xi, xj) rep-
resenting the covariances between y(xi) and y(xj), and k(., .)
is a kernel function. The purpose of training a GP model is
to find the parameters of the kernel where the log marginal
likelihood,

logp(y |x, θ) = −
1

2
y
⊤K−1y −

1

2
log |K | −

n
2
log(2π), (3)

is maximum. Here, θ denotes collectively the parameters of
the analytical function for k(·, ·) (see below) and |K| is the
determinant of the matrix K.

In the present work, we assume the following form for the
kernel function:

k(xi, xj) = cD(xi, xj,σ)M(xi, xj, l1, l2, l3, l4, l5, l6), (4)

where D is the dot product kernel13

D(xi, xj,σ) = σ2 + xi · xj, (5)

and M is an anisotropic Matérn kernel13 with ν = 2.5,

M(xi, xj) =
6

∑

k=1

(

1 +
√

5l−1k |xi,k − xj,k | +
5

3
l−2k |xi,k − xj,k |

2

)

× exp
(

−
√

5l−2k |xi,k, xj,k |
2
)

. (6)

The coefficient c, the dot product bias term σ, and the
characteristic length scales l1-l6 of theMatérn function are the
parameters θ in Eq. (3).

The parameters of the kernels and the training points that
were used to make the GP fits of the NaK–NaK PES are given
in the supplementary material.
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The accuracy of the GP interpolation increases monoton-
ically with the number n of training points.14 However, the
numerical evaluation of the PES involves a single inversion
of a square n × n matrix and can subsequently be reduced
to a vector-vector product for each evaluated point, scal-
ing as O(n). For practical applications, it is therefore impor-
tant to reduce n by placing the training points optimally in
the configuration space. At the same time, the GP model has
no prior information about the function to be fitted, such as
the analytical form of the long range and the symmetry of
the PES. To incorporate those properties correctly, the GP
model needs to be symmetrized (Sec. III C) and it needs to
be merged with the analytical long-range part of the PES
(Sec. III D).

To optimize the quality of the fit, both the type of kernel
and the coordinate representation (here inverse atomic dis-
tances) are important. In previous work, only a single Matérn
kernel (with ν = 2.5) was used.14 It is generally expected
that more complex kernels can provide better results. Duve-
naud et al.29,30 suggested that the complexity of kernels
can be built up by combining simple kernels (such as the
Matérn kernel or a simple Gaussian kernel) in the form of
products and sums using the Bayesian information crite-
rion computed for the resulting model as a kernel selection
criterion. This procedure was recently shown to produce ker-
nels, allowing for physical extrapolation of quantum properties
with Gaussian processes.31 Here, we build up the complex-
ity of kernels using the same algorithm but with the testing
error instead of the Bayesian information criterion to guide
the kernel selection. The final kernels thus obtained were
dependent on the training set, as is expected and was also
discussed in Ref. 31. However, the resulting kernels always
contained a product of a Matérn kernel and a dot product ker-
nel and the other components of the obtained kernels only
marginally reduced the fitting error. We therefore chose to
use this product of a Matérn kernel(ν = 2.5) and a dot prod-
uct kernel as our kernel for constructing the PES, as shown
in Eq. (4). This kernel produces functions which are twice
differentiable. The maximization of the log-likelihood func-
tion was performed with the Python(2.7) package scikit-learn
0.18.1.32

B. Configuration space sampling

To place the training points for the GP model, the fol-
lowing procedure was used. A grid in Jacobi coordinates is
constructed using Latin hypercube sampling (LHS).33 For the
NaK–NaK arrangement, this is performed using a grid in the
monomer bond lengths r13 and r24 from 4.6 to 9.4 a0 and with
r24 ≥ r13. The labeling of the atoms is defined in Fig. 1, and rij
is the distance between atoms i and j. The range of R-values
used is 4 to 25 a0 . The angles θ1, θ2 range from 0 to π. The
angle φ ranges from 0 to 2π, but because of the symmetry only
φ values up to π need to be included. For the Na2–K2 arrange-
ment, the grid has 4.8 < r12 < 10.3 a0, 3.7 < r34 < 8.1 a0, 4 < R
< 25 a0, 0 < θ1, θ2 < π

2 , and 0 < φ < π. The grid ranges are
chosen such that almost the entire relevant parameter space
for cold collisions is included. However, the grid ranges do

not depend on each other, meaning that a large part of the
probed parameter space is not accessible. Since the number
of points included in the GP training set affects the compu-
tational cost of the PES evaluation, only the ab initio points
relevant for the dynamics should be included in the train-
ing set. It is thus desirable to develop an approach to deter-
mine whether a point should be included in the training set or
not.

To select the training points, we use a computation-
ally cheap PES constructed with the Diatomics-in-Molecules
(DIM) model.34 The diatom potentials used for this model were
constructed as described in Sec. II. The DIM model is eval-
uated at each grid point. If the calculated energy of the grid
point is below the selected cutoff energy, an ab initio point is
calculated and included in the training set of the GP model.
The number of points of the LHS grid was modified to obtain
the desired number of remaining training points.

The cutoff energy is dependent on the bond lengths of
the diatoms. Furthermore, it is chosen such that no points
are wasted to fit the dissociation of the diatoms, but that a
repulsive wall is still included when the diatoms approach each
other. To choose the cutoff energy in the different regions in
parameter space, we devised the following two rules:

1. If both monomer bond lengths in either the NaK–NaK
or the Na2K2 arrangements are close to their equilib-
rium bond length (±0.5a0), the cutoff energy is twice the
dissociation energy of the NaK diatoms.

2. If one of the bond lengths differs more than 0.5a0
from the equilibrium bond length, the cutoff energy is
624 cm−1.

When all ab initio points on this grid are calculated,
the coordinates are transformed to inverse atomic distances.
These inverse atomic distances are used to produce a GP
model of the surface. We find that the length scales l1 − l6
of the trained kernels [Eq. (4)] are circa 0.3 a−10 [see the sup-
plementary material]. The inverse atomic distances vary from
∼ 0 a−10 to approximately 0.25 a−10 . The length scales of the GP
fits therefore match the length scale of the PES.

C. Symmetrization of the fit

There are four ways in which the nuclei of the NaK–NaK
complex can be permuted which yield symmetrically equiva-

lent arrangements. We can define permutation operators P̂ij,

which interchange the nuclei i and j. The permutations Î (the
identity), P̂12, P̂34, and P̂12P̂34 should leave the energy invariant.
In this work, we train the GP models with points that are pre-
dominantly in one quadrant of the parameter space. Adding
all symmetrically equivalent points to the Gaussian process
model would unnecessarily increase the set of training points
by a factor of four and therefore make the evaluation of the
PES more computationally expensive. To avoid this, we devel-
oped the following symmetrization procedure. The fitted val-
ues corresponding to the four permutations are added with a
weight determining whether the permuted set of coordinates
corresponds to a geometry inside or outside the training point
region.
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In the Na2–K2 arrangement, the training point region has
the corresponding Jacobi coordinate values θ1, θ2 ∈ [0, π

2 ].
In the NaK–NaK arrangement, the training point region has
r12 < r34 and most of the training point region also has r13 + r24
< r23 + r14 because 1-3 and 2-4 are the diatoms in the cho-
sen NaK–NaK arrangement. The symmetrization procedure
is based on pairing different contributions using a switching
function,

Fmerge

[
u;m,w, F1(~x), F2(~x)

]
= y(u, c,w)F1(~x) + [1 − y(u, c,w)]F2(~x),

(7)

y(u; c,w) =



0, if u ≤ c −w
1
2 +

9
16 sin

π(u−c)
2w + 1

16 sin
3π(u−c)

2w , if c −w < u < c +w

1, if u ≥ c +w.

(8)

Here F1(~x) and F2(~x) are the functions between which the
switch is made, u is the parameter parameterizing the switch,
c is the value of u around which the switch is centered, and w
is the halfwidth of the switching interval. The sigmoid func-
tion y is constructed to switch in the finite interval c − w
< u < c + w and to be twice differentiable. For F1 and F2, we
use the GP predictions evaluated at symmetrically equivalent
geometries.

In the Na2–K2 region, the symmetrization scheme is as
follows:

VGP
12 (~x) = Fmerge[θ1;

π

2
, 0.3,VGP(~x),VGP(P̂12~x)], (9)

VGP
34 (~x) = Fmerge[θ1;

π

2
, 0.3,VGP(P̂34~x),VGP(P̂12P̂34~x)], (10)

VGP
Na2K2

(~x) = Fmerge[θ2;
π

2
, 0.3,VGP

12 (~x),VGP
34 (~x)]. (11)

Then, in the NaK–NaK region,

VGP
14 (~x) = Fmerge[

r13
r24 + r13

;
1

2
,
1

16
,VGP(~x),VGP(P̂12P̂34~x)], (12)

VGP
23 (~x) = Fmerge[

r23
r14 + r23

;
1

2
,
1

16
,VGP(P̂12~x),VGP(P̂34~x)], (13)

VGP
NaKNaK(~x) = Fmerge[

r13 + r24
r23 + r14 + r13 + r24

;
1

2
,
1

16
,VGP

14 (~x),VGP
23 (~x)].

(14)

Finally, we pair up the functions of the two arrangements,

VGP
sym(~x) = Fmerge

[
r12 + r34

2(r13 + r24)
+

r12 + r34
2(r14 + r23)

;

1,
1

4
,VGP

Na2K2
(~x),VGP

NaKNaK(~x)
]
. (15)

To ensure a smooth symmetrization, we need to add
some symmetrically equivalent points to the training set at
the edges of the quadrant of parameter space used for train-
ing. There are two NaK–NaK arrangements, but only one of
the arrangements is probed by the GP. To obtain a correctly
shaped well and to ensure the potential wall is still included
after symmetrization, points up to R = 10a0 for the second

NaK–NaK arrangement are also included. This was performed
by permuting the interatomic distances of the already calcu-

lated ab initio points by P̂34 and adding these new points as
extra training points. In the Na2–K2 arrangement, points with
θ1 and θ2 between π/2 and π/2 + 0.2 were included.

D. Fitting the long range

The GP and CI methods do not provide a correct descrip-
tion of the long range, so a different method was used to
construct the long range of the PES. Analytical expansion coef-
ficients describing the long range are available in the litera-
ture.35 However, to make a smooth transition with the short-
range part, higher-order coefficients and the bond-length
dependencies of the coefficients are also needed. To calculate
these higher coefficients and bond-length dependencies, we
calculated ab initio points using CCSD(T). Then we extracted
the Legendre expansion coefficients and fitted the difference
between these expansion coefficients with the literature coef-
ficients using the 1D reciprocal power reproducing kernel
Hilbert space method (RKHS).36

The ab initio points for both arrangements were cal-
culated at intermolecular distances of R = 15, 16, 17, 18,
20, 22, 25, and 30 a0. Note that at distances of more
than 30 a0, the expansion coefficients displayed unphysical
behaviour. We have indications that this is caused by the
use of the exponentially decaying CPP’s. A 6-point Gauss-
Legendre quadrature was used for the coordinates θ1 and θ2,
and a 6-point Gauss-Chebyshev quadrature was used for φ.
The long range is represented analytically by the following
expansion:

Vlr(r13, r24,R, θ1, θ2,φ) =
4

∑

l1 ,l2=0

min (l1 ,l2)
∑

m=0

Wl1 ,l2 ,m(r1, r2,R)

×Pm
l1
[cos(θ1)]Pm

l2
[cos(θ2)] cos(mφ). (16)

Here Pm
l are associated Legendre polynomials.37 To also

treat the r1 and r2 dependencies, Wl1 ,l2 ,m(r1, r2,R) can be

approximated as W(1)

l1 ,m
(r1,R)W

(2)

l2 ,m
(r2,R). This is exact for all

electrostatic and induction terms because they depend on a
product of monomer properties and approximate for the dis-
persion terms. This approximation is invalid, though, for terms

where W(1)

l1 ,m
(r1,R) or W(2)

l2 ,m
(r2,R) goes through zero as a func-

tion of R. For this PES, this only occurs for some terms with
l1 or l2 = 3 or 4. For these terms, the r1- and r2-dependence is
neglected. Since these terms are small, this has only a small
effect on the quality of the fit. The r1 and r2 dependence
was approximated by second degree polynomials in r1 and
r2, i.e.,

Wl1 ,l2 ,m(r1, r2,R) =
2

∑

k1 ,k2=0

W(1)

l1 ,m,k1
(R)W(2)

l2 ,m,k2
(R)(r1−r1eq)k1 (r2−r2eq)k2 .

(17)

The dominant interaction coefficients were calculated
using the multipole moments and dispersion coefficients
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reported in Table II. For the electrostatic terms, the
W-coefficients can be calculated from these multipole
moments Ql such as described by Byrd,35

Wl1 ,l2 ,m(r1, r2,R) = (−1)l1+m(2 − δm,0)
(l1 + l2)!

(l1 +m)!(l2 +m)!

×Ql1 (r1)Ql2 (r2)R
−l1−l2−1. (18)

Here Q1 is the dipole moment, Q2 is the quadrupole
moment, etc. These coefficients were subtracted from the
W-coefficients determined from the Legendre expansion. The
R-dependence of the resultingW-coefficients was fitted using
the RKHS method with nrkhs = 2. The value of mrkhs used
depends on the dominant remaining interaction term. For a
given interaction term with a dominant asymptotic decay of
R−n, mrkhs was chosen to be n − 1 to have a correct long range
extrapolation.38

The W(1)

l1 ,m,k1
(R) and W(2)

l2 ,m,k2
(R)-coefficients with k1, k2 = 1, 2

were calculated by varying r1 by −0.3 and 0.3 a0 with respect
to the equilibrium bond length, while keeping r2 fixed. For the
Na2–K2 arrangements, the diatoms are different, meaning that
the reverse was also performed. Their R-dependence was fit-
ted using the same RKHS method but with the mrkhs-values
corresponding to the dominant interaction term.

Note that we altered the multipole moments and dis-
persion coefficients from the literature to fit better to the
data. Some coefficients were not available in the literature,
and these were inferred directly from the data. It was not
possible to do this accurately for the coefficients marked
with a star (∗) in the table, but in these cases, the actual
value of the coefficient was only of minor influence to the
final result. In such cases, the coefficients mainly functioned
to stabilize the extrapolation of the RKHS fit in the long
range.

In the long range, the dominant interaction term in the
NaK–NaK arrangement is the dipole-dipole term, with an

TABLE II. The R−6 contributions of the W000, W200, and W020 coefficients and the
multipole moments Ql at the equilibrium bond length that were inserted into the long-
range fitting model. All coefficients are given in atomic units. The values marked with
a ∗ had only very minor influence on the fitting result, and their value could therefore
not unambiguously be determined.

Parameter Reference 35 Used value

Q1 NaK 1.09–1.156 1.068
Q2 NaK 10.56–10.60 10.6
Q3 NaK −26.54 −26.4
Q4 NaK . . . 160
W000(R−6) NaK–NaK 7777 8500
W200(R−6) NaK–NaK 551.9 700∗

Q2 Na2 10.52 10.7
Q4 Na2 . . . 73∗

Q2 K2 15.68 15.9
Q4 K2 . . . 375∗

W000(R−6) Na2–K2 . . . 7900
W200(R−6) Na2–K2 . . . 600∗

W020(R−6) Na2–K2 . . . 1700∗

asymptotic decay of R−3. The dominant interaction between
ground state NaK-diatoms in the long range is rotational dis-
persion, of which the magnitude is determined by the dipole
moment.39 The dipole moment is one of the only terms we
can accurately determine from our ab initio points because
it is strongly dominant over the dispersion terms with the
same angular dependence at R = 30a0. The dipole moment we
extract from our long range fit is given by 1.068 ea0, which
agrees well with the experimental value40 of 1.07 ± 0.04 ea0.
There is a difference with the theoretical values found by
Byrd ranging from 1.09 to 1.156 ea0,35 where they calcu-
lated the dipole moment using a finite field method on the
diatom.

E. Merging the short range and the long range

In order to merge the long range with the short range,
we first need to match the two ab initio methods and then
merge the GP model with the analytical long-range part. This
was performed in two steps. First the size-consistency error
of the CI-calculations was corrected for by matching the
long-range and the short-range parts optimally in the paral-
lel and antiparallel NaK–NaK arrangements, by introducing an
absolute offset to the CI calculations of −44 cm−1.

In the second step, the long-range energies were calcu-
lated from the long-range analytical fit and used as training
points for the GP model. The two parts were then merged
using the switching function in Eq. (7). The smoothest transi-
tion can be made if the change in energy in the merging range
of R is bigger than the difference between the two functions
to be merged. The long-range fit should only be mixed in past
the minima as a function of R for all orientations, i.e., when R
is larger than the R-values corresponding to the minima with
a collinear orientation. This resulted in the values of c = 17.5 a0
and w = 2.5 a0. This leads to the following modified training
points:

Vtrain(~xab) = Fmerge[R; 17.5, 2.5,Vab(~xab),Vlr(~xab)]. (19)

Then the long-range fits were merged with the short-
range fits (trained with the modified ab initio points), VGP

Na2K2
(~x),

VGP
14

(~x), VGP
23

(~x) from Eqs. (11)–(13), in the same way,

Vmerge(~x) = Fmerge[R; 17.5, 2.5,VGP(~x),Vlr(~x)]. (20)

The resulting expressions enter Eqs. (14) and (15) instead
of VGP

Na2K2
(~x), VGP

14
(~x), and VGP

23
(~x).

Figure 2 shows the result of the procedure described
above for a sample orientation. It is clear that the unadjusted
GP fit of the CI points does not provide a physically well-
behaved long range. The GP fit of the modified points already
behaves more physically inside the training point region
(R < 25 a0), but this fit starts to increase linearly outside
of the training point region. This is due to the dot product
kernel in the composite kernel. The final fit obtained by the
mixing of the long-range fit, and the GP fit is smooth and
physical.
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FIG. 2. The transition between the long-range fit and the GP fit in the asymp-
totic, parallel NaK–NaK arrangement, so with θ1 = θ2 =

π

2 , φ = 0 and at the
equilibrium bond lengths.

IV. RESULTS AND DISCUSSION

A. Properties of the PES

In this section, we use the GP model to examine the fea-
tures of the PES. The geometries were optimized using the
GP models in combination with the steepest descent gradient
approach. After that, the accuracy of the energy at the min-
ima was improved using geometry optimization at the MRCI
level in MOLPRO. The position of the transition states for the GP
models was found using a climbing image Nudged Elastic Band
(NEB) method.41 Starting from the transition states found, a
transition state search was performed in MOLPRO.

The resulting reaction diagram is shown in Fig. 3. We call
two minima symmetrically equivalent if they can be trans-
formed into each other by a permutation of identical atoms
but not by an overall, rigid rotation of the complex (in which
case the minima would be identical). This means that there is a

transition state between the symmetrically equivalent minima.
There is a quartet of symmetrically equivalent minima with the
structure indicated by II and a pair of symmetrically equiva-
lent minima with the structure of III. Altogether the NaK–NaK
PES therefore has seven minima. Note that the structure of
all minima and transition states is planar. Minimum I, of D2h
symmetry, has the lowest energy, −4534 cm−1. Minimum II has
a Cs symmetry and an energy of −3425 cm−1. The energy of the
transition state between minimum I and minimum II, called TS
1 in the diagram, is below the dissociation energy of the com-
plex, meaning that the barrier for the reaction of NaK + NaK
→ Na2 + K2 is submerged by 1773 cm−1.

The second lowest local minimum III is reported in the
literature35 to also have a D2h symmetry, but here the symme-
try is found to be lower: a C2h symmetry. The structure having
theD2h symmetry corresponds to the transition state between
minimum III and its symmetric equivalent.

There is only one transition state between the symmetri-
cally equivalent minima II shown in Fig. 3, which is the tran-

sition between the minima related by P̂12. This transition state
is of C2v symmetry. For the other transitions, it is more favor-
able to first go via TS 1 to minimum I and then back. Similarly,
only one of the two transition states between minimum II and
minimum III is shown. The other transition state lies higher
than TS 3, meaning that it is favorable to first do a rearrange-
ment of minimum II or III to a symmetric equivalent, via TS 2 or
TS 4, before going to the other minimum.

The physical reason that minimum III has a C2h instead of
D2h symmetry can be explained using simple molecular orbital
theory, by looking at the highest occupied molecular orbital
(HOMO), which is represented schematically for the three
minima in Fig. 4. Here we see that the HOMOs of all minima
have a node going through the centre of the complex. We see
that the orbitals on the K-atoms mainly have a p-character,
meaning that the node of the HOMO goes through the nuclei
of the K-atoms. For Na-atoms, the s-p gap is larger than for
K-atoms, which means in this case that the p-orbitals have
a too high energy to strongly contribute. For minimum III,

FIG. 3. The geometries and energies
(between parentheses, in cm−1) of the
minima and the transition states between
them. The numbers next to the lines
between the atoms are the correspond-
ing bond lengths in a0. The structures in
all three minima and transition states are
planar.
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FIG. 4. A schematic representation of the
highest occupied molecular orbital of the
NaK–NaK complex at the geometries of
the minima in Fig. 3.

the orbitals on the Na-atoms, which are central in the com-
plex, have an s-like character but an opposite phase. Each
of the two Na-atoms forms a bond with one of the outer
K-atoms, but there is an antibonding interaction between the
two Na-atoms in the middle. It is thus favorable to break the
D2h-symmetry to make the central bond longer and the NaK-
bonds shorter. The less favorable interactions in the case of
minimum III also lead to a higher energy of the HOMO than
in the case of minimum I and therefore also a higher energy
of the minimum. In the case of minimum II, there is again a
p-orbital on the central K-atom, but here the central Na-atom
barely contributes to the HOMO. The energy of the HOMO
of minimum II lies in between the HOMO energies of min-
imum I and minimum III, just as the overall energy of the
minimum.

We note that there is also a seam of conical intersec-
tion present in the PES. The minima on the conical intersec-
tion were sought with MOLPRO on the MC-SCF level without
the CPP’s (the MOLPRO 2015 optimization algorithm for conical
intersections could not handle CPPs). Two of the geometries
found are still close to the seam of conical intersections (an
energy difference between the ground and excited state of less
than 1000 cm−1) with CPPs included. The structure of those
minima and their energies are displayed in Fig. 5. The energies
at both geometries lie more than 1000 cm−1 above the disso-
ciation energy, and we expect this is the case for the entire
seam of conical intersections. This also means that the seam

FIG. 5. The geometries corresponding to positions on the seam conical intersec-
tions of the NaK–NaK complex; the energies corresponding to these geometries
are 2040 and 1507 cm−1. These structures are both planar.

of conical intersections is outside the training point region
of the GP. For other alkali tetramers, however, the seam of
conical intersections may appear for lower energies and could
strongly affect the collision dynamics.

B. Accuracy of the GP models

In total, nine GP models were constructed using the
methods outlined in Sec. III, three models with 499-517
(GP1-3), three models with 938-949 points (GP4-6), and three
models with 2271-2344 points (GP7-9). The root mean squared
errors of these surfaces in the different regions of the poten-
tial are listed in Table III.

The error for each GP model was determined by pre-
dicting the energy values on the grids used for all other GPs.
Table III clearly shows that the error decreases as R increases,
i.e., as the interaction becomes weaker. The largest errors in
the range from R = 4–10 rise up to more than 1000 cm−1 for
points in the repulsive wall. In the classically accessible region,
GPs 7-9 provide stable results, with no point where the error

TABLE III. The root mean squared error (in cm−1) and maximum error (in parenthe-
ses) of the GP fits [without the second merging step with the long-range fit in Eq. (20)]
in different R-ranges of the PES. The number of ab initio points Nab used for each
fit and the total number of training points Ntot (with added symmetrically equivalent
points) are also displayed. Column 4–10∗ displays the errors computed on the subset
of points excluding the repulsive wall (E > 0 cm−1).

R-range (in a0)

Nab Ntot 4–10 4–10∗ 10–16 16–25

GP1 499 659 361 (3781) 242 (1564) 84 (951) 12.4 (175)
GP2 512 679 314 (2650) 164 (913) 73 (752) 11.5 (70)
GP3 517 693 396 (3854) 248 (2124) 81 (1280) 11.8 (121)

GP4 938 1257 256 (2378) 156 (1402) 54 (1128) 8.5 (72)
GP5 949 1252 260 (2437) 116 (726) 53 (752) 7.5 (57)
GP6 943 1237 329 (3613) 207 (2292) 73 (1210) 7.7 (52)

GP7 2344 3071 194 (1923) 95 (509) 30 (370) 4.9 (38)
GP8 2274 2970 185 (1803) 96 (659) 36 (585) 4.7 (36)
GP9 2271 2986 170 (1470) 81 (490) 37 (375) 4.7 (33)
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TABLE IV. The minimum energy Emin (in cm−1) and the geometry at the minimum of
the GP fits 7-9. We have also denoted the energy of the lowest energy training point
and its position. Note that at the minimum, r13 = r14 = r23 = r24. This is not the case
for the training points, meaning that there the range of r13, r14, r23 and r24 is shown.

Emin r12 r13 r34

GP7 −4552 7.39 7.34 12.68
GP7 training set −3867 7.26 7.31−7.97 12.69
GP8 −4668 7.49 7.33 12.60
GP8 training set −3700 7.43 6.55−8.30 12.55
GP9 −4594 7.50 7.33 12.61
GP9 training set −3313 7.42 7.04−8.46 12.00
Ab initio −4534 7.52 7.35 12.62
Reference 35 −4399 7.76 7.64 12.75

exceeds 700 cm−1. The fits with fewer points have regions
where the maximum error is large in the classically accessible
region, especially in regions close to minimum III.

The error for the GP models 7-9 is about 40% smaller
than the error for the GP models 4-6. The error for differ-
ent GP models with roughly the same number of points is
similar, but the stability improves if more points are used.
We estimate that the error of the models GP7-9 is of the
same order as the error on the ab initio points themselves,
which can be estimated by comparing the ab initio ener-
gies computed here to the literature results (also shown in
Table IV) obtained with a different ab initio method. To esti-
mate the effect of the error of the GP regression on cal-
culated observables, a good strategy would be to perform
the calculations for three different models of the same PES
and evaluate the difference. This illustrates that the effect
of the GP error on the collision observables can be easily
quantified.

The power of the GP method for interpolation can be
further illustrated by analyzing the prediction of the GP mod-
els at the global minimum of the PES, shown in Table IV.
The prediction accuracy of both the energy and the posi-
tion of the minimum is remarkable, especially given that the
lowest energy points used for training the GP models are
750–1300 cm−1 higher in energy. This clearly shows that
important features of the PES can be captured by GP regres-
sion even if the training points are some distance away from
these features.

The performance of the GP models for predicting the
other minima and the transition states is illustrated in Table V.
All GPs predict a structure with the correct symmetry and
approximately correct geometry for minimum I and minimum
II. The energy is most accurately predicted by GPs 7-9, which
is not surprising since those are trained using the most points.
The performance of GPs 1-3 is better than the performance of
GPs 4-6 for minimum I, while for minimum II, it is the other
way around. Minimum III is only well described by the GP fits
5 and 7-9. Since this minimum is shallow and corresponds to a
small region in parameter space, the sets of only 500 or 1000
training points do not have enough training points around
the minimum to describe it well. The maximum errors from
Table III in the classically accessible part of the PES are also
mostly in this region.

The transition states are generally predicted with a sim-
ilar accuracy as the minima, with an exception of TS 4. This
is again a very delicate feature of the PES, and even with
2500 training points, the density of training points is not high
enough to accurately cover this transition state. Only for GP5
and GP9, the energy of TS 4 is lower than the energy of
TS3. Except in the case of this transition state TS 4, the GP
prediction accuracy for GP7-9 is generally 5% or better.

The difference in energy between the calculated
ab initio points with the literature is mainly due to the dif-
ference in the ab initio method. In the work by Byrd,35

CCSD(T) is used for this minimum configuration and also
the first shell below the valence shell is treated explicitly.
Here, a CI method is used and only the valence electrons are
treated using ECPs and CPPs. We used a bigger basis for the
valence electrons, however. We do not know which method is
superior.

Finally, to demonstrate that the GPs indeed provide a
smooth fit of the ab initio points in the short range, we plot-
ted transition paths from minimum I to minimum II in Fig. 6.
All transition paths we plotted have the same start-point and
end-point, the minima I and II found from our ab initio cal-
culations. The symbols correspond to the nodes of the NEB
algorithm. The coordinates at the nodes were interpolated
using a quadratic spline, and on the interpolated coordinates,
the GPs were evaluated, yielding the lines in the graph. We see
that qualitatively, all transition paths are the same and they
are all smooth. There are clear differences between the GPs,

TABLE V. The local minimum energies and the transition state energies (in cm−1) of the GP fits 4-6 compared to the ab initio

and literature energy values. For minimum III, marked with a star (∗), Byrd35 reported a structure corresponding to what we
find to be transition state 4. GPs 1, 2, 3, and 4 do not contain minimum III, and GP 6 contains a minimum close to minimum
III but with Cs instead of C2h symmetry.

Ab initio GPs 1-3 GPs 4-6 GPs 7-9 Reference 35

Minimum I −4534 −4615 ± 59 −4743 ± 161 −4605 ± 60 −4399
Minimum II −3474 −3256 ± 156 −3645 ± 51 −3559 ± 83 −3113
Minimum III −2057 . . . −2088 (GP5) −2125 ± 114 −1755∗

TS 1 −1892 1820 ± 64 1837 ± 68 −1875 ± 38 . . .
TS 2 −2251 −2550 ± 312 2143 ± 141 −2172 ± 68 . . .
TS 3 −1773 . . . −1883 (GP5) 1756 ± 10 . . .
TS 4 −1963 . . . −1933 (GP5) 1808 ± 290 . . .
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FIG. 6. Transition paths through the transition states between minimum I and minimum II for all the GPs. The begin-point and end-point of all transition paths were the minima
I and II of the ab initio points. Transition paths were found for each GP using the NEB method41 with 10 nodes (excluding the begin-point and end-point), marked with
symbols. The coordinates of the nodes were interpolated using a quadratic spline, and the interpolated coordinates (1000 points) were evaluated by the GPs to yield the lines
in the graphs. The total distance along the transition path was scaled to 1 for each GP individually.

but they become smaller for GPs that are trained using more
points, as expected.

V. CONCLUSION

This work presents an accurate potential energy sur-
face in full dimensionality for the NaK–NaK collision complex
and the analysis of the features of this reactive system. To
the best of our knowledge, this is the first detailed study of
the global potential energy surface for interacting polar alkali
metal dimers. We have demonstrated a method of merging a
machine-learning (GP) model with the analytical forms repre-
senting the asymptotic long-range interactions to construct
a global surface suitable for scattering calculations. In the
supplementary material, we provide the ab initio points used
to train the GP models and the long-range interaction coeffi-
cients. We also provide the codes to construct the GP models
from the training sets, the codes to construct the long range
fits from the long-range coefficients, and the code to eval-
uate the final fit consisting of both the short-range and the
long-range part (see the supplementary material). Since Gaus-
sian process regression is a non-parametric statistical learning
technique, the method (the codes) presented here should be
applicable to any system of four alkali metal atoms.

We have also examined the ability of Gaussian processes
to describe the detailed features of the PES. We showed that
accurate representations of the global PES can be obtained
with 2500 ab initio points, an order of magnitude smaller than
would be needed for conventional fitting methods. This makes
it possible to construct PESs efficiently for the entire range of
alkali metal tetramers and for larger systems. We have illus-
trated that the GP models trained with as few as 500 ab initio
points capture the prominent features of the global PES.
This suggests that GP regression may be an efficient tool for
exploring the features of unknown complex PESs. This is par-
ticularly important because GP models can be combined with
Bayesian optimization16 that can be used to locate efficiently
the minima and saddle points without the need to evaluate the
gradient of the potential.

SUPPLEMENTARY MATERIAL

See supplementary material for the training sets, the long
range coefficients, and the codes to construct and evaluate
our PESs. The training sets already contain the added symmet-
rically equivalent points (such as mentioned in Sec. III C), and
the training point energies have already been modified using
the long range energies (such as mentioned in Sec. III E). The
unmodified training sets are available upon request. We have
also added a document with instructions on how to construct
the PESs. This document also contains the hyperparameters
of our obtained PESs, which can be used to check whether the
PESs have been reproduced correctly.
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