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Six-DOF Impedance Control of Dual-Arm
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Abstract—In this paper, the problem of impedance control
of dual-arm cooperative manipulators is studied. A general
impedance control scheme is adopted, which encompasses a
centralized impedance control strategy, aimed at conferring
a compliant behavior at the object level, and a decentralized
impedance control, enforced at the end-effector level, aimed at
avoiding large internal loading of the object. Remarkably, the me-
chanical impedance behavior is defined in terms of geometrically
consistent stiffness. The overall control scheme is based on a two-
loop arrangement, where a simple proportional integral derivative
inner motion loop is adopted for each manipulator, while an
outer loop, using force and moment measurements at the robots
wrists, is aimed at imposing the desired impedance behaviors. The
developed control scheme is experimentally tested on a dual-arm
setup composed of two 6-DOF industrial manipulators carrying
a common object. The experimental investigation concerns the
four different controller configurations that can be achieved by
activating/deactivating the single impedance controllers.

Index Terms—Control, cooperative manipulators, robotics.

I. INTRODUCTION

THE ADOPTION of cooperative manipulators is often re-
quired to execute a wide class of tasks, such as carrying

large or heavy payloads and mating of mechanical parts [1].
When a cooperative multiarm system is employed for the ma-
nipulation of a common object, it is important to control both
the absolute motion of the object and the internal stresses. To
this aim, the mappings between forces and velocities at the end
effector of each manipulator and their counterparts at the ma-
nipulated object are to be considered [2]. In this framework,
several strategies have been proposed to control both absolute
motion and internal forces (see, e.g., [3]–[6]) a recent control
framework for cooperative systems is based on the so-called
synchronization control [7], [8], where the control problem is
formulated in terms of suitably defined motion synchronization
errors between the manipulators involved in the cooperative
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task. Interesting contributions [9]–[11] have recast the problem
of cooperative robots control in the framework of intelligent
control. Also, the control of cooperative manipulators via par-
tial state feedback has been considered in [12]. Finally, the
extension of cooperative manipulation concepts to cooperative
transportation via mobile robotic platforms is worth mentioning
(see, e.g., [13]).

Most of the earlier approaches can be classified as
force/motion control schemes. An alternative method can be
pursued based on the well-known impedance concept [14].
Impedance control schemes for cooperative manipulators have
been proposed for the control of either object/environment in-
teraction forces [17] or internal forces [18].

Namely, when the held object interacts with the environment,
large contact forces may arise if the planned trajectory is not con-
sistent with the geometry of the environment. In order to achieve
bounded contact forces, an impedance behavior can be enforced
between the object’s position/orientation displacements and the
contact force/moment (external impedance). This approach is
of a centralized type, since the object motion variables depend
on the configuration of all the manipulators.

On the other hand, even when the object/environment inter-
action does not take place, the interaction between the manipu-
lators and the object may lead to internal forces and moments,
i.e., mechanical stresses that do not contribute to the object’s
motion, and may cause damage to the system and overloading
of the actuators. To counteract building of large values of inter-
nal forces, an impedance behavior can be enforced between the
position/orientation displacements of each manipulator and the
end-effector force/moment, contributing solely to the internal
loading of the object (internal impedance). This approach is of
decentralized type, since it involves the motion variables of each
manipulator separately.

The two impedance approaches have been applied separately
[17], [18]. In this paper, by following the guidelines in [19], they
have been combined in a unique control framework, aimed at
controlling both the contact forces due to the object/environment
interaction (external impedance) and the internal forces due to
the manipulators/object interaction (internal impedance). The
scheme allows individual activation/deactivation of external and
internal impedance; hence, the user might choose to keep one of
(or both) the impedance controllers or decide to deactivate both;
in the latter case, a purely positional control strategy is adopted.

Moreover, in this paper, the impedance control scheme is re-
formulated according to the concept of geometrically consistent
stiffness and is experimentally tested. Namely, the equations
defining the impedance behavior, at both the object (external
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impedance) and end-effectors level (internal impedance), are
derived by considering a rigorous and geometrically meaningful
definition of a 6-DOF mechanical stiffness, i.e., encompassing
both translational and rotational displacements [20].

The overall control strategy is based on a two-loop arrange-
ment, where a simple proportional–integral–derivative (PID)
inner motion loop at the joints is adopted for each manipu-
lator, while an outer loop, using force and moment measure-
ments at the robots wrists, is aimed at imposing the assigned
impedance behaviors. Remarkably, the use of standard PID con-
trollers makes the approach more attractive from an industrial
point of view, since industrial robotic units usually adopt simple
linear motion controllers of PID type.

The theoretical derivation of the proposed impedance scheme
is based on the rigid object assumption. However, the experi-
ments show that the scheme performs well, even in the presence
of deformable manipulated objects.

Finally, a major contribution is given by the experimental test-
ing of the proposed impedance scheme on an industrial robotic
setup. In fact, just a few contributions in the literature (e.g., [21])
tackle the problem of the application of cooperative manipula-
tion in an industrial context. Namely, a goal of this paper is that
of demonstrating the performance of impedance control even in
the presence of mechanical limitations typical of industrial se-
tups, due to, e.g., friction, backlash, slipping at grasp points, and
other phenomena difficult to model. The setup is composed of
two 6-DOF COMAU Smart-3 S robots grasping a large cardbox;
interaction of the box with a nonrigid surface (whose position
and orientation are unknown to the controller) has been imposed
in the experiments.

II. MODELING

Consider a system of two six-joint manipulators, tightly
grasping a common rigid object.

For each manipulator (k = 1, 2), let Σk denote a frame at-
tached to the end effector, whose origin and orientation are
characterized by the (3 × 1) position vector pk and the (3 × 3)
rotation matrix Rk , respectively. Let Qk = {ηk , εk} be the unit
quaternion corresponding to Rk [22], [23]. Since the grasp is
tight and the object is rigid, the relative orientation between
Σ1 and Σ2 is constant and can be set so that R1 = R2 . Let
also vk = [ ṗT

k ωT
k ]T be the (6 × 1) end-effector (linear and

angular) velocity vector.
Further, consider a frame Σe attached to the object; the origin

pe is chosen so as to coincide with the object’s center of mass,
while the orientation is chosen so as to coincide with those of
the two end-effector frames, i.e., Re = R1 = R2 . Let also Qe

be the unit quaternion corresponding to Re .
All quantities are expressed in the common base frame Σ.

Hereafter, a superscript will denote the frame to which a quantity
(vector or matrix) is referred; the superscript will be dropped
whenever a quantity is referred to the base frame.

The dynamics of the two manipulators can be written in com-
pact form as

M(q)q̈ + C(q, q̇)q̇ + d(q, q̇) + g(q) = τ − JT (q)h (1)

where the matrices are block diagonal, e.g., M =
blockdiag(M 1 ,M 2), J = blockdiag(J1 ,J2), and the vec-
tors are stacked, e.g., g = [ gT

1 gT
2 ]T . For each manipulator

(k = 1, 2), M k is the (6 × 6) symmetric positive-definite inertia
matrix, Ck q̇k is the (6 × 1) vector of Coriolis and centrifugal
forces, gk is the (6 × 1) vector of gravitational forces, Jk is
the (6 × 6) Jacobian matrix, the vector τ k represents the joint
torques, and hk = [fT

k µT
k ]T is the (6 × 1) vector of forces

and moments (wrench) acting at the end effector of the kth ma-
nipulator. The term d represents a vector of disturbance terms,
due to inaccurate modeling (e.g., joint friction torques) and/or
external disturbances.

The dynamics of the object can be described by the equations

M e v̇e
e + C(ve

e)ve
e + ge

e = he
e − he

env (2)

where

M e =
[

meI O
O J e

e

]

Ce(ve
e) =

[
me S(ωe

e) O
O S(ωe

e)J e
e

]

ge
e =

[
−me ge

0
0

]

S(·) is the skew-symmetric matrix operator performing the cross

product, ve
e =

[
ṗeT

e ωeT
e

]T
is the vector expressing the linear

and angular velocities of Σe , me is the object mass, J e
e is the

object’s inertia tensor referred to Σe , ge
0 is the vector of gravita-

tional forces, he
e = [f e T

e µe T
e ]T is the wrench exerted by the

manipulators on the object (i.e., the so-called external forces),
and he

env = [f eT
env µeT

env ]T is the wrench exerted by the object
on the environment; all the earlier quantities are expressed in
the frame Σe .

Since the grasp is tight, each end effector can exert both a
force f k and a moment µk on the object at the contact point.
The mapping of the contact force vector

h =
[

h1
h2

]

into the (6 × 1) force vector hE is given by

he =
[

I3 O3 I3 O3
S(r1) I3 S(r2) I3

] [
h1
h2

]
= Wh (3)

where W is the grasp matrix, Ol denotes the (l × l) null matrix,
I l denotes the (l × l) identity matrix, and rk is the (3 × 1) vector
from the kth end effector to the point fixed on the object (i.e.,
rk is the so-called virtual stick [2]).

The matrix W is full-row rank, then, for a given he , the
inverse solution to (3) is given by

h = W †he + V hi = hE + hI (4)

where W † denotes a pseudoinverse of W , V is a full-column
rank matrix spanning the null space of W , and hi represents the
vector of internal forces, i.e., the forces that do not contribute
to the motion of the object, but represent mechanical stresses
applied to the object. They may be caused by the forces ap-
plied to the object attempting to violate the grasp constraints,
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e.g., the forces due to the object/environment interaction and/or
squeezing and bending forces applied by the manipulators (due
to end-effector trajectories not consistent with the closed-chain
constraints). Internal forces may be usefully exploited only in
special cases (e.g., in order to ensure a firm grasp) whereas, in
general, they must be avoided.

It has been recognized in [24] that the use in (4) of a generic
pseudoinverse of W , e.g., the Moore–Penrose pseudoinverse,
may lead to internal stresses even if hi = 0; to avoid this, W †

must be properly chosen.
The vector

hE =
[

hE 1
hE 2

]
= W †Wh (5)

represents the end-effector forces balancing the object’s dy-
namics and the contact forces due to the interaction with the
environment, while

hI =
[

hI1
hI2

]
= V hi = V V †h (6)

represents the vector of end-effector forces contributing to the
sole internal forces.

According to the earlier description of the geometry of the
grasp, the end-effector quantities corresponding to a given ob-
ject’s motion can be expressed as



pk = pe + Re re
k

Rk = Re

ṗk = ṗe − S(Rer
e
k )ωe

ωk = ωe

p̈k = p̈e − S(ωe)S(Rer
e
k )ωe − S(Rer

e
k )ω̇e

ω̇k = ω̇e

(7)

with k = 1, 2. The previous equations define a set of mechanical
constraints on the position and orientation of the manipulators
end effectors, and thus they are always fulfilled during system’s
motion.

III. INNER MOTION CONTROL LOOP

In the remainder, an inner motion control loop is designed
for each manipulator, which guarantees tracking of a reference
end-effector frame Σkr

having position pkr
and orientation Qkr

(extracted from the corresponding rotation matrix Rkr
), as well

as of a reference end-effector velocity vkr
= [ ṗT

kr
ωT

kr
]T .

With this purpose, a second-order closed loop inverse kine-
matics (CLIK) algorithm [25] is employed for each manipulator
to compute the corresponding reference joints positions qkr

and velocities q̇kr
. Namely, given the reference position pkr

and orientation Qkr
trajectories, together with the correspond-

ing velocities ṗkr
and ωkr

and accelerations p̈kr
and ω̇kr

, the
corresponding joints accelerations can be computed as

q̈kr
=J−1

k (qkr
)
([

p̈kr
+ kV p(ṗkr

− ṗkc
)+ kP p(pkr

− pkc
)

ω̇kr
+ kV o(ωkr

− ωkc
) + kP oεrc

]

−J̇k (qkr
, q̇kr

)q̇kr

)
(8)

where kV p , kP p , kV o , and kP o are positive gains.

The quantities pkc
and Qkc

are, respectively, the vector and
the unit quaternion expressing the position and the orientation
of the end-effector frame Σkc

obtained from qkr
by comput-

ing the direct kinematics of the manipulator; the same applies
for the corresponding velocities ṗkc

and ωkc
. The orientation

error εkr kc
= Rkc

kc
εkr kc

is obtained by expressing the mutual
orientation of Σkr

with respect to Σkc
via the unit quaternion

Qkr kc
= Q−1

kr kc
∗ Qkr

= {ηkr kc
, cεkr kc

}

=
{

cos
ϑkr kc

2
, sin

ϑkr kc

2
crrc

}
(9)

where (∗) denotes the quaternion product and (·)−1 denotes the
conjugate of the unit quaternion.

Once the joint reference trajectories are computed, the driving
torques are generated via a standard PID control law

τ k = GP,k

(
qkr

− qk

)
+ GV ,k

(
q̇kr

− q̇k

)

+GI ,k

∫ t

t0

(
qkr

(σ) − qk (σ)
)
dσ (10)

where qk is the vector of the measured joints variables, and
GP,k , GV ,k , and GI ,k are diagonal and positive-definite matrix
gains, to be tuned so as to provide accurate and fast tracking
of reference trajectories as well as robustness to disturbances
and uncertainties (see, e.g., [26] for a rigorous analysis of con-
vergence of PID control for robot manipulators). Therefore, if
control law (10) achieves accurate tracking of the reference tra-
jectories, i.e., qk � qkr

, it can be assumed that

pk � pkr
, Rk � Rkr

ṗk � ṗkr
, ωk � ωkr

p̈k � p̈kr
, ω̇k � ω̇kr

.

Remarkably, the use of the standard PID controllers makes
more attractive the approach from an industrial point of view,
since industrial robotic units usually adopt simple linear mo-
tion controllers of PID type. Of course, the overall scheme will
result in more performance if more sophisticated joints motion
controllers are adopted (e.g., inverse dynamics control, adaptive
or robust control strategies). Also, the adoption of inner posi-
tion loops is standard in sensor-based control approaches (e.g.,
force/position control, visual servoing) for industrial robots.

The inner motion control loop represents the basis for the
development of the two approaches analyzed in the following.
Namely, the control problem for cooperative manipulation is
formulated as that of computing suitable reference position and
orientation trajectories for the inner control loop.

IV. IMPEDANCE CONTROL

In this section, the impedance control scheme first proposed
in [19] and depicted in Fig. 1 is reviewed and extended ac-
cording to the concept of geometrically consistent stiffness.
Let the desired object position ped

(t) and orientation Qed
(t)

[extracted from Red
(t)] be assigned with the associated lin-

ear and angular velocities and accelerations. Hereafter, the
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Fig. 1. Block diagram of the impedance control scheme.

set of variables defining the desired trajectory will be de-
noted by Ted

= {ped
,Red

, ṗed
,ωed

, p̈ed
, ω̇ed

}. If a purely po-
sitional control strategy is pursued, the reference trajectory for
each manipulator Tkr

= {pkr
,Rkr

, ṗkr
,ωkr

, p̈kr
, ω̇kr

} (with
kr = 1, 2) is generated from the desired trajectory Ted

according
to (7), and is input to the inner motion control loop.

If Tkr
is consistent with the geometry of the grasp, in the ab-

sence of interaction of the object with the environment, tracking
of ped

, Qed
, and the corresponding velocity and acceleration is

guaranteed by the inner motion control loop.
However, the adoption of a purely positional control strategy

may lead to the build up of large forces (both external and
internal).

Hence, in the following, an impedance control strategy is
devised aimed at limiting both internal and contact forces.

When a robot manipulator interacts with other manipulators
and/or with the environment, a suitable compliant behavior has
to be ensured so as to achieve bounded interaction forces. This
is typically achieved by enforcing an equivalent mass–damper–
spring behavior under the action of an external force and mo-
ment, that can be described by a mechanical impedance [14].

In order to derive the impedance equation, let us consider the
mutual position and orientation between a desired frame Σd and
a reference frame Σr .

Namely, the mutual position vector is

∆pdr = pd − pr (11)

while the mutual orientation of Σd with respect to Σr can be
expressed in terms of the unit quaternion (corresponding to the
mutual rotation matrix Rr

dr = RT
r Rd )

Qdr = Q−1
r ∗ Qd = {ηdr , ε

r
dr}

=
{

cos
ϑdr

2
, sin

ϑdr

2
rr

dr

}
(12)

where, as usual, Qr and Qd are the unit quaternions extracted,
respectively, from Rr and Rd .

A. Mechanical Springs

The basic concept of mechanical impedance is strongly con-
nected to the concept of mechanical stiffness, which is, in turn,
related to the extension of the concept of mechanical spring
from the unidimensional to the spatial (i.e., 6-DOF) case.

Assuming that, at equilibrium, frames Σd and Σr coincide,
the compliant behavior near the equilibrium can be described

by the linear mapping

hr
r = Kδxr

dr =
[

Kp Kc

KT
c Ko

]
δxr

dr (13)

where hr
r is the elastic wrench applied to frame Σr , expressed

in Σr , in the presence of an infinitesimal twist displacement
δxr

dr of frame Σd with respect to frame Σr , expressed in frame
Σr . The elastic wrench and the infinitesimal twist displace-
ment in (13) can be expressed equivalently also in frame Σd ,
since Σd and Σr coincide at equilibrium. Therefore, hr

r = hd
r

and δxr
dr = δxd

dr ; moreover, for the elastic wrench applied to
the desired frame Σd , hr

r = Kδxd
rd = −hd

d as δxd
rd = −δxr

dr .
This property of mapping (13) is known as port symmetry.

In (13), K is the (6 × 6) symmetric positive semidefinite
stiffness matrix. The (3 × 3) matrices Kp and Ko , called, re-
spectively, translational stiffness and rotational stiffness, are
also symmetric. It can be shown that, if the (3 × 3) matrix Kc ,
called coupling stiffness is symmetric, there is maximum decou-
pling between rotation and translation [15].

There are special cases in which Kc = O3 and no coupling
exists between translation and rotation, i.e., a relative translation
of the bodies results in a wrench corresponding to a pure force
along an axis through the center of stiffness; also, a relative
rotation of the bodies results in a wrench that is equivalent to
a pure torque about an axis through the center of stiffness. In
these cases, the center of stiffness and compliance coincides.
Mechanical systems with completely decoupled behavior are,
e.g., the remote center of compliance (RCC) devices. In this
paper, only the case in which Kc = O3 is considered.

Since Kp is symmetric, there exists a rotation matrix Rp

with respect to frame Σd = Σr , at equilibrium, such that
Kp = RpΓpR

T
p , and Γp is a diagonal matrix whose diago-

nal elements are the principal translational stiffnessess in the
directions corresponding to the columns of rotation matrix Rp ,
known as principal axes of translational stiffness. Analogously,
Ko can be expressed as Ko = RoΓoR

T
o , where the diagonal

elements of Γo are the principal rotational stiffnesses about the
axes corresponding to the columns of rotation matrix Ro , known
as the principal axes of rotational stiffness. In sum, a (6 × 6)
stiffness matrix can be specified, with respect to a frame with
the origin in the center of stiffness, in terms of the principal
stiffness parameters and principal axes [16].

Note that the mechanical stiffness defined by (13) describes
the behavior of an ideal 6-DOF spring that stores potential en-
ergy. The potential energy function of an ideal stiffness depends
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only on the relative position and orientation of the two attached
bodies and is port symmetric.

B. Geometrically Consistent Stiffness

To achieve a geometrically consistent 6-DOF stiffness, the
properties of the ideal mechanical stiffness for small displace-
ments should be extended to the case of finite displacements.
Moreover, to guarantee asymptotic stability in the sense of
Lyapunov, a suitable potential elastic energy function must be
defined.

Hereafter, the case in which the coupling stiffness matrix is
zero will be considered, since it is the most common in prac-
tical applications. Hence, the potential elastic energy can be
computed as the sum of a translational potential energy and a
rotational potential energy.

The translational potential energy can be defined as

Vp =
1
2
∆pT

drK
′
p∆pdr (14)

with

K ′
p =

1
2
RdKpR

T
d +

1
2
RrKpR

T
r

where Kp is a (3 × 3) symmetric and positive-definite matrix.
The use of K ′

p in lieu of Kp in (14) guarantees that the potential
energy is port symmetric also in the case of finite displacements.
Matrices K ′

p and Kp coincide at equilibrium (i.e., when Rd =
Rr ) and in the case of isotropic translational stiffness (i.e., when
Kp = kpI).

The computation of the power V̇p yields

V̇p = ∆ṗr T
dr f r

∆p + ∆ωr T
dr µr

∆p

where ∆ṗr
dr is the time derivative of the position displace-

ment ∆pr
dr = RT

r (pd − pr ), while ∆ωr
dr = RT

r (ωd − ωr ).
Vectors f r

∆p and µr
∆p are, respectively, the elastic force and

moment applied to the end effector in the presence of the finite
position displacement ∆pr

dr . These vectors have the following
expressions when computed in the base frame:

f∆p = K ′
p∆pdr , µ∆p = K ′′

p∆pdr (15)

with

K ′′
p =

1
2
S(∆pdr )RdKpR

T
d .

Vector h∆p = [fT
∆p µT

∆p ]T is the elastic wrench applied to
frame Σr in the presence of a finite position displacement ∆pdr

and a null orientation displacement. The moment µ∆p is null in
the case of isotropic translational stiffness.

Using the vector part of the unit quaternion Qdr , the orienta-
tion potential energy has the form

Vo = 2εr T
dr Koε

r
dr (16)

where Ko is a (3 × 3) symmetric and positive-definite matrix.
Function Vo is port symmetric because εr

dr = −εd
rd .

The computation of the power V̇o yields

V̇o = ∆ωr T
dr µr

∆o

where

µ∆o = K ′
oεdr (17)

with

K ′
o = 2ET (ηdr , εdr )RrKoR

T
r

as E(ηdr , εdr ) = ηdrI − S(εdr ). The earlier equations show
that a finite orientation displacement εdr = RT

r εr
dr produces an

elastic wrench h∆o = [ 0T µT
∆o ]T that is equivalent to a pure

moment.
Hence, the total elastic wrench in the presence of a finite

position displacement and orientation displacement of the de-
sired frame Σd with respect to the end-effector frame Σr can be
defined in the base frame as

h∆ = h∆p + h∆o (18)

where h∆p and h∆o are computed according to (15) and (17),
respectively.

Using (18) for the computation of the elastic wrench in the
case of an infinitesimal twist displacement δxr

dr near the equi-
librium, and discarding the high-order infinitesimal terms, yields
the linear mapping

hr
r = Kδxr

dr =
[

Kp O
O Ko

]
δxr

dr . (19)

Therefore, K represents the stiffness matrix of an ideal spring
with respect to a frame Σr (coinciding with Σd at equilib-
rium) with the origin in the center of stiffness. Moreover, it can
be shown that, using definition (18), the physical/geometrical
meaning of the principal stiffnesses and of the principal axes
for matrices Kp and Ko are preserved also in the case of large
displacements.

The earlier results imply that the active stiffness matrix K
can be set in a geometrically consistent way with respect to the
task at hand.

C. Six-DOF Impedance

The equation that defines the dynamic behavior of a general-
ized mechanical impedance is

M∆v̇r
dr + D∆vr

dr + hr
∆ = hr

r (20)

where M and D are (6 × 6) symmetric and positive-definite
matrices, ∆v̇r

dr = v̇r
d − v̇r

r , ∆vr
dr = vr

d − vr
r , v̇r

d and vr
d are,

respectively, the acceleration and the velocity of the desired
frame Σd , hr

∆ is the elastic wrench expressed as in (18), and hr
r

is the external wrench; all the earlier quantities are referred to
Σr .

The asymptotic stability of the equilibrium, in the case hr
r =

0, can be proven by considering the Lyapunov function

V =
1
2
∆vr T

dr K∆vr
dr + Vp + Vo (21)

where Vp and Vo are defined in (14) and (16), respectively,
whose time derivative along the trajectories of system (20) is
the negative semidefinite function

V̇ = −∆vr T
dr D∆vr

dr .
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When hr
r �= 0, a different asymptotically stable equilibrium can

be found, corresponding to a nonnull displacement of the desired
frame Σd with respect to Σr . The new equilibrium is the solution
of the equation hr

∆ = hr
r .

When Σd is constant, (20) has the meaning of a true 6-DOF
mechanical impedance if M is chosen as

M =
[

mpI O
O Jo

]

where mp is a mass, Jo is a (3 × 3) inertia tensor, and D
is chosen as a block diagonal matrix with (3 × 3) blocks. The
physically equivalent system is a body of mass mp , inertia tensor
Jo with respect to frame Σr , subject to an external wrench hr

r .
This frame is virtually connected to frame Σd through a 6-
DOF ideal spring with stiffness matrix K and is subject to
viscous forces and moments with damping D. Function V in
(21) represents the total energy of the body, which is the sum
kinetic energy and of the potential elastic energy.

In the absence of interaction, the impedance guarantees that
Σr asymptotically follows the desired frame Σd . In the presence
of contact with the environment, a compliant dynamic behavior
is imposed on the end effector, according to impedance (20), and
the contact wrench is kept bounded at the expense of a finite
position displacement and orientation displacement between Σd

and Σr .

V. IMPEDANCE CONTROL FOR COOPERATIVE MANIPULATORS

A. External Impedance

In order to achieve bounded contact forces exchanged with
the environment, an impedance-based strategy can be pursued,
as in [17].

Let Ted
be the set of motion variables describing the as-

signed trajectory for the object-desired frame Σed
. Then,

the corresponding set of reference variables Ter
= {per

,Qer
,

ṗer
,ωer

, p̈er
, ω̇er

} can be generated by integrating the differ-
ential equation

(A − I) M e v̇
er
er

+ Dev
er
er

+ her

∆ ,e =

−her
e − C(ver

e )ver
e − ger

e + AM e v̇
er
ed

+ Dev
er
ed

(22)

where M e is the object mass matrix

A =
[

αpI O
O αoI

]

De =
[

Dpe O
O Doe

]

and, according to (15) and (17), the elastic wrench is given by

h∆ ,e = h∆ ,ep + h∆ ,eo =
[

K ′
pe∆ped er

K ′′
pe∆ped er

+ K ′
oeεed er

]
.

It is straightforward to prove that asymptotic stability of (22)
is ensured if the scalars αp and αo in the matrix A are greater
than or equal to 1. Noticeably, in order to compute (22), only
end-effector forces and moments need to be measured (e.g., via
wrist-mounted force/torque sensors), since her

e = RT
er

he , and
he can be readily computed via (3) by using only h.

The earlier choice of the object reference trajectory enforces
an impedance behavior with inertia AM e , damping De , and
stiffness

Ke =
[

Kpe O
O Koe

]
.

In fact, assuming perfect tracking, the frames Σe and Σer
can

be assumed to be aligned. Hence, folding (22) into the ob-
ject dynamic equation (2), the following impedance equation is
obtained:

AM e∆v̇er
ed er

+ De∆ver
ed er

+ her

∆ ,e = her
env (23)

where all the displacements are formally equal to those in (20).
It is worth noticing that, differently from [17], direct mea-

surement of the object acceleration is not required due to the
feedforward terms in (22) compensating for the object’s dy-
namics. On the other hand, the mass and inertia matrices for
the impedance cannot be assigned by the user in an arbitrary
way, but they must be set proportional to the mass and inertia,
respectively. This is due to the fact that direct measurements of
the contact force her

env or, equivalently, of the object accelera-
tions are not available. It is also advisable to choose the scaling
factors close to the unity so as to avoid large modifications of
the system’s mass/inertia characteristics.

Finally, the corresponding reference trajectories for the in-
ner loopsTkd

= {pkd
,Qkd

, ṗkd
,ωkd

, p̈kd
, ω̇kd

} (kd = 1, 2) are
then computed from Ter

according to the model of the grasp
geometry (7).

B. Internal Impedance

The impedance paradigm can be exploited to achieve bounded
internal forces as well; with this purpose, a similar strategy, as
in [18], can be adopted. Namely, an impedance behavior is
imposed between the position/orientation displacements at each
end effector and the force and moment contributions f Ik and
µIk in (6), i.e., for k = 1, 2

M Ik∆v̇kr

kd kr
+ DIk∆vkr

kd kr
+ hkr

∆ ,I k = hkr

I k (24)

where

M Ik =
[

mIkI O
O J Ik

]

DIk =
[

DpIk O
O DoIk

]

and

h∆ ,I k =
[

K ′
pIk∆pkd kr

K ′′
pIk∆pkd kr

+ K ′
oIkεkd kr

]
.

Then, the trajectory Tkr
= {pkr

,Qkr
, ṗkr

,ωkr
, p̈kr

, ω̇kr
} is

computed by integrating (24). Noticeably, in order to compute
(24), only end-effector forces and moments need to be measured
(e.g., via wrist-mounted force/torque sensors), since for k =
1, 2, hkr

I k = RT
kr

hIk , and hI can be readily computed via (6)
by using only h.

The effect of the impedance is that of adjusting the reference
trajectories for the two end effectors so as to avoid building
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up of large internal forces. In fact, (22) enforces an impedance
behavior with inertia M Ik , damping DIk , and stiffness

KIk =
[

KpIk O
O KoIk

]
.

Moreover, by following the guidelines in [6] and [18], it can
be shown that the object motion at steady state is not affected
by the impedance on the internal forces. In fact, at steady state,
(24), written in the base frame, reduces to (k = 1, 2)

h∆ ,I k = hIk (25)

which implies that [
h∆ ,I1
h∆ ,I2

]
= V V †h.

In other words, the elastic contribution of the internal impedance
lies in the range of V , i.e., in the null space of W . Hence, by
virtue of (3) and (4), under the assumption of tight grasp and
rigid manipulated object, such a contribution cannot influence
the object’s steady-state position/orientation, by definition of
internal forces.

Note that, due to the uncoupling between external and internal
motion variables, the activation of the internal impedance does
not influence the object’s desired position/orientation at steady
state.

As for the implementation scheme of the two impedance
equations (23) and (24), depicted in Fig. 1, a two-loop arrange-
ment is adopted. Namely, the outer loop computes, by integrat-
ing (22), the object’s reference motion variables Ter

from the
desired object’s motion Ted

; the latter are transformed to desired
end-effector variables Tkd

via the equations of the closed-chain
constraints (7). Then, the internal impedance filter (24) is in-
tegrated to generate the joints references Tkr

. Of course, this
arrangement makes possible individual activation/deactivation
of the two impedances. Namely, deactivation of each impedance
filter can achieved by simply zeroing the corresponding force
feedback.

VI. EXPERIMENTS

The goal of the experimental study reported in this section
is that of demonstrating the advantages of applying a combined
internal/external impedance control scheme with respect to the
adoption of a sole internal (or external) impedance. Moreover,
the experiments are carried out under nonideal conditions (e.g.,
loose grasp and/or deformable object, slipping, backlash, and
friction at the joints), quite common in industrial setups. Such
effects are not taken into account in the design of the control
laws, since they are difficult to model and/or would lead to
extremely complex control laws. In this way, the robustness and
reliability of the impedance control approach can be assessed.

The experiments have been performed on a setup composed of
two industrial robots COMAU Smart-3 S with C3G 9000 control
units, available in the Portfolio Risk Management (PRISMA)
Laboratory. These are six-revolute-joint anthropomorphic ma-
nipulators. One of the robots is mounted on a sliding track,
which has been considered mechanically braked for the pur-
poses of this paper.

Fig. 2. Experimental setup.

The robotic system is equipped with an open controller ar-
chitecture. Namely, a standard PC, with a real-time software
environment, named RePLiCS [27], running under a real-time
variant of the Linux operative system, can replace the origi-
nal C3G 9000 controllers, thus allowing implementation of ad-
vanced control schemes for the single robots and the dual-arm
robotic cell. It must be remarked that C3G 9000 is replaced by
the PC in the sense that the PC is in charge of planning the
desired motion and computing the control algorithm, while the
C3G 9000 is used solely as an interface between joints sensors
(resolvers at the joints shafts) and servo amplifiers (which, in
turn, drive the brushless motors actuating the joints motion).
Seven different operating modes are available, allowing the PC
to interact with the original controller both at the trajectory gen-
eration level and at the joint control level. In the operating mode
used for experiments, the PC is in charge of acquiring data from
the resolvers and force/torque sensors, computing the control
algorithm, and passing the references to the servo amplifiers of
both the robots at 1-ms sampling time.

The sensing capabilities of the robotic cell are completed by
two 6-axis force/torque sensors ATI FT30-100 with a force range
of ±130 N and a torque range of ±10 N·m, mounted at either
arm’s wrist. The sensor is connected to the PC by a parallel
interface board that provides readings of six components of
generalized force at 1 ms.

In the experiments, the two manipulators grasp a
(0.24 m× 0.24 m× 0.45 m) cardbox, with me = 1.3792 kg
mass and inertia tensor J e

e = diag{0.03, 0.03, 0.0123} kg m2

(expressed in the frame Σe located in the object’s center
of mass); the object’s parameters have been estimated via
computer-added design (CAD) modeling techniques. The grasp
is achieved via two couples of rubber disks; each couple consists
of two disks mounted, respectively, on the end effector of the
manipulator and on one of the object’s faces at a given grasp
area. The environment interacting with the cooperative system is
a planar wooden horizontal surface (see Fig. 2), whose position
and orientation is unknown to the controller.

The assigned task has a total duration of 115 s and is composed
of three phases.

1) In the first phase (grasping), with a duration of 9 s, the ma-
nipulators, moving from their initial configuration, grasp
the object using the two rubber disks.

2) In the second phase (object not interacting with the envi-
ronment), with a duration of 30 s, the manipulators lift the
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Fig. 3. First case study. Top: external forces and moments. Bottom: internal
forces and moments.

Fig. 4. First case study. Object position and orientation errors.

commonly held object and change the object orientation
of an angle of 0.23 rad about the axis between the two
end-effectors positions (corresponding to the y-axis of the
base frame), then the object is moved down so as to reach
contact with the environment.

3) In the last phase (object interacting with the environment),
with a duration of 76 s, the object is commanded to fol-
low a vertical path of 0.011 m, with constant orientation,
pushing against the environment.

The gains of the PID control law are

GP,k = diag{77, 233, 60, 25, 17, 0.4}
GV ,k = diag{0.77, 1.55, 1, 0.33, 0.17, 0.06}
GI ,k = diag{0.24, 0.73, 0.18, 0.077, 0.11, 0.0027}.

The gains of the second-order CLIK algorithm are: kPp
=

150, kPo
= 50, kVp

= 192, and kVo
= 13.8.

The parameters of the impedance equation (22) have
been set to αp = 1.5, Dpe = diag{1.3, 1.3, 1.5} · 103 , Kpe =
diag{6.5, 6.5, 8} · 102 , αo = 1.5, Doe = 10I3 , and Koe =

Fig. 5. Second case study. Top: external forces and moments. Bottom: internal
forces and moments.

Fig. 6. Second case study. Object position and orientation errors.

diag{1.5, 1.5, 10}. The parameters of the impedance equation
(22) have been set to M pI = diag{2, 1, 2}, DpI = 103I3 ,
KpI = diag{3.7, 5, 3.7} · 102 , M oI = 2I3 , DoI = 80I3 , and
KoI = 2I3 . Notice that the stiffness matrices have been chosen
so as to ensure a compliant behavior (limited values of contact
force and moment), while the damping matrices have been cho-
sen so as to guarantee a well-damped behavior.

A. Pure Positional Control

In the first case study, a purely positional control strategy
is adopted, i.e., both the impedance controllers are deactivated
and only the inner motion control loop is active. Fig. 3 shows
the time histories of the external forces and moments he , as
well as the internal forces and moments hi . The position error
ped

− pe and orientation error εed e = Reε
e
ed e of the object are

reported in Fig. 4. Before the contact, the main contribution to
the external force is due to the gravity force acting on the object;
after the contact, the external force along the z-axis takes large
values, since the positional control strategy tries to track the
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Fig. 7. Third case study. Top: external forces and moments. Bottom: internal
forces and moments.

Fig. 8. Third case study. Object position and orientation errors.

commanded position and orientation trajectories, even though
the path is obstructed by the environment.

The y component of the external moment is initially large
(in the interval t ∈ [40, 45] s) due to the misalignment about
the y-axis of the box surface with respect to the environment
surface; this causes slipping of the box, about the y-axis, with
respect to the grasping tools that, in turn, leads to a reduction of
the external moment for t > 45 s. Note that large internal forces
arise after the contact, as expected.

B. External Impedance Control

In the second case study, the object/environment interaction
is managed by enforcing the impedance behavior described by
(22). It can be recognized that the external forces after the con-
tact are significantly reduced (see Fig. 5) at the expense of the
position and orientation errors (see Fig. 6). Notice that the most
significant component of the orientation error is that about the
y-axis, which corresponds to a significant (although bounded)
external moment about the same axis. Moreover, the internal

Fig. 9. Fourth case study. Top: external forces and moments. Bottom: internal
forces and moments.

Fig. 10. Fourth case study. Object position and orientation errors.

moments (mainly due to the interaction with the environment)
become smaller, while the internal force along the y-axis, mainly
due to object squeezing, is still large. Noticeably, differently
from the previous case study, slipping does not occur because the
external moment about the y-axis, causing slipping, is limited.

C. Internal Impedance Control

In the third case study, only the internal impedance described
by (24) is adopted. It can be recognized that a significant reduc-
tion of the internal force along the y-axis is obtained (see Fig. 7),
and thus object squeezing is reduced. As a consequence, slipping
of the box occurs about the y-axis, caused by the initially high
external moment about the same axis due to the absence of the
external impedance (see the results of the first case study). For
the same reason, slipping occurs also along the z-axis, and this
leads to lower external forces with respect to those obtained in
the first case study. Also, by comparing the results in Fig. 8 with
those in Fig. 6 (obtained in the absence of internal impedance),
it can be noticed that position and orientation errors decrease
when the internal impedance is activated. This is mainly due to
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the absence of the external impedance, which makes the object’s
behavior during the interaction not compliant: on the other hand,
the object tracks more accurately the desired position, pushing
the environment surface, thus leading to larger external forces
(see Fig. 7). However, it must be remarked that such errors are
computed from the end-effector positions and orientations, and
thus they do not reflect the real position and orientation of the
object because of slipping.

D. External/Internal Impedance Control

In the fourth case study, both the impedances (22) and (24) are
activated, and thus the overall control scheme in Fig. 1 is con-
sidered. Note that, in this case, the external forces and moments
are practically the same as in the second case study, where only
the external impedance is used, as well as the position and orien-
tation errors (Figs. 9 and 10). Moreover, the internal forces and
moments are reduced, as in the third case study, where only the
internal impedance is adopted. Noticeably, no slipping occurs
due to the reduction of the external forces and moments. Fi-
nally, it is worth noting that object’s tracking errors and external
wrenches behave as in the second case study (Figs. 5 and 6). A
similar result applies for the internal wrenches. This shows that
external and internal impedance behaviors are practically decou-
pled, as predicted by theory, although small coupling effects can
be observed (mainly due to object elasticity and nonrigid grasp).

VII. CONCLUSION

In this paper, a geometrically consistent 6-DOF impedance
control for dual-arm cooperative manipulators is proposed.
Moreover, an experimental comparison of impedance control
schemes has been presented. The results show that the adop-
tion of the sole external impedance allows to manage the in-
teraction of the carried object with the environment, but can-
not avoid building up of large internal stresses at the object.
On the other hand, the adoption of a sole internal impedance
reduces the internal forces and moments at the expense of pos-
sible slipping. Finally, the adoption of both external and inter-
nal impedances achieves reduction of both external and internal
forces and makes less likely the occurrence of slipping phenom-
ena. In conclusion, validity of the geometrically consistent for-
mulation is confirmed; moreover, the combined external/internal
impedance control scheme has been revealed to be the most re-
liable approach to safely and effectively manage the interaction
in a cooperative manipulation system.
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