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Abstract 
 
Motivation: Sequence database searching is among the most important and challenging tasks 
in bioinformatics. The ultimate choice of sequence search algorithm is that of Smith-
Waterman. However, because of the computationally demanding nature of this method, 
heuristic programs or special-purpose hardware alternatives have been developed. Increased 
speed has been obtained at the cost of reduced sensitivity or very expensive hardware. 
 
Results: A fast implementation of the Smith-Waterman sequence alignment algorithm using 
SIMD (Single-Instruction, Multiple-Data) technology is presented. This implementation is 
based on the MMX (MultiMedia eXtensions) and SSE (Streaming SIMD Extensions) 
technology that is embedded in Intel’s latest microprocessors. Similar technology exists also 
in other modern microprocessors. Six-fold speed-up relative to the fastest previously known 
Smith-Waterman implementation on the same hardware was achieved by an optimised 8-way 
parallel processing approach. A speed of more than 150 million cell updates per second was 
obtained on a single Intel Pentium III 500MHz microprocessor. This is probably the fastest 
implementation of this algorithm on a single general-purpose microprocessor described to 
date. 
 
Availability: Online searches with the software are available at http://dna.uio.no/search/ 
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Introduction 
 
The rapidly increasing amounts of genetic sequence information available represent a constant 
challenge to developers of hardware and software database searching and handling. The size 
of the GenBank/EMBL/DDBJ nucleotide database is now doubling every 15 months (Benson 
et al., 2000). The rapid expansion of the genetic sequence information is probably exceeding 
the growth in computing power available at a constant cost, in spite of the fact that computing 
resources also have been increasing exponentially for many years. If this trend continues, 
increasingly longer time or increasingly more expensive computers will be needed to search 
the entire database. 

When looking for sequences in a database similar to a given query sequence, the 
search programs compute an alignment score for every sequence in the database. This score 
represents the degree of similarity between the query and database sequence. The score is 
calculated from the alignment of the two sequences, and is based on a substitution score 
matrix and a gap penalty function. A dynamic programming algorithm for computing the 
optimal local alignment score was first described by Smith and Waterman (1981), and later 
improved by Gotoh (1982) for linear gap penalty functions. 

Database searches using the optimal algorithm are unfortunately quite slow on 
ordinary computers, so many heuristic alternatives have been developed, such as FASTA 
(Pearson and Lipman, 1988) and BLAST (Altschul et al., 1990; Altschul et al., 1997). These 
methods have reduced the running time by a factor of up to 40 compared to the best known 
Smith-Waterman implementation, however, at the expense of sensitivity. Because of the loss 
of sensitivity, some distantly related sequences may not be detected in a search using the 
heuristic algorithms. 

Due to the demand for both fast and sensitive searches, much effort has been made to 
produce fast implementations of the Smith-Waterman method. Several special-purpose 
hardware solutions have been developed with parallel processing capabilities (Hughey, 1996), 
such as Paracel’s GeneMatcher, Compugen’s Bioccelerator and TimeLogic’s DeCypher. 
These machines are able to process more than 2 000 million matrix cells per second, and can 
be expanded to reach much higher speeds. However, such machines are very expensive and 
cannot readily be exploited by ordinary users. 

A more general form of parallel processing capability is available in SIMD (Single-
Instruction, Multiple-Data) computers. A SIMD computer is able to perform the same 
operation on several independent data sources in parallel. With the introduction of the 
Pentium MMX microprocessor in 1997, Intel made computing with SIMD technology 
available in a general-purpose microprocessor in the most widely used computer architecture 
– the industry standard PC. The technology is also available in the Pentium II and has been 
extended in the Pentium III under the name of SSE (Streaming SIMD Extensions) (Intel, 
1999). The MMX/SSE instruction set include arithmetic (add, subtract, multiply, min, max, 
average, compare), logical (and, or, xor, not) and other instructions (shift, pack, unpack) that 
may operate on integer or floating point numbers. This technology is primarily designed for 
speeding up digital signal processing applications like sound, images and video, but seems 
suitable also for genetic sequence comparisons. Several other microprocessors with SIMD 
technology are or will be made available in the near future, as shown in table 1 (Dubey, 1998). 

The Smith-Waterman algorithm has been implemented for several different SIMD 
computers. Sturrock and Collins (1993) implemented the Smith-Waterman algorithm for the 
MasPar family of parallel computers, in a program called MPsrch. This solution achieved a 
speed of up to 130 million matrix cells per second on a MasPar MP-1 computer with 4096 
CPUs and up to 1 500 million matrix cells per second on a MasPar MP-2 with 16384 CPUs. 
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Alpern et al. (1995) presented several ways to speed up the Smith-Waterman 
algorithm including a parallel implementation utilising microparallelism by dividing the 64-
bit wide Z-buffer registers of the Intel Paragon i860 processors into 4 parts. With this 
approach they could compare the query sequence with four different database sequences 
simultaneously. They achieved more than a fivefold speed-up over a conventional 
implementation. 

Wozniak (1997) presented a way to implement the Smith-Waterman algorithm using 
the VIS (Visual Instruction Set) technology of Sun UltraSPARC microprocessors. This 
implementation reached a speed of over 18 million matrix cells per second on a 167MHz 
UltraSPARC microprocessor. According to Wozniak (1997), this represents a speed-up of 
about 2 relative to the same algorithm implemented with integer instructions on the same 
machine. 

Both Alpern et al. (1995) and Wozniak (1997) seem to have compared their program 
to a straightforward implementation of the Smith-Waterman algorithm. However, the SWAT 
program (Green, 1993) and recent versions of SSEARCH (Pearson, 1991) include a non-
parallel variant of the Smith-Waterman algorithm that is about twice as fast as the 
straightforward implementation. This is probably the best reference for speed comparisons. 

 In this communication, we present an implementation of the Smith-Waterman 
algorithm using Intel’s MMX/SSE technology. It reaches a speed of more than 150 million 
cell updates per second on a Pentium III 500 MHz computer. To our knowledge, this is so far 
the fastest implementation of the Smith-Waterman algorithm on a single-microprocessor 
general-purpose computer. Relative to SSEARCH, it represents a speed-up of about 6 or 13, 
with or without the SWAT-optimisations, respectively. 
 

System and methods 
 
The software was written in C++ with inline assembler code and was compiled with the GNU 
egcs compiler. The computer was running Red Hat Linux 6.1 on a single Intel Pentium III 500 
MHz microprocessor with 128MB RAM. 
 

Algorithm and implementation 
 
The Smith-Waterman algorithm 
To compute the optimal local alignment score, the dynamic programming algorithm by Smith 
and Waterman (1981), as enhanced by Gotoh (1982), was used. Given a query sequence A of 
length m, a database sequence B of length n, a substitution score matrix Z, a gap open penalty 
q and a gap extension penalty r, the optimal local alignment score t can be computed by the 
following recursion relations: 
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Here, jie ,  and jif ,  represent the maximum local alignment score involving the first i symbols 
of A and the first j symbols of B, and ending with a gap in sequence B or A, respectively. The 
overall maximum local alignment score involving the first i symbols of A and the first j 
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symbols of B, is represented by jih , . The recursions should be calculated with i going from 1 
to m and j from 1 to n, starting with 0 ,,, === jijiji hfe  for all 0=i  or 0=j . The order of 
computation of the values in the alignment matrix is strict because the value of any cell cannot 
be computed before the value of all cells to the left and above it has been computed, as shown 
by the data interdependence graph in figure 1. A straightforward implementation of the 
algorithm has a running time proportional to mn. 
 
The SWAT-optimisations 
Green (1993) implemented an improved version of the Smith-Waterman algorithm in the 
SWAT program and obtained an increase of speed by a factor of about 2. In most cells in the 
matrix, e and f are zero, and hence do not contribute to h. As long as h is not larger than the 
threshold rq + , which is the penalty of a single symbol gap, e and f will stay at zero along a 
column or row in the matrix. This can save many computations, and is the basis for the 
enhancements used to speed up the original algorithm. It should be noted, however, that this is 
not effective if gap penalties are very small, as many cells will then have a value above the 
threshold. The SWAT-optimisations are now also implemented in the SSEARCH program 
(Pearson, 1991) included in Pearson’s FASTA package. An alternative version of the program 
is called OSEARCH and uses a traditional implementation. 
 
Parallelisation 
The Smith-Waterman algorithm can be parallelised on two scales. It is fairly easy to distribute 
the processing of each of the database sequences on a number of independent processors in a 
symmetric multiprocessing (SMP) machine. On a lower scale, however, distributing the work 
involved within a single database sequence is a bit more complicated. Figure 1 shows the data 
interdependence in the alignment matrix. The final value, h, of any cell in the matrix cannot 
be computed before the value of all cells to the left and above it has been computed. But the 
calculations of the values of diagonally arranged cells parallel to the minor diagonal (see 
figure 2a) are independent and can be done simultaneously in a parallel implementation. This 
fact has been utilised in earlier SIMD implementations (Hughey, 1996; Wozniak, 1997). 
 
Our approach 
We have implemented the Smith-Waterman algorithm using Intel’s MMX/SSE technology. 
Pseudo-code for our implementation is shown in figure 3. In order to get complete control 
over code optimisation and because of limited support for the MMX/SSE instructions in high 
level languages, the core of the algorithm has been written in assembly language. The main 
features of our implementation are: 
 
• Vectors parallel to the query sequence 
• A SWAT-like optimisation 
• 8-way parallel processing with 8-bit values 
• Query sequence profiles 
• General code optimisations 
 
Vectors parallel to the query sequence 
Despite the loss of independence between the computation of each of the vector elements, we 
decided to use vectors of cells parallel to the query sequence (as shown in figure 2b), instead 
of vectors of cells parallel to the minor diagonal in the matrix (as shown in figure 2a). The 
advantage of this approach is the much-simplified and faster loading of the vector of 
substitution scores from memory. The disadvantage is that data dependencies within the 
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vector must be handled. Eight cells are processed simultaneously along each column as 
indicated in figure 2b. Each column represent one symbol of the database sequence. 
 
A SWAT-like optimisation 
As already indicated, we have to take into account that each element in the vector is dependent 
on the element above it, because of the possible introduction of gaps in the query sequence. 
However, as exploited by the SWAT-optimisations, most cell values are not above the rq +  
threshold. If none of the eight cells in the vector are above that threshold, the f-values can 
simply be ignored in the computation of the h-values, thus removing data dependencies and 
greatly simplifying the computations. It is possible to check simultaneously if any of the eight 
cells in the vector is above the threshold. In the case that none of the cells are above the 
threshold, the computation of the h-values will be very fast. However, if any of the cell values 
are above the threshold, it will be necessary to go through a somewhat time-consuming 
process of computing the correct values for h, e and f. 
 
8-way parallel processing with 8-bit values 
The microprocessors provide for the SIMD instructions a set of registers (usually 64-bit wide) 
that can be divided into smaller units. The Pentium family of microprocessors contains several 
64-bit registers that can be treated either as a single 64-bit (quadword) unit, or as two 32-bit 
(doubleword), four 16-bit (word), or eight 8-bit (byte) units. Operations on these units are 
independent. Hence, the microprocessor is able to perform up to eight independent additions 
or other operations simultaneously. 

In order to optimise the speed of the calculations, we have chosen to divide the MMX-
registers of the microprocessor into as many units as possible, i.e. eight 8-bit units. This 
allows eight concurrent operations to take place. Dividing the MMX-registers into eight 8-bit 
registers increases the number of parallel operations but limits the precision of the calculations 
to the range 0-255. Unless the sequences are long and very similar, this poses no problems. In 
the few cases where this score limit is surpassed, the use of saturation arithmetic (see below) 
will ensure that the overall highest score will stay at 255. For all sequences that reach a score 
of 255, the correct score may subsequently be recomputed by a different implementation with 
a larger score range (e.g. using a non-SIMD implementation). 

Using Intel’s MMX/SSE technology, additions and subtractions can be performed in 
either unsigned or signed mode. In the inner loop of the algorithm, the signed query profile 
scores are added to the unsigned h-values. Using a signed addition, the h-values would have 
been restricted to the range of 0–127. Instead, all the values in the query sequence score 
profile were biased by a fixed amount (e.g., 4) so that no values were negative. One signed 
operation was then replaced by an unsigned addition followed by an unsigned subtraction of 
the bias. The useful data range was hence expanded to nearly 8 bits (e.g., 0–251), at the 
expense of one additional instruction. 

Unsigned arithmetics using the MMX technology can be performed in either a 
modular (also known as wrap-around) or in a saturated mode. When using 8-bit wide 
registers, subtracting 25 from 10 will give the result 241 (because 10-25 = 241-256) in 
modular mode and 0 in saturated mode. This is very useful in the inner loop calculations of 
the Smith-Waterman algorithm because negative results should be replaced by zero in some of 
the calculations. Also, because of the limited precision of a single byte value, saturated 
arithmetics are useful to detect potential overflow in the calculations with very high scores. 

The core of the Smith-Waterman algorithm repeatedly computes the maximum of two 
numbers. It is therefore important to make this computation fast. The SSE instruction set 
includes a special instruction (pmaxub) that computes the largest of two unsigned bytes. This 
instruction was not included in the original MMX instruction set, but can be replaced by an 
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unsigned saturated subtraction (psubusb) followed by an unsigned saturated addition 
(paddusb). 
 
Query sequence profiles 
When the same query sequence is compared to many different database sequences, a simple 
speed improvement is achieved by creating a kind of score profile for the query sequence. 
This profile, which can be considered as a query-specific substitution score matrix, is 
computed only once for the entire search, and will save one memory lookup in the inner loop 
of the algorithm. Instead of indexing the original substitution score matrix by the query 
sequence symbol and the database sequence symbol, the new matrix is indexed by the query 
sequence position and the database sequence symbol. The score for matching symbol A (for 
alanine) in the database sequence with each of the symbols in the query sequence is stored 
sequentially in the first matrix row, followed by the scores for matching symbol B 
(ambiguous) in the next row, and so on. This query sequence profile is used extensively in the 
inner loop of the algorithm and is usually small enough to be kept in the microprocessor’s first 
level cache. 
 
General code optimisations 
The use of conditional jumps should be avoided when it is difficult for the microprocessor to 
predict whether to jump or not, because mispredictions require additional time. In addition, 
conditional jumps based on the results of MMX/SSE operations are not straightforward on the 
Intel architecture because the status flags are not set by these instructions.  We have hence 
tried to avoid conditional jumps as much as possible in the core of the algorithm. 

In order to achieve the highest speed, the memory used repeatedly in the calculations 
should preferably be contained in the first level caches of the microprocessor. In addition to 
the query sequence score profile, the vectors storing the h and e values from the last column 
should also fit in the cache, but these are usually only about 400 bytes each for an average 
sequence. 

The h and e vectors, each of length m, have been grouped into a single vector of length 
m consisting of a structure of the two elements. It is generally faster to access a single vector 
sequentially than to access two independent vectors sequentially. The 64-bit memory accesses 
used with MMX registers should preferably be placed on 8 byte boundaries, in order to be as 
fast as possible. We have taken this into account when aligning the data structures. Code 
alignment also had substantial effects on the speed. 

When the computer is equipped with enough internal memory to hold the entire 
database, the use of memory mapped files is an effective way to read the database. The entire 
sequence file can then be mapped to particular address range in memory. Operating systems 
are usually optimised for reading sequential files in this way. 
 

Results 
 
The speed of the new algorithm was evaluated using a test set of 11 different amino acid query 
sequences. The length of the query sequences ranged from 189 to 567 amino acids, with 3807 
amino acids in total. These sequences represent members of a range of well-characterised 
protein families. The same test set has previously been used for the evaluation of BLAST 2 
(Altschul et al., 1997). The SWISS-PROT (Bairoch and Apweiler, 2000) release 38 protein 
database containing 80 000 sequences with a total of 29 085 965 amino acid residues was 
searched. 

The new algorithm was compared to the Smith-Waterman implementations 
SSEARCH and OSEARCH version 3.2t08 (Pearson, 1991). Searches with the heuristic 
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programs FASTA version 3.2t08 (Pearson and Lipman, 1988), NCBI BLAST version 1.4.9 
(Altschul et al., 1990), NCBI BLAST version 2.0.10 (Altschul et al., 1997) and WU-BLAST 
version 2.0a19 (Gish, 1996) were also included for comparison. All searches were performed 
using the BLOSUM62 amino acid substitution score matrix (Henikoff and Henikoff, 1992) 
and with gap open and extension penalties of 10 and 1, respectively. The options of all 
programs were set to display the top 500 scores and no alignments. FASTA was run using 
both ktup=1 and ktup=2. WU-BLAST was run with the recommended postsw-option. NCBI 
BLAST 2.0.10 was run with the option K=500. 

For each query sequence, the total CPU time of the fastest of 3 consecutive runs on a 
minimally loaded computer was recorded. With a database of only 29MB and 128MB of 
RAM, all of the database was cached in the computer’s RAM; disk-reading time should hence 
be negligible. 

Plots of search time versus query sequence length for all programs are shown in figure 
4. The total time used for searching all of the query sequences was 9182s for OSEARCH, 
4372s for SSEARCH, 796s for FASTA (ktup=1), 708s for SW-MMX, 267s for WU-BLAST,  
228s for FASTA (ktup=2), 213s for NCBI BLAST 1.4.9 and 94s for NCBI BLAST 2.0.10. 

Among the implementations of the Smith-Waterman algorithm, our implementation 
was found to be 13 times faster than OSEARCH and 6 times faster than SSEARCH. Our 
implementation was also slightly faster than FASTA with ktup=1. FASTA with ktup=2, NCBI 
BLAST 1.4.9 and WU-BLAST were all only approximately 3 times faster than ours, while 
BLAST 2.0.10 was about 7.5 times faster. 

The algorithm performed equally well on longer and shorter sequences. The average 
speed was 156 million matrix cell updates per second. 
The final raw scores computed by our implementation are equal to those computed by a 
straightforward Smith-Waterman implementation. Hence, the sensitivity and ranking of 
matching sequences should be equal to other Smith-Waterman programs, unless the choice of 
score matrix, gap penalties or the function for calculating statistical significance or 
expectation (Z- or E-value) is different. 

Discussion 
 
Due to the speed achieved by the presented algorithm and the low cost of Intel Pentium III-
based computers, we believe it is now the most cost-effective way to perform database 
searches using the Smith-Waterman algorithm. A symmetric multiprocessing (SMP) computer 
with 8 Pentium III Xeon CPUs at 600MHz should be able to achieve a speed of about 1500 
million cell updates per second. A large cluster of inexpensive computers would be a more 
cost-effective solution, and may reach even higher speeds. 

The SIMD technology will most likely evolve further in the coming microprocessor 
generations. Implementations of SIMD technology in future microprocessors will probably 
allow even faster variations of the Smith-Waterman algorithm. The Motorola AltiVec (a.k.a. 
Velocity Engine) technology (Motorola, 1998), which has just been introduced in the 
PowerPC G4 microprocessors, includes 128-bit wide registers that can be divided into sixteen 
8-bit units. A new generation of microprocessors from Intel called Willamette will also 
include 128-bit wide registers for SIMD processing. It would be of great interest to evaluate 
implementations of the presented algorithm on these processors. However, it may be even 
more interesting and rewarding to exploit the SIMD technology for entirely new algorithms.  

For the initially highest scoring sequences in the database, FASTA and BLAST 2 
computes an optimal alignment restricted to either a band or a region surrounding the most 
interesting part of the alignment matrix. We believe that our approach could easily be 
extended to alignments restricted to a band that is, preferably, a multiple of 8 cells wide. 
However, our approach will probably be less effective on alignments restricted to irregular 
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regions, as employed by BLAST 2, because much of the power of the technology lies in the 
repetition of simple operations. 

Even the Smith-Waterman alignment algorithm is unable to identify all protein 
similarities based on the primary sequence alone. In addition to better algorithms, 
improvements in the substitution score matrix, gap penalising and the scoring system in 
general are also required for an optimisation of the overall sensitivity. 
 

Acknowledgements 
 
This work was supported by grants from the Research Council of Norway and the Norwegian 
Cancer Society. 



9 

References 
 
Alpern, B., Carter, L. and Gatlin, K.S.(1995) Microparallelism and High Performance Protein 

Matching. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference: San 
Diego, California, Dec 3-8, 1995. 
http://www.supercomp.org/sc95/proceedings/549_LCAR/SC95.HTM 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local 
alignment search tool. J. Mol. Biol., 215, 403-410. 

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, 
D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database 
search programs. Nucleic. Acids. Res., 25, 3389-3402. 

Bairoch, A. and Apweiler, R. (2000) The SWISS-PROT protein sequence database and its 
supplement TrEMBL in 2000. Nucleic. Acids. Res., 28, 45-48. 

Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Rapp B.A., and Wheeler D.L. (2000) 
GenBank. Nucleic. Acids. Res. 28, 15-18. 

Dubey, P. K. (1998) Architectural and design implications of mediaprocessing. 
http://www.research.ibm.com/people/p/pradeep/tutor.html 

Gish, W. (1996) WU-BLAST. http://blast.wustl.edu/ 

Gotoh, O. (1982) An improved algorithm for matching biological sequences. J. Mol. Biol., 
162, 705-708. 

Green, P. (1993) SWAT. http://www.genome.washington.edu/uwgc/analysistools/swat.htm 

Henikoff, S. and Henikoff, J.G. (1992) Amino acid substituition matrices from protein blocks. 
Proc. Natl. Acad. Sci U.S.A., 89, 10915-10919. 

Hughey, R. (1996) Parallel hardware for sequence comparison and alignment. Comput. 
Applic. Biosci., 12, 473-479. 

Intel (1999) Intel Architecture Software Developer's manual; Volume 2: Instruction Set 
Reference. http://developer.intel.com/design/pentiumii/manuals/243191.htm 

Motorola (1998) AltiVec Technology Programming Environments Manual. 
http://www.mot.com/SPS/PowerPC/teksupport/teklibrary/manuals/altivec_pem.pdf 

Pearson, W.R. (1991) Searching protein sequence libraries: comparison of the sensitivity and 
selectivity of the Smith-Waterman and FASTA algorithms. Genomics, 11, 635-650. 

Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. 
Proc. Natl. Acad. Sci U. S. A., 85, 2444-2448. 

Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subsequences. J. 
Mol. Biol., 147, 195-197. 

Sturrock S.S. and Collins J.F. (1993) MPsrch V1.3 User Guide. Biocomputing Research Unit, 
University of Edinburgh, UK. 

Wozniak, A. (1997) Using video-oriented instructions to speed up sequence comparison. 
Comput. Appl. Biosci., 13, 145-150. 



10 

Tables 
 
Table 1 – Microprocessors with SIMD technology 
 

Manufacturer Microprocessor Name of technology 
AMD K6/K6-2/K6-III 

Athlon 
MMX / 3DNow! 
Extended MMX / 3DNow! 

Chromatics MPact  
Compaq (Digital) Alpha MVI (Motion Video Instruction) 
HP PA-RISC MAX(-2) (Multimedia Acceleration eXtensions) 
HP / Intel Itanium (Merced) SSE ? 
Intel Pentium MMX / II 

Pentium III 
MMX (MultiMedia eXtensions) 
SSE (Streaming SIMD Extensions) 

MicroUnity MediaProcessor  
Motorola PowerPC G4 Velocity Engine (AltiVec) 
Philips TriMedia  
SGI MIPS MDMX (MIPS Digital Media eXtensions) 
Sun SPARC VIS (Visual Instruction Set) 
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Figure legends 
 
 
Figure 1 
 
Computational dependencies in the Smith-Waterman alignment matrix. 
 
 
 
 
 
Figure 2 
 
Vector arrangements in SIMD implementations of the Smith-Waterman algorithm. 
 
a) Traditional approach with vectors parallel to the minor diagonal 
b) New approach with vectors parallel to the query sequence 
 
 
 
 
Figure 3 
 
Pseudocode for the new approach. 
 
The MAX operation returns a vector with the pairwise maximum of the elements of the two 
arguments. The LSHIFT and RSHIFT operations shifts the elements of a vector the specified 
number of times to the left or right. The OR operation returns the bitwise or of the vector 
elements. All vector subtractions and additions are saturated and unsigned. The query 
sequence is assumed to be padded to a multiple of 8 bytes. 
 
 
 
 
Figure 4 
 
Plots with a comparison of the search time versus query length for (a) Smith-Waterman 
implementations. and (b) heuristic search algorithms. Our implementation is included in both 
plots for reference. The query sequences have accession numbers P00762, P01008, P01111, 
P02232, P03435, P05013, P07327, P10318, P10635, P14942 and P25705 in SWISS-PROT. 
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Figure 3 
 
Pseudocode          Comments
FUNCTION SWMMX(MM, DSEQ, q, r, m, n)

CHAR c
INTEGER i,j
CONST INTEGER y = m/8

VECTOR8 H,X,E,F,T1,T2,SCORE,HH[y],EE[y]

CONST VECTOR8 BASE = [4, 4, 4, 4, 4, 4, 4, 4]
CONST VECTOR8 QQ = [q, q, q, q, q, q, q, q]
CONST VECTOR8 RR = [r, r, r, r, r, r, r, r]

FOR i=0 TO y-1 DO
{

HH[i] = [0, 0, 0, 0, 0, 0, 0, 0]
EE[i] = [0, 0, 0, 0, 0, 0, 0, 0]

}
SCORE = [0, 0, 0, 0, 0, 0, 0, 0]

FOR j = 0 TO n-1 DO
{

X = [0, 0, 0, 0, 0, 0, 0, 0]
F = [0, 0, 0, 0, 0, 0, 0, 0]
c = DSEQ[j]

FOR i = 0 TO y-1 DO
{

H = HH[i]
E = EE[i]

T1 = (H RSHIFT 7)
H = (H LSHIFT 1) OR X
X = T1

H = ( H + MM[c][i] ) – BASE
H = MAX(H , E)

F = (H LSHIFT 1) OR (F RSHIFT 7)
F = F – QQ - RR

IF (any element of F > 0)
{

T2 = F
WHILE (any element of T2 > 0)
{

T2 = (T2 LSHIFT 1) - RR
F = MAX(F , T2)

}

H = MAX(H , F)
F = MAX(H , F + QQ)

}
ELSE
{

F = H
}

HH[i] = H
EE[i] = MAX(H – QQ, E) - RR

SCORE = MAX(SCORE, H)
}

}

RETURN MAX(SCORE[0], SCORE[1], ..., SCORE[7])

MM is a query-specific score matrix 
DSEQ is the database sequence 
q and r are gap open and extension penalties 
m and n are query and database sequence lengths 
 
One database sequence symbol (c) 
Loop indices (i,j) 
Number of vectors along query sequence (y) 
 
Vectors (H,X,E,F,T1,T2) and arrays (HH,EE) 
 
Score base vector (constant) 
Gap open penalty vector (constant) 
Gap extension penalty vector (constant) 
 
 
 
Initialise HH-array of H-values from previous column 
Initialise EE-array of E-values from previous column 
 
Initialise score vector 
 
For each symbol in the database sequence... 
 
Initialise X-vector for 1. round 
Initialise F-vector for 1. round 
Get one database symbol 
 
For each vector of 8 matrix cells along query sequence... 
 
Load previous H-vector from HH-array 
Load previous E-vector from EE-array 
 
Save previous H[7] for use below 
Shift H-vector and OR with H[7] from previous round  
Save old H[7] in X for next round  
 
Add score profile vector to H and subtract base 
Check if score with database gap is better 
 
Calculate initial F-vector by shifting H and previous F 
Subtract single gap penalty 
 
Check if vertical gaps are possible 
Compute correct F-vector if necessary 
T2 is initial F-vector 
Repeat while any element of T2 is nonzero... 
 
Shift and subtract gap extension penalty 
Update F if new score is higher 
 
 
Update H if vertical gap is better 
Update F for use in next round 
 
 
 
Update F for use in next round 
 
 
Store H-vector in HH-array 
Store E-vector in EE-array 
 
Update Score with new H-vector if it is better 
 
 
 
Return largest element in score vector 
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Figure 4 
a) 

 
b) 
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