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Abstract. Aerosols from biomass burning (BB) emissions
are poorly constrained in global and regional models, result-
ing in a high level of uncertainty in understanding their im-
pacts. In this study, we compared six BB aerosol emission
datasets for 2008 globally as well as in 14 regions. The six
BB emission datasets are (1) GFED3.1 (Global Fire Emis-
sions Database version 3.1), (2) GFED4s (GFED version 4
with small fires), (3) FINN1.5 (FIre INventory from NCAR
version 1.5), (4) GFAS1.2 (Global Fire Assimilation Sys-
tem version 1.2), (5) FEER1.0 (Fire Energetics and Emis-
sions Research version 1.0), and (6) QFED2.4 (Quick Fire
Emissions Dataset version 2.4). The global total emission
amounts from these six BB emission datasets differed by a
factor of 3.8, ranging from 13.76 to 51.93 Tg for organic
carbon and from 1.65 to 5.54 Tg for black carbon. In most
of the regions, QFED2.4 and FEER1.0, which are based
on satellite observations of fire radiative power (FRP) and
constrained by aerosol optical depth (AOD) data from the
Moderate Resolution Imaging Spectroradiometer (MODIS),
yielded higher BB aerosol emissions than the rest by a fac-
tor of 2–4. By comparison, the BB aerosol emissions es-
timated from GFED4s and GFED3.1, which are based on
satellite burned-area data, without AOD constraints, were at
the low end of the range. In order to examine the sensitiv-
ity of model-simulated AOD to the different BB emission
datasets, we ingested these six BB emission datasets sepa-

rately into the same global model, the NASA Goddard Earth
Observing System (GEOS) model, and compared the simu-
lated AOD with observed AOD from the AErosol RObotic
NETwork (AERONET) and the Multiangle Imaging Spec-
troRadiometer (MISR) in the 14 regions during 2008. In
Southern Hemisphere Africa (SHAF) and South America
(SHSA), where aerosols tend to be clearly dominated by
smoke in September, the simulated AOD values were un-
derestimated in almost all experiments compared to MISR,
except for the QFED2.4 run in SHSA. The model-simulated
AOD values based on FEER1.0 and QFED2.4 were the clos-
est to the corresponding AERONET data, being, respec-
tively, about 73 % and 100 % of the AERONET observed
AOD at Alta Floresta in SHSA and about 49 % and 46 %
at Mongu in SHAF. The simulated AOD based on the other
four BB emission datasets accounted for only ∼ 50 % of
the AERONET AOD at Alta Floresta and ∼ 20 % at Mongu.
Overall, during the biomass burning peak seasons, at most of
the selected AERONET sites in each region, the AOD val-
ues simulated with QFED2.4 were the highest and closest
to AERONET and MISR observations, followed closely by
FEER1.0. However, the QFED2.4 run tends to overestimate
AOD in the region of SHSA, and the QFED2.4 BB emis-
sion dataset is tuned with the GEOS model. In contrast, the
FEER1.0 BB emission dataset is derived in a more model-
independent fashion and is more physically based since its
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emission coefficients are independently derived at each grid
box. Therefore, we recommend the FEER1.0 BB emission
dataset for aerosol-focused hindcast experiments in the two
biomass-burning-dominated regions in the Southern Hemi-
sphere, SHAF, and SHSA (as well as in other regions but
with lower confidence). The differences between these six
BB emission datasets are attributable to the approaches and
input data used to derive BB emissions, such as whether
AOD from satellite observations is used as a constraint,
whether the approaches to parameterize the fire activities are
based on burned area, FRP, or active fire count, and which set
of emission factors is chosen.

1 Introduction

Biomass burning (BB) is estimated to contribute about 62 %
of the global particulate organic carbon (OC) and 27 % of
black carbon (BC) emissions annually (Wiedinmyer et al.,
2011). Therefore, biomass burning emissions significantly
affect air quality by acting as a major source of particulate
matter (PM) and the climate system by modulating solar radi-
ation and cloud properties. For instance, a number of studies
have revealed that wildfire smoke exposure is harmful to hu-
man health by causing general respiratory morbidity and ex-
acerbating asthma, because approximately 80 %–90 % of the
smoke particles produced by biomass burning fall within the
PM2.5 size range (PM with aerodynamic diameter less than
2.5 µm) (Reid et al., 2005, 2016). Moreover, biomass burning
emissions have been shown to impact the atmospheric com-
position in different regions, such as South America (Red-
dington et al., 2016), Central America (Wang et al., 2006),
the sub-Saharan African region (Yang et al., 2013), South-
east Asia (Wang et al., 2013; Pan et al., 2018), China (Zhu et
al., 2017), and the western Arctic (Bian et al., 2013). Addi-
tionally, BB-produced aerosols can also directly impact the
upper troposphere and lower stratosphere via extreme pyro-
convection events associated with intense wildfires that gen-
erate the storms injecting smoke particles and trace gases to
high altitudes (e.g., Peterson et al., 2018). Therefore, emis-
sions from biomass burning constitute a significant compo-
nent of the climate system and are crucial inputs required by
chemical transport and atmospheric circulation models used
to simulate the atmospheric composition, radiation, and cir-
culation processes involved in air-quality and climate-impact
studies (e.g., van Marle et al., 2017).

With the advent of satellite remote sensing of active fires
and burned areas in the last couple of decades, a number
of global BB emission datasets based on these observations
have become available (e.g., Ichoku et al., 2012). Six such
major BB datasets will be compared in this study, includ-
ing three datasets based on burned area approaches, namely
the Fire INventory from NCAR (FINN; Wiedinmyer et al.,
2011), two versions of the Global Fire Emissions Database

(GFED; van der Werf et al., 2006, 2010, 2017), and three
datasets based on fire radiative power (FRP) approaches,
namely the Global Fire Assimilation System (GFAS; Kaiser
et al., 2012) developed in the European Centre for Medium-
Range Weather Forecasts (ECMWF) and two National Aero-
nautics and Space Administration (NASA) products, i.e., the
Fire Energetics and Emissions Research algorithm (FEER;
Ichoku and Ellison, 2014) and the Quick Fire Emissions
Dataset (QFED; Darmenov and da Silva, 2015).

Although much progress has been made over the last cou-
ple of decades in improving the quality of BB emission
datasets, for example, by incorporating more recent satel-
lite measurements with better calibration and spatial resolu-
tion (e.g., van der Werf et al., 2010, 2017), biomass burning
aerosol emissions still have large uncertainty and thus are
still poorly constrained in models at global and regional lev-
els (e.g., Liousse et al., 2010; Kaiser et al., 2012; Petrenko
et al., 2012, 2017; Bond et al., 2013; Zhang et al., 2014;
Pan et al., 2015; Ichoku et al., 2016a; Reddington et al.,
2016; Pereira et al., 2016). Specifically, large uncertainty ex-
ists in the description of the magnitude, patterns, and drivers
of wildfires and types of biomass burning (e.g., Hyer et al.,
2011). For instance, a global enhancement of particulate mat-
ter BB emission by a factor of 3.4 was recommended for
GFAS by Kaiser et al. (2012) to match the corresponding
observed aerosol loading. Andreae (2019) commented that

in contrast to gaseous compounds, which are
chemically well defined, aerosols are complex and
variable mixtures of organic and inorganic species
and comprise particles across a wide range of sizes.
This affects in particular the measurements of or-
ganic aerosol, black/elemental carbon, and size
fractionated aerosol mass.

A recent analysis with multiple models has been con-
ducted under the auspices of the Aerosol Comparisons
between Observations and Models (AeroCom) Phase III
biomass burning emission experiments using the GFED
version 3.1 (GFED3.1) emission dataset as input to sev-
eral models (hereinafter “the AeroCom multi-model study”,
https://wiki.met.no/aerocom/phase3-experiments, last ac-
cess: 17 January 2020) (Mariya Petrenko, personal com-
munication, 2019). The AeroCom multi-model study con-
cluded that the modeled aerosol optical depth (AOD) from
different models exhibits large diversity in most regions;
i.e., some models overestimate while other models underesti-
mate. However, over two major biomass-burning-dominated
regions, South America and Southern Hemisphere Africa,
all models consistently underestimate AOD. That result sug-
gests that the underestimation of AOD in these two regions
was more likely attributable to the GFED3.1 biomass burn-
ing emission dataset rather than the model configurations.

Our study aims to explore multiple BB emission datasets,
including GFED3.1, GFED version 4 with small fires
(GFED4s), FINN version 1.5, GFAS version 1.2, QFED ver-
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Figure 1. Map showing the 14 regions used in this study, follow-
ing GFED regionalization defined by Giglio et al. (2006) and van
der Werf et al. (2006, 2017). The 14 AERONET sites selected
for detailed analysis in the respective regions are represented by
the numbered magenta dots. These AERONET sites and the in-
cluded data (years in parentheses) for calculating aerosol climatol-
ogy are 1 – Fort McMurray (2005–2018), 2 – Monterey (2002–
2018), 3 – Tuxtla Gutiérrez (2005–2010), 4 – Medellín (2012–
2016), 5 – Alta Floresta (1993–2018), 6 – Tõravere (2002–2017),
7 – IMS METU ERDEMLI (1999–2017), 8 – Ilorin (1998–2018), 9
– Mongu (1997–2010), 10 – Moscow MSU MO (2001–2017), 11 –
EPA NCU (2004–2018), 12 – Chiang Mai Met Sta (2007–2017), 13
– Palangkaraya (2012–2017), and 14 – Lake Argyle (2001–2017).

sion 2.4, and FEER version 1.0, in order to investigate the
discrepancies between these six BB emission datasets by
comparing them at both regional and global levels. Such a
comparative evaluation of BB emission datasets would show
the differences between them as well as how these differ-
ences propagate through the physical processes of related
aerosols in models, e.g., dry and wet deposition, transport,
atmospheric abundance, and the resulting AOD. Our study
is expected to provide further insight into the development
of possible mitigation for the current large uncertainties in
BB emissions. Similar comparative studies of multiple BB
aerosol emission datasets were previously conducted at re-
gional scales, e.g., by Zhang et al. (2014) in the northern
sub-Saharan African region, Pereira et al. (2016) and Red-
dington et al. (2019) in South America, and Reddington et
al. (2016) in the entire tropical region. The current study not
only provides a global assessment and analysis of these six
BB emission datasets to provide a worldwide perspective, but
also examines their performance within 14 regions (Fig. 1)
which were previously defined for a series of GFED-based
studies (e.g., van der Werf et al., 2006, 2010, 2017).

In the rest of this paper, we first describe these six BB
emission datasets, the GEOS model configuration and ex-
perimental designs, and observations in Sect. 2, and then we

show comparisons of the biomass burning emission datasets
and the resulting model-simulated AOD in Sect. 3. We dis-
cuss possible attributions of the differences between the six
BB emission datasets to the sources of uncertainty associated
with the biomass burning emissions and the aerosol modeling
in Sect. 4. Conclusions and recommendations are presented
in Sect. 5.

2 Methodology

2.1 Six BB emission datasets

General information about each of the six biomass burn-
ing emission datasets investigated in this study, namely
GFED3.1, GFED4s, FINN1.5, GFAS1.2, FEER1.0, and
QFED2.4, is given below. Their main attributes, such as their
spatial and temporal resolutions, the methods used to esti-
mate burned area (where applicable), the method to derive
emission coefficients (where applicable), and the references
for the emission factors, are compared in Table 1. Overall,
all datasets provide daily global biomass burning emissions
since at least 2003.

2.1.1 GFED3.1

The total dry matter consumed by biomass burning in
GFED3.1 (van der Werf et al., 2010) is estimated by the
multiplication of the MODIS burned area product at 500 m
spatial resolution (Giglio et al., 2010, for the MODIS era)
and fuel consumption per unit burned area, the latter be-
ing the product of the fuel loads per unit area and combus-
tion completeness. This estimation is conducted using the
Carnegie–Ames–Stanford approach (CASA) biogeochemi-
cal modeling framework that provides estimates of biomass
in various carbon “pools” including leaves, grasses, stems,
coarse woody debris, and litter. Fuel loads in CASA are es-
timated according to carbon input information on vegetation
productivity, and carbon outputs through heterotrophic res-
piration, herbivory, fires, and tree mortality (Giglio et al.,
2010; van der Werf et al., 2010). Then, the biomass burn-
ing emission of a given species is calculated by multiply-
ing the dry matter with an emission factor of that species
(EF, in grams of species per kilogram of dry matter burned).
The EF used in GFED3.1 (and most of the other datasets) is
mainly chosen from Andreae and Merlet (2001) and/or Ak-
agi et al. (2011), but may also be obtained from various other
sources. The GFED3.1 dataset can be accessed through the
following link: https://daac.ornl.gov/VEGETATION/guides/
global_fire_emissions_v3.1.html (last access: 17 January
2020).

2.1.2 GFED4s

Compared to GFED3.1, the latest GFED version, GFED4s,
has a few significant upgrades as described in detail by van
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der Werf et al. (2017), including (1) additional burned area
associated with small fires which were previously omitted
by the burned area product but now are compensated for
by including the active fires to augment the burned area
product MCD64A1 (Giglio et al., 2013; Randerson et al.,
2012); (2) a revised fuel consumption parameterization op-
timized using field observations (e.g., van Leeuwen et al.,
2014); and (3) further dividing forest into temperate and bo-
real forest ecosystems and applying different sets of emis-
sion factors. Among the existing BB emission datasets,
GFED4s has hitherto been the most widely used by modeling
communities, such as the Coupled Model Intercomparison
Project Phase 6 (CMIP6; Van Marle et al., 2017) and Ae-
roCom phase III experiments (https://wiki.met.no/aerocom/
phase3-experiments). The link to the GFED4s dataset is
http://www.globalfiredata.org (last access: 17 January 2020).

2.1.3 FINN1.5

The FINN1.5 biomass burning emission dataset is developed
from its previous version FINN1 (Wiedinmyer et al., 2011)
with several updates. It uses satellite observation of active fire
(with a confidence level greater than 20 %) and land cover
from the MODIS instruments on board the NASA Terra and
Aqua polar-orbiting satellites, together with the estimated
fuel consumption to derive biomass burning emissions. The
burned area in each active fire pixel is assumed as 1 km2,
except for grasslands and savannas where it is assigned a
value of 0.75 km2. The fuel consumption at each fire pixel is
estimated according to its generic land use–land cover type
(LULC) which is assigned using values updated from Table 2
of Hoelzemann et al. (2004) in the various world regions
based on Global Wildland Fire Emission Model (GWEM).
With the estimated burned area, fuel consumption, and EF
of individual species, the daily global open biomass burning
emissions of each species are then calculated at a 1 km spa-
tial resolution. The FINN1.5 emissions dataset is archived
at http://bai.acom.ucar.edu/Data/fire/ (last access: 17 January
2020).

2.1.4 GFAS1.2

The GFAS (Kaiser et al., 2012) estimates dry matter combus-
tion rate by multiplying FRP and biome-specific conversion
factors (units: kilograms of dry matter per megajoule). The
global distribution of FRP observations is obtained from the
MODIS instruments on board the Terra and Aqua satellites
and are then assimilated into the GFAS system. The gaps in
FRP observations, which are mostly due to cloud cover and
spurious FRP observations of volcanoes, gas flares, and other
industrial activity, are corrected or filtered in the GFAS sys-
tem. Eight biome-specific conversion factors are calculated
by linear regressions between the GFAS FRP and the dry
matter combustion rate of GFED3.1 in each biome (see Ta-
ble 2 and Fig. 3 in Kaiser et al., 2012). The biomass burn-

ing emission of a given species is calculated by multiply-
ing the dry matter with an emission factor of that species.
More information on the latest GFAS product can be found at
https://apps.ecmwf.int/datasets/data/cams-gfas/ (last access:
17 January 2020).

2.1.5 FEER1.0

The FEER1.0 (Ichoku and Ellison, 2014) multiplies its emis-
sion coefficients Ce with MODIS FRP data that have been
preprocessed and gridded in the GFAS1.2 analysis system
(Kaiser et al., 2012) to derive biomass burning aerosol emis-
sion rates. The Ce in FEER1.0 for smoke aerosol total partic-
ulate matter (TPM) was derived through zero-intercept re-
gression of the emission rate of smoke aerosol (i.e., Rsa)
against the corresponding FRP (Ichoku and Kaufman, 2005;
Ichoku and Ellison, 2014) at pixel level within each grid. Ce
corresponds to the slope of the linear regression fitting. In the
FEER methodology, Rsa is estimated through a spatiotem-
poral analysis of MODIS AOD data along with wind fields
from the NASA Modern-Era Retrospective Analysis for Re-
search and Applications (MERRA) reanalysis dataset (Rie-
necker et al., 2011). The smoke aerosol Ce in FEER1.0 is
available at 1◦

× 1◦ spatial resolution global grid and cov-
ers most of the land areas where fires have been detected
by MODIS at least 30 times during the period 2003–2010
(Ichoku and Ellison, 2014) to ensure statistical representa-
tiveness. In the current version of the FEER1.0 emission
dataset, Ce values for other smoke constituents, say OC,
at each grid cell are obtained by scaling the Ce of smoke
aerosol according to the ratio of their emission factors, such
as EFoc to EFsa (i.e., ratio of emission factor for OC to that
for total smoke aerosol). The FEER1.0 dataset is available at
http://feer.gsfc.nasa.gov/data/emissions/ (last access: 17 Jan-
uary 2020).

2.1.6 QFED2.4

In QFED (Darmenov and da Silva, 2015) biomass burning
aerosol emissions are estimated using gridded MODIS Terra
and MODIS Aqua FRP and emission coefficients Ce, which
are the product of a constant value C0 (1.37 kg MJ−1, re-
ported by Kaiser et al., 2009), satellite factor, and biome-
specific scaling factor. The scaling factors used in QFED2.4,
the version applied in this study, were obtained by com-
paring AOD from the Goddard Earth Observing System
model (GEOS) and MODIS aerosol product in multiple sub-
regions (Fig. 4 in Darmenov and da Silva, 2015). These
scaling factors were further reduced to four values rep-
resentative of fires in savanna, grassland, tropical forests,
and extratropical forests – 1.8, 1.8, 2.5, and 4.5, respec-
tively. The QFED2.4 used a sequential model with tem-
porally damped emissions to estimate the emissions in
cloudy areas. QFED is the standard fire emissions dataset
in the near-real-time GEOS data assimilation system and
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the MERRA-2 reanalysis (Randles et al., 2017). QFED2.4
emissions are available from https://portal.nccs.nasa.gov/
datashare/iesa/aerosol/emissions/QFED/v2.4r6/ (last access:
17 January 2020).

2.2 Application of the BB emission datasets in the

NASA GEOS model

2.2.1 Description of the NASA GEOS model

The GEOS model consists of an atmospheric general circu-
lation model, a catchment-based land surface model, and an
ocean model, all coupled together using the Earth System
Modeling Framework (ESMF; Rienecker et al., 2011; Molod
et al., 2015). Within the GEOS model architecture, several
interactively coupled atmospheric constituent modules have
been incorporated, including an aerosol and carbon monox-
ide (CO) module based on the Goddard Chemistry Aerosol
Radiation and Transport model (GOCART; Chin et al., 2000,
2002, 2009, 2014; Colarco et al., 2010; Bian et al., 2010)
and a radiation module from the Goddard radiative transfer
model (Chou and Suarez, 1999; Chou et al., 2001). The GO-
CART module used in this study includes representations of
dust, sea salt, sulfate, nitrate, and black and organic carbon
aerosol species. A conversion factor of 1.4 is used to scale
organic carbon mass to organic aerosol (OA), which is on
the low end of current estimates (Simon and Bhave, 2012).
More discussion on this conversion factor can be referred to
in Sect. 4.3.

In this study the GEOS model (Heracles-5.2 version)
was run globally on a cubed-sphere horizontal grid (c180,
∼ 50 km resolution) and with 72 vertical hybrid-sigma lev-
els extending from the surface to ∼ 85 km for the year 2008.
The reason we chose 2008 is because it is the year assigned
as a benchmark year by the AeroCom community with which
this study is associated; it is also because the AeroCom multi-
model study of biomass burning led by Petrenko (mentioned
in the introduction) also chose 2008 as a focus year. As such,
the results from these two studies can be intercompared to
draw some synthesized conclusions. In addition, 2008 was
chosen because it is a neutral El Niño–Southern Oscilla-
tion (ENSO) year, which represents normal burning condi-
tions. The model was run in a “replay” mode, where the
winds, pressure, moisture, and temperature are constrained
by the MERRA-2 reanalysis meteorological data (Gelaro et
al., 2017), a configuration that allows a similar simulation
of real events as in a traditional offline chemistry transport
model (CTM) but exercises the full model physics for ra-
diation, for example, and moist physics processes. We used
the HTAP2 anthropogenic emissions (Janssens-Maenhout et
al., 2015) that provide high-spatial-resolution monthly emis-
sions. The BB emissions are uniformly distributed within
the boundary layer without considering the specific injection
height of each plume. All six BB emissions are daily emis-
sions with the diurnal cycle prescribed in the model: the max-

imum is around local noon, which is more prominent in the
tropics, and is gradually weakened in the extra-tropics (Ran-
dles et al., 2017). The natural aerosols are either generated by
the model itself (i.e., wind-blown dust and sea salt) or come
from prescribed emission files (i.e., volcanic and biogenic
aerosols).

2.2.2 Experiment design

In order to investigate the sensitivity of the modeled AOD to
different BB emission datasets, seven experiments were con-
ducted with the GEOS model, differing only in the source of
biomass burning emissions. The first six runs are GFED3.1,
GFED4s, FINN1.5, GFAS1.2, FEER1.0, and QFED2.4, us-
ing the corresponding biomass burning datasets described
above in Sect. 2.1. A seventh run is called “NOBB,” where
the model is run without including biomass burning emis-
sions.

2.3 AOD observations

2.3.1 MISR retrievals

We evaluated the simulated monthly AOD at 550 nm with
the monthly level 3 total AOD data at the 558 nm wave-
length from the Multiangle Imaging SpectroRadiometer sen-
sor on board the EOS Terra satellite (Kalashnikova and Kahn,
2006; Kahn et al., 2010). We used MISR version 23 data
products (MISR v23, with filename tagged as F15_0032)
in half-degrees, which can be downloaded from the web-
site https://eosweb.larc.nasa.gov/project/misr/mil3mae_table
(last access: 17 January 2020).

2.3.2 AERONET sites

We also evaluated the modeled 3-hourly and monthly AOD at
550 nm and Ångström exponent (AE, 440–870 nm) with cor-
responding measurements from the ground-based AErosol
RObotic NETwork (AERONET; Holben et al., 1998) sites
situated in biomass burning source regions. AERONET Ver-
sion 3 Level 2.0 data, which are cloud-screened and quality-
assured aerosol products with a 0.01 uncertainty (Giles
et al., 2019), were used in this study. The data can be
downloaded from the website: https://aeronet.gsfc.nasa.gov/
new_web/download_all_v3_aod.html (last access: 17 Jan-
uary 2020). The AERONET AOD at 550 nm is interpolated
from the measurements at 440 and 675 nm. AE is calculated
with AOD at 440 and 870 nm. We compared model simu-
lations with AERONET data at 14 selected sites, represent-
ing the aerosol spatiotemporal characteristics at the differ-
ent biomass burning regions shown in Fig. 1. The 14 regions
were defined previously in GFED-related series of studies
(e.g., van der Werf et al., 2006, 2010, 2017). Some regions,
such as Northern Hemisphere South America (NHSA) and
equatorial Asia (EQAS), have no AERONET sites with data
measured in 2008; thus we also used the average of multiple
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years or climatology of AERONET AOD at each site for ref-
erence. Locations of these 14 selected AERONET sites are
represented by the numbered magenta dots in Fig. 1.

3 Results

3.1 Intercomparison of the six biomass burning

emission datasets

The biomass burning OC emissions were compared through-
out this study, since OC is the major constituent in fresh
biomass burning smoke particles, with mass fractions rang-
ing from 37 % to 67 % depending on fuel type (e.g., grass-
land/savanna, forests, or others), according to various stud-
ies based on thermal evolution techniques (Reid et al., 2005,
part II, Table 2). These intercomparisons were carried out in
terms of both annual and seasonal variations in Sect. 3.1.1
and 3.1.2, respectively.

3.1.1 Annual total

Figure 2 shows the spatial distributions of annual total
biomass burning OC emissions in 2008 from the six BB
emission datasets. The regions with high emission of OC in
Africa, boreal Asia, and South America are pronounced in
all six BB emission datasets, albeit to different degrees. The
regional differences of the annual total biomass burning OC
emissions in different BB emission datasets can be appre-
ciated more quantitatively in Fig. 3. Relevant statistics for
the six BB emission datasets in the 14 regions are also listed
at the top of the panel in Fig. 3, with the mean of the six
BB emission datasets in the first row (mean). We also used
three different measures to quantify the spread of the annual
total from the six BB emission datasets: (1) standard devi-
ation (SD), (2) ratio of maximum to minimum (max/min),
and (3) the coefficient of variation (cv, defined as the ra-
tio of the SD to the mean). The cv values for the 14 re-
gions are also ranked in Fig. 3 for easy reference (e.g., a
ranking of 1 means that this region shows the least spread
among the six BB emission datasets, while a ranking of
14 indicates that this region has the largest spread). The
best agreements among the six emission datasets occurred
in Northern Hemisphere Africa (NHAF), equatorial Asia
(EQAS), Southern Hemisphere Africa (SHAF), and South-
ern Hemisphere South America (SHSA), which have the
top cv ranks (1–4) and a relatively low max/min ratio (a
factor of 3–4). The worst agreements occurred in the Mid-
dle East (MIDE), temperate North America (TENA), bo-
real North America (BONA), and Europe (EURO), which
have the lowest cv ranks (14–11) and a large max/min ra-
tio (a factor of 66–10). This diversity was mostly driven by
the QFED2.4 emission dataset, which estimated the largest
emission amount for almost all regions (except EQAS), es-
pecially in MIDE where the BB emission from QFED2.4 is
more than 50 times higher than that from the two GFED ver-

sions. Globally, the QFED2.4 dataset showed the highest OC
emission of 51.93 Tg C in 2008, which was nearly 4 times
that of GFED4s at 13.76 Tg C (the lowest among the six BB
datasets).

Overall, two FRP-based BB emissions, QFED2.4 and
FEER1.0, were a factor of 2–4 larger than the other BB
datasets. This result is consistent with the findings of Zhang
et al. (2014) over sub-Saharan Africa. It is worth noting
that the BB emission amount of GFAS1.2 was close to
that of GFED3.1, reflecting the fact that GFAS1.2 is tuned
to GFED3.1 (described in Sect. 2.1.4). Globally, FINN1.5
yielded more OC emissions than the two GFED datasets
and GFAS1.2 (e.g., 40 % larger than GFED4s). Region-
ally, FINN1.5 was generally comparable to the two GFED
datasets in most of the regions, but was higher than them
in the tropical regions, such as EQAS, Southeast Asia
(SEAS), Central America (CEAM), and Northern Hemi-
sphere South America (NHSA). Interestingly, FINN1.5 was
even the largest among all six datasets over the EQAS re-
gion, which might be associated with its assumption of con-
tinuation of burning into the second day in that region (to
be discussed in Sect. 4.1.2). The global OC emissions from
GFED4s were lower than those from its GFED3.1 coun-
terpart, although higher in several other regions, such as
TENA, CEAM, NHSA, boreal Asia (BOAS), and central
Asia (CEAS). Possible explanations for these differences
among the six global BB emissions datasets are provided in
Sect. 4.1.

3.1.2 Seasonal variation

Biomass burning is generally characterized by distinct sea-
sonal variations in each of the 14 regions and globally, as
shown in Fig. 4. Overall, there were four peak fire seasons
across the regions: (1) during the boreal spring (March–
April–May), fires peak in BOAS mainly because of forest
fires (see the contribution of different fire categories in Ta-
ble 3 of van der Werf et al., 2017); in CEAM, NHSA, and
SEAS because of savanna and deforestation fires; and in cen-
tral Asia (CEAS) mainly due to the agricultural waste burn-
ing to prepare the fields for spring crops. (2) During the bo-
real summer (June–July–August), fires peak in BONA and
TENA, mostly due to wildfires that occur under the prevail-
ing dry and hot weather, in EURO probably associated with
the burning of agricultural waste. In addition, we found that
fire peaked in MIDE in the three FRP-based datasets, i.e.,
QFED2.4, FEER1.0, and GFAS1.2. This might be associ-
ated with the failure to filter out the gas flares from the FRP
fire product, especially in QFED2.4 (Darmenov and da Silva
2015). (3) During the austral spring (September–October–
November), fires peak in the southern hemispheric regions
of SHSA, SHAF, and AUST (Australia and New Zealand),
associated with savanna burning (in addition to deforestation
fires in SHSA). In SHSA, the two GFED versions peaked
in August, 1 month earlier than the rest; (4) during the boreal
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Figure 2. The spatial distribution of annual total organic carbon (OC) biomass burning emissions for 2008 estimated by six biomass burning
emission datasets (units: g m−2 yr−1). The global annual total amount for each dataset in 2008 is indicated in the parentheses.

winter (December and January), fires peak in NHAF, particu-
larly along the sub-Sahel belt (Fig. 2), where savanna fires are
associated with agricultural management and pastoral prac-
tices across that region (e.g., Ichoku et al., 2016b). Overall,
all six BB emission datasets exhibited similar seasonal vari-
ations, although they differed in magnitude. In particular, it
is noteworthy that in EQAS, the annual OC emissions from
GFED4s were lower than those of GFED3.1 by 18 %, but
higher by a factor of 2 in the month of August when peatland
burning is predominant.

For reference, biomass burning black carbon (BC) emis-
sions are also shown, but in the Supplement (Figs. S1, S2 for
annual total and Fig. S3 for seasonal variation), which exhib-
ited features similar to those of OC. The amounts of biomass

burning BC emission were almost proportional to their OC
counterparts (about 1/10 to 1/15 of OC).

3.2 Comparison of model-simulated AOD with remote

sensing data

As in other similar situations where several different datasets
are available to be chosen from (e.g., Bian et al., 2007),
a question that invariably comes to mind is the following:
which BB emission dataset is the most accurate or should
be used in a given situation? In fact, it is difficult to give a
conclusive answer, as it is often challenging to measure the
emission rate of an active fire in real time or to disentangle
the contribution of smoke aerosols from the total atmospheric
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Figure 3. The regional annual total organic carbon (OC) biomass burning emissions for 2008 in six biomass burning emission datasets in
14 regions (units: Tg yr−1). The global annual total amount is listed after the name of each dataset (GLOB_TOT). Relevant statistics for the
six BB emission datasets in each region are also listed at the top of the panel in blue under the short name of each region, with the mean of
the six BB emission datasets in the first row. Three different methods to measure the spread of the six BB emission datasets are shown as
well: one absolute method, i.e., the standard deviation (SD) in the second row, and two relative methods, i.e., the ratio of max to min (i.e.,
maximum / minimum) shown in the third row, as well as the coefficient of variation (cv), defined as the ratio of the SD to the mean, in the
fourth row. The rankings of the regions reflecting the spread of the BB emissions datasets according to cv are shown in the fifth row (i.e.,
a ranking of 1 means that this region shows the least spread among the six BB emissions datasets, while a ranking of 14 indicates that this
region has the largest spread among the 14 regions).

aerosol loading and concentration in observations. Therefore,
in this study we have implemented all six global BB emis-
sion datasets separately in the GEOS model, and we evalu-
ated their respective simulated aerosol loadings. More specif-
ically, we compared the simulated AOD with the satellite-
retrieved AOD data from MISR (primarily to examine the
spatial coverage) as well as with ground-based measurements
from AERONET sites near biomass burning source regions
to examine the seasonal variation. Our analysis was focused
on the regional biomass burning peak seasons, when smoke
aerosol emissions dominate those from other sources, such
as pollution or dust. With such an effort to evaluate the sen-
sitivity of the simulated AOD to the different BB emission
datasets, the results from this study may shed some light on
the aforementioned question; i.e., which BB dataset is the
most accurate or should be used in a given situation? We ac-
knowledge that although the result from a particular model
(e.g., GEOS in this case) can potentially introduce additional
uncertainty through various complicated and nonlinear pro-
cedures employed to calculate the AOD, such as the mod-

eled relative humidity and the related aerosol hydroscopic
growth (Bian et al., 2009; Pan et al., 2015), evaluation of the
model-simulated AOD has still proven to be a feasible ap-
proach to compare various BB emission datasets in reference
to the currently available observations (e.g., Petrenko et al.,
2012; Zhang et al., 2014).

Aiming to evaluate the sensitivity of the modeled AOD
to different BB emissions datasets, we compared the spa-
tial distribution of the GEOS model-simulated AOD with
MISR-retrieved AOD in Sect. 3.2.1 and with the AERONET-
measured AOD at 14 AERONET sites in Sect. 3.2.2. We
also conducted an in-depth study at two AERONET sites,
Alta Floresta (in the Southern Hemisphere South America,
SHSA) and Mongu (in Southern Hemisphere Africa, SHAF),
as discussed in Sect. 3.3.

3.2.1 Global spatial distribution

Comparisons for September and April in 2018 are shown in
Figs. 5 and 6, respectively, representing the peak biomass
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Figure 4. Monthly variation in organic carbon (OC) biomass burning emissions for 2008 in six biomass burning emission datasets in 14
regions and the globally (i.e., GLOB, highlighted with a black box). The annual total emission is listed on the right side of each panel.

burning months in the Southern Hemisphere and many re-
gions in the Northern Hemisphere, respectively. The MISR
AOD is displayed in the top left panel and the model biases
(model minus MISR) from the seven individual experiments
are shown in the rest of the panels.

In September 2008, the high AOD observed from MISR
(Fig. 5a) in the Southern Hemisphere was mostly attributable
to biomass burning. A large fraction of Southern Hemisphere
Africa (SHAF) featured high AOD (greater than 0.5). The
area-averaged AOD over the entire SHAF was 0.331 (see

Table S1 for the area-averaged MISR AOD in each region).
The observed AOD peaked in central Africa (nearly 1.0) and
gradually decreased westwards. A large negative model bias
(−0.283) was found in the NOBB run over the region of
SHAF (greenish shading in Fig. 5b; see Table S1 for the area-
averaged model biases in each region). The negative bias was
reduced most significantly in the QFED2.4 run (see Fig. 5h)
to −0.044, followed by the FEER1.0 run (see Fig. 5g) to
−0.079, but only to a limited extent in GFED4s and GFAS1.2
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Figure 5. (a) The spatial distribution of monthly mean AOD at 558 nm for September 2008 from MISR with white representing missing
values. The global average value (ave) is shown in parentheses. Panels (b)–(h) are for GEOS model biases (i.e., model at 550 nm minus
MISR at 558 nm) in seven model experiments, i.e., bias in (b) NOBB, (c) GFED3.1, (d) GFED4s, (e) FINN1.5, (f) GFAS1.2, (g) FEER1.0,
and (h) QFED2.4.

(see Fig. 5d and f, respectively), whose biases were still as
large as −0.208.

In Southern Hemisphere South America (SHSA), where
the area-averaged MISR AOD was 0.188, the maximum
AOD was ∼ 0.7 in central Brazil (Fig. 5a). The negative bias
averaged over SHSA was −0.132 in the NOBB run (Fig. 5b).
The bias was most significantly reduced in the FEER1.0 run
to −0.021 (Fig. 5g), but it appeared overcorrected in the
QFED2.4 run to 0.020 (see reddish shading in Fig. 5h). The
reduction of negative bias was again the least in the GFED4s

run (Fig. 5d) and the GFAS1.2 run (Fig. 5f), whose biases
were still as large as −0.081 and −0.080, respectively.

Being mixed with and often surpassed by other aerosol
types, however, the contribution of biomass burning aerosols
to the total AOD is hardly distinguishable from those of other
sources in the peak biomass burning months in certain re-
gions, such as April (Fig. 6) in the regions of Southeast
Asia (SEAS), central Asia (CEAS), and boreal Asia (BOAS).
Such complicated situations lead to the difficulties in evalu-
ating the BB emission datasets with AOD observations, espe-
cially when the background AOD represented by the NOBB
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Figure 6. Same as Fig. 5 except for April 2008.

run was already overestimated, for example, in the region of
CEAS, or when the MISR AOD was missing, for example,
in the region of BOAS (where MODIS AOD was missing as
well, not shown).

3.2.2 Seasonal variations in AOD at AERONET sites

In order to better quantify the sensitivity of the simulated
AOD to the six different BB emission datasets, we further
compared the simulated monthly AOD with the ground-
based AOD observations from AERONET stations by choos-
ing one representative station in each region (see Fig. 7: the
panels representing the AERONET stations in Fig. 7 were
arranged in a way that their placements correspond to those

of their respective regions in Fig. 4 for easy reference). The
exceptions are two regions NHSA and EQAS, where valid
AERONET observations could not be found during 2008.
Thus, we used the multi-year climatology of AOD at Medel-
lín and Palangkaraya to represent NHSA and EQAS, respec-
tively. We also included the climatology of AERONET AOD
in the other 12 AERONET sites for reference. As shown in
Fig. 7, the annual cycle of AOD in 2008 at available sites
(thin brown bars) was similar to its respective climatology
(thick light gray bars) to within 0.05. The MISR AOD was
plotted for reference as a green diamond. In this section,
the modeled monthly mean AOD was calculated by aver-
aging over the modeled instantaneous AOD in each month,
while the monthly AOD of AERONET and MISR was sim-
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ply calculated by averaging over available observations in
each month.

Contributions from non-BB emissions to the total AOD are
represented by the NOBB experiment (black line in Fig. 7).
Runs with different BB emission datasets showed almost
identical AOD during non-biomass-burning seasons at each
selected AERONET station in each region, thereby allowing
their differences to be noticeable during the biomass burning
peak seasons. At Alta Floresta in Brazil (Fig. 7(5)), Mongu
in Zambia (Fig. 7(9)), and Chiang Mai Met Sta in Thai-
land (Fig. 7(12)), where the biomass burning emissions dom-
inated the peak AOD, almost all experiments underestimated
AOD during the respective peak biomass burning seasons.
However, the fact is that the contribution of non-BB AOD
was usually more than that of BB AOD during the burning
seasons at most of the selected AERONET sites, except at
the above three sites, Therefore, it is difficult to disentangle
the effect of biomass burning on the total AOD in most sit-
uations, especially when the model has difficulty represent-
ing the non-BB AOD, leading, for example, to overestima-
tion at three high-latitude (> 55◦ N) AERONET sites (the
three panels in the top row of Fig. 7), i.e., Fort McMurray
in Canada (Fig. 7(1)), Tõravere in Estonia (Fig. 7(6)), and
Moscow_MSU_MO in Russia (Fig. 7(10)). However, it is
apparent that the simulated AOD values based on QFED2.4
were overestimated during October and November at Fort
McMurray in the USA, indicating that QFED2.4 overesti-
mated BB organic carbon emission during these 2 months.
In general, at most of the AERONET sites, the simulated
AOD values based on QFED2.4 were the highest and clos-
est to AERONET AOD during the corresponding peak of
the biomass burning seasons, followed by FEER1.0 and
FINN1.5 and then GFED3.1, GFEDv4, and GFAS1.2.

3.3 Case studies in biomass-burning-dominated regions

In order to investigate the relationship between AOD and
biomass burning emission in the context of daily variation,
we focused on two AERONET stations, namely Alta Floresta
in Brazil and Mongu in Zambia during September, for the in-
depth analysis in this section. Biomass burning emissions are
known to be dominant at these locations and in this month, as
estimated by Chin et al. (2009), who found that 50 %–90 %
of the AOD was attributable to biomass burning emissions
according to GOCART model simulations. Based on other
previous studies as well, e.g., two studies with multiple BB
datasets applied to one model, Pereira et al. (2016) in South-
ern Hemisphere South America and Reddington et al. (2016)
in tropical regions including Southern Hemisphere South
America and Africa or the AeroCom Multi-model study
(Mariya Petrenko, personal communication, 2019) with one
biomass burning emission dataset (i.e., GFED3.1) mentioned
earlier in the introduction, there appears to be a general
consensus that the simulated AOD is consistently underesti-
mated over Southern Hemisphere South America and Africa

in many models. Therefore, in this study, we further exam-
ined these two sites: Alta Floresta in Brazil and Mongu in
Zambia. We calculated the 3-hourly AOD by sorting the in-
stantaneous AOD from both AERONET and model outputs
for each day into eight time steps, namely 0, 3, 6, 9, 12, 15,
18, and 21Z. The modeled monthly mean AOD was calcu-
lated by averaging over the modeled 3-hourly AOD, which
coincided with 3-hourly AERONET AOD in that month. The
detailed analyses are discussed below.

3.3.1 Alta Floresta in Brazil (Southern Hemisphere

South America, SHSA)

The monthly mean AOD observed from AERONET at Alta
Floresta is 0.47 during September 2008 (Fig. 8a). It shows
that the simulated AOD from all six experiments captured the
high aerosol episode observed in the AERONET dataset dur-
ing 13 September (AERONET AOD is about 1.0–1.2). The
simulation with QFED2.4 BB emission produced the clos-
est agreement with the AERONET observed AOD with an
average ratio of 1.00. In contrast, the simulated AOD with
FEER1.0 (ratio = 0.73), FINN1.5 (ratio = 0.55), GFAS1.2
(ratio = 0.42), GFED3.1 (ratio = 0.40), and GFED4s (ra-
tio = 0.36) tended to be underestimated most of the time.
All experiments showed relatively low skill at capturing the
temporal variability of the observed AOD at Alta Floresta
(corr = 0.24–0.60). The Ångström exponent (AE: an indica-
tor of particle size) from AERONET is 1.66 (not shown),
indicating that small particles, most likely those from smoke,
dominated the total aerosol loading at Alta Floresta (Eck et
al., 2001). All experiments matched the observed AE (not
shown).

The OC column mass loading (Fig. 8b) in each run re-
sembled its corresponding AOD (Fig. 8a), implying that the
day-to-day variation in OC column mass loading in this dry
season dominates the simulated AOD in the model, rather
than other factors such as relative humidity (RH). The OC
column mass loading is determined by the regional scale of
emission, transport, and removal processes of aerosols; the
latter two processes being the same across the six experi-
ments, given that the same model configurations were used.
Therefore, the differences of OC column mass loading and
thus AOD across the six experiments are attributed to the
different choices of biomass burning emission datasets. Fig-
ure 8c shows the local biomass burning OC emissions (i.e.,
at the 0.5◦

× 0.5◦ grid box where this site is located) in the
different biomass burning emission datasets. We found that
there was a large contrast in the local biomass burning OC
emission between 25 September (as high as 1–2 µg m−2 s−1)
and the other days (close to zero) across all six experiments
although to different degrees. Similar emission patterns are
found when averaged over nine or 25 surrounding grid boxes
(not shown). Such a sharp contrast was completely absent in
the simulated OC column mass density (Fig. 8b) and AOD
(Fig. 8a).
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Figure 7. Monthly variation in AOD (at 550 nm wavelength) for 2008 over 14 AERONET sites selected from the respective 14 regions (with
the country of each site indicated in parentheses). The climatology of AERONET AOD (i.e., AERONET-clim) is represented by thick light
gray bars and the monthly mean AERONET AOD for 2008 by thin brown bars, with their corresponding annual mean values shown in paren-
theses. MISR monthly mean AOD at 558 nm is represented by the green diamonds, and the seven GEOS experiments with different biomass
burning emission options are represented by the lines in different colors. The corresponding annual ratios (ratio of model / AERONET) listed
on the right-hand side of each panel are estimated by averaging over monthly ratios.

All of the foregoing evidence collectively suggests that the
temporal variations in AOD (and aerosol mass loading) in
Alta Floresta during the burning season do not directly re-
spond to the local BB emission at the daily and sub-daily
timescales but rather to the regional emission. The regional

emission is further adjusted by the multiple processes de-
termining the residence time of aerosols in air (typically
a few days), such as the regional-scale transport and re-
moval of aerosols. The MODIS Terra true-color image over-
laid with active fire detections (red dots) on 13 September
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Figure 8. Characteristics of the observed and the simulated aerosols at Alta Floresta during September 2008: (a) the 3-hourly time series of
AOD at 550 nm. The AERONET AOD is represented by vertical gray bars, and the outputs from the six model experiments are represented
by the color curves. The relevant statistics are listed: ave is the monthly average, ratio is the fraction of the simulated to the observed
AOD at all observed hours, corr is correlation coefficient between the observed and the simulated AOD, and RMSE is root-mean-square
error. (b) The 3-hourly time series of OC column mass density over the grid box where Alta Floresta is located (units: 1 × 10−6 kg m−2

or mg m−2). (c) Same as panel (b) but for biomass burning OC emission rate (units: 1 × 10−9 kg m−2 s−1 or µg m−2 s−1). (d) MODIS
Terra true-color image around Alta Floresta on 13 September 2008, overlaid with the active fire detections as red dots (image credit: https:
//aeronet.gsfc.nasa.gov/cgi-bin/bamgomas_interactive, last access: 29 December 2018, and https://worldview.earthdata.nasa.gov, last access:
29 December 2018).

2008 (Fig. 8d) confirms that there were no active fires (repre-
sented by red dots) detected at Alta Floresta (blue circle), and
thus the dense smoke over the site during this peak aerosol
episode must have been transported from the upwind areas
rather than from localized BB emission sources. Therefore,

accurate estimation of both the magnitude and spatial pattern
of regional emissions is quite important.
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3.3.2 Mongu in Zambia (Southern Hemisphere Africa,

SHAF)

The case of Mongu is different from that of Alta Flo-
resta. Figure 9d reveals that there were numerous active
fire detections (represented by the red dots in this MODIS
Aqua true-color image) at and close to Mongu (blue cir-
cle) on 12 September 2008, one of peak aerosol episodes
as Fig. 9a shows. The simulated AOD from all six exper-
iments captured two peak aerosol episodes observed from
the AERONET dataset during 11–12 and 2–3 September
(AOD about 1.0), albeit underestimated (Fig. 9a). All experi-
ments also underestimated the sustained aerosol episode after
20 September. However, all model experiments almost repro-
duced the AERONET AE value of 1.80 throughout Septem-
ber at this site (not shown), confirming that the dominance of
the fine-mode aerosol particles in smoke aerosols is captured
by the model irrespective of the BB emission dataset used.

The biomass burning OC emissions averaged over the grid
box of Mongu exhibited distinct daily variations in each
BB dataset (Fig. 9c). Similar emission patterns are found
when averaged over nine or 25 surrounding grid boxes (not
shown). At this site, the day-to-day variations in AOD still
cannot be totally explained by the corresponding local emis-
sion at Mongu. For example, emission from FEER1.0 on
17 September is 6 times higher than that on 2 September
(Fig. 9c), but the simulated AOD on 17 September is 2
times lower than that on 2 September (Fig. 9a). However,
the magnitude of AOD at Mongu in each experiment cor-
responded to the magnitude of BB emission at the regional
scale, since it is apparent that the overall higher regional
BB emissions still resulted in higher column mass loading
and thus AOD. For instance, FEER1.0 and QFED2.4, which
have the largest monthly total biomass burning OC emis-
sion over the region of SHAF among the six BB emission
datasets during September (2.27 and 2.92 Tg per month, re-
spectively, as shown in Fig. 4), corresponded to the high-
est AOD (ratio = 49 % and 46 %, respectively, as shown in
Fig. 9a), while FINN1.5 and GFED4s, which represent the
lowest monthly mean biomass burning OC emission over the
region of SHAF (0.87 and 0.85 Tg per month, respectively, as
shown in Fig.4), corresponded to very low AOD (15 % and
19 % of the observed AOD, respectively).

Although the temporal variation in the ambient RH
may partially contribute to the day-to-day changes of the
emission–AOD relationship, the close resemblance between
the model-simulated AOD and column OC mass loading
(Fig. 9b) excludes such possibility. This evidence therefore
suggests that the temporal variations in AOD (and aerosol
mass loading) in Mongu, where daily local BB emissions
were present instead, do not directly respond to the local
BB emission at the daily and sub-daily timescales during
the burning season either as is the case in Alta Floresta. It
further confirms the importance of accurate estimation of
both the magnitude and spatial pattern of regional emis-

sions as mentioned in the case of Alta Floresta. Therefore,
over Southern Hemisphere Africa and Southern Hemisphere
South America, an enhancement of regional BB aerosol
emission amounts in all the BB emission datasets except for
QFED2.4 in the latter region is suggested by this study in
order to reproduce the observed AOD level although to dif-
ferent degrees.

4 Discussion

The simulated AOD is biased low in biomass-burning-
dominated regions and seasons across almost all six BB
emission datasets as demonstrated in this study. More expla-
nations on differences among the six BB emissions datasets
are discussed in Sect. 4.1. Basically, the uncertainty of the
simulated AOD could be attributable to two main sources:
(1) BB emissions-related biases and (2) model-related biases.
They are discussed in Sect. 4.2 and 4.3, respectively.

4.1 The possible explanations of differences among the

six BB emission datasets

4.1.1 Higher BB emissions estimated from QFED2.4

and FEER1.0

This study has shown that the QFED2.4 and FEER1.0 BB
emission datasets are consistently higher than the others,
with QFED2.4 being the highest overall. Some of the pos-
sible reasons responsible for this difference include the fol-
lowing.

– Constraining with MODIS AOD. The emission coef-
ficients (Ce) used to derive biomass burning aerosol
emissions in both QFED2.4 and FEER1.0 are con-
strained by the MODIS AOD, although in different
ways (detailed in Sect. 2.1.6 and 2.1.5, respectively).
This is not the case for the other BB emission datasets.
Although GFAS1.2 uses the same FRP products as
FEER1.0 in deriving dry mass combustion rate, its
emission is tuned to that of GFED3.1. QFED2.4 ap-
plied four biome-dependent scaling factors to the ini-
tial constant value C0 when deriving its Ce, by min-
imizing the discrepancy between the AOD simulated
by the GEOS model and that from MODIS in corre-
sponding biomes. The resulting QFED2.4 scaling fac-
tors are 1.8 for savanna and grassland fires, 2.5 for trop-
ical forests, and 4.5 for extratropical forests (Darmenov
and da Silva, 2015). This partially explains its very high
OC biomass burning emission over the extratropical re-
gions of TENA, BONA, and BOAS relative to the other
emission datasets (Figs. 2–4). However, the high BB
emission estimated by QFED2.4 is questionable during
October and November of 2008 in the region of BONA
(Fig. 4) according to the evaluation of its resulting AOD
relative to the AERONET AOD at the Fort McMurray
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Figure 9. Characteristics of the observed and the simulated aerosols at Mongu during September 2008: (a) the 3-hourly time series of AOD
at 550 nm. The AERONET AOD is represented by vertical gray bars, and the outputs from the six model experiments are represented by the
color curves. The relevant statistics are listed: ave is the monthly average, ratio is the fraction of the simulated to the observed AOD at all
observed hours, corr is correlation coefficient between the observed and the simulated AOD, and RMSE is root-mean-square error. (b) The
3-hourly time series of OC column mass density over the grid box where Mongu is located (units: 1 × 10−6 kg m−2 or mg m−2). (c) Same
as panel (b) but for biomass burning OC emission rate (units: 1 × 10−9 kg m−2 s−1 or µg m−2 s−1). (d) MODIS Aqua true-color image
around Mongu on 12 September 2008, overlaid with the active fire detections as red dots (image credit: https://aeronet.gsfc.nasa.gov/cgi-bin/
bamgomas_interactive and https://worldview.earthdata.nasa.gov).
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site (Fig. 7(1)). As for FEER1.0, the process of deriving
Ce involved calculating the near-source smoke–aerosol
column mass with the MODIS AOD (total minus the
background) for individual plumes, thereby limiting in-
fluence from other emission sources (Ichoku and Elli-
son, 2014).

– Fuel consumption. In general, the FRP-based estimation
approaches, such as GFAS1.2, QFED2.4, and FEER1.0,
may enable more direct estimates of fuel consumption
from energy released from fires, without being affected
by the uncertainties associated with the estimates of fuel
loads and combustion completeness (e.g., Kaufman et
al., 1998; Wooster et al., 2003, 2005; Ichoku and Kauf-
man, 2005; Ichoku et al., 2008; Jordan et al., 2008).
However, FRP from non-BB sources, such as the gas
flare, could be mistakenly identified as BB sources. One
example is over bare land on the eastern border of Alge-
ria in MIDE (refer to the land type on the website http:
//maps.elie.ucl.ac.be/CCI/viewer/index.php, last access:
17 January 2020), where QFED2.4 shows high OC
emission contrary to expectation (see Fig. 2f). Thus, ad-
ditional screening of the FRP fire product is required.

4.1.2 Features of FINN1.5

Globally, the FINN1.5 dataset is lower than QFED2.4 and
FEER1.0 but larger than GFAS1.2, GFED3.1, and GFED4s
(Fig. 3). Although FINN1.5 can capture the location of the
large wildfires using the active fire products, the estimation
of burned area is rather simple without the complicated spa-
tial and temporal variability in the amount of burned area per
active fire detection or variability in fuel consumption within
biomes. For example, it estimates 1 km2 of burned area per
fire pixel for all biomass types except for savanna and grass-
land where 0.75 km2 per fire pixel is estimated instead. That
might partially explain why FINN1.5 is extremely low in
AUST, as suggested by Wiedinmyer et al. (2011). Addition-
ally, the FINN1.5 dataset is the least over boreal regions,
such as in the regions of BOAS and BONA, where FINN1.5
is only one-third and three-fifths of GFED4s, respectively.
Large forest fires dominate in BOAS and BONA, such that
the direct mapping of burned area as calculated in GFED4s
and GFED3.1 produces more biomass burning emissions
(van der Werf et al., 2017). On the other hand, the BB emis-
sion in the FINN1.5 dataset is relatively large near the Equa-
tor. For instance, it is the largest among the six datasets over
the region EQAS and the second largest over the regions of
CEAM and SEAS (see Fig. 3). This might be attributed to
the smoothing of the fire detections in these tropical regions
to compensate for the limited daily coverage by the MODIS
instruments due to gaps between adjacent swaths and higher
chances of cloud coverage in tropical regions (Wiedinmyer et
al., 2011). Thus, in FINN1.5, each fire detected in the equa-

torial region is only counted for a 2 d period by assuming that
fire continues into the next day but at half of its original size.

4.1.3 Difference between GFED4s and GFED3.1

Globally and in some regions, biomass burning OC emission
in GFED4s is lower than that in GFED3.1 (see Figs. 2–4), al-
though the former has 11 % higher global carbon emissions
and includes small fires (van der Werf et al., 2017). There
are a few possible reasons, of which two major ones are as
follows: (1) for aerosols, the implementation of lower EF
for certain biomes in GFED4s than in GFED3.1 reduces the
aerosol biomass burning emissions. As for the savanna and
grassland, for instance, the GFED4s dataset mainly applies
the EF value recommended by Akagi et al. (2011), which is
2.62 g OC kg−1 dry matter burned, 18 % lower than the EF
from Andreae and Merlet (2001) used in GFED3.1, which
is 3.21 g OC kg−1 dry matter burned (see Table 2). The new
estimation of EF is 3.0±1.5 g OC kg−1 dry matter burned as
suggested by Andreae (2019). With it, the OC emissions in
savanna and grassland can be slightly enhanced but would
still be lower than those in GFED3.1. (2) The improvement
in including small fires in GFED4s over GFED3.1 is proba-
bly offset by the occasional optimization of fuel consump-
tion using field observations for overall carbon emissions.
For instance, the turnover rates of herbaceous leaf vegetation
(e.g., savanna) are increased in GFED4s, leading to the lower
fuel loading and thus lower consumption for this land-cover
type in GFED4s (van Leeuwen et al., 2014; van der Werf et
al., 2017). Therefore, the biomass burning OC emissions are
lower in GFED4s over SHAF, NHAF, and AUST (Figs. 3 and
4), where ∼ 88 % of the BB carbon emission is from savanna
and grassland (van der Werf et al., 2017).

On the other hand, there are regions in the Northern Hemi-
sphere where GFED4s is higher than GFED3.1. For example,
over CEAS and EURO, small fires associated with burning of
agricultural residues contribute to 43.6 % and 58.6 % of the
carbon emissions, respectively (van der Werf et al., 2017). In
spite of the 30 % reduction of the EF in these two regions,
the effect of including small fires in GFED4s is greater, re-
sulting in the biomass burning OC emission from GFED4s
being twice as high as that from GFED3.1. Another exam-
ple is in BOAS where the biomass burning OC emissions
are 10 % higher in GFED4s than in GFED3.1. This is likely
attributable to the higher EF used in GFED4s for boreal for-
est fires than that in GFED3.1 (9.60 vs. 9.14 g OC kg−1 dry
matter; see Table 2), where 86.5 % of the carbon emission is
from the Siberian forest (van der Werf et al., 2017).

It is interesting that the yearly total biomass burning
OC emission from GFED4s is 20 % lower than that from
GFED3.1 in EQAS (Fig. 4), even though the small fires
are included and the EFs of peatland and tropical forest are
higher in the former (Table 2). By examining the monthly
variations over EQAS (Fig. 4), however, we found that
GFED4s is actually higher than GFED3.1 in August by a fac-
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Table 2. Comparison of emission factor (units: g species kg−1 dry matter burned) used by GFED3.11 and GFED4s2 (listed in the upper and
lower parts of the cell, respectively, and bold if GFED4s is larger).

Savanna and Tropical Temperate Boreal Peat Agricultural
grassland forest forest3 forest3 fires4 residues

OC 3.21 4.30 9.14 9.14 4.30 3.71
2.62 4.71 9.60 9.60 6.02 2.30

BC 0.46 0.57 0.56 0.56 0.57 0.48
0.37 0.52 0.50 0.50 0.04 0.75

SO2 0.37 0.71 1.00 1.00 0.71 0.40
0.48 0.40 1.10 1.10 0.40 0.40

PM2.5 4.94 9.05 12.84 12.84 9.05 8.25
7.20 9.10 12.90 15.30 9.10 6.30

CO2 1646 1626 1572 1572 1703 1452
1686 1643 1647 1489 1703 1585

CO 61 101 106 106 210 94
63 93 88 127 210 102

1 Mainly from Andreae and Merlet (2001) with annual updates. 2 Mainly from Akagi et al. (2011),
supplemented by Andreae and Merlet (2001) and other sources. 3 GFED4s (van der Werf et al., 2017) further
divides extratropical forest in GFED3 (van der Werf et al., 2010) into temperate forest and boreal forest.
4 Based on Christian et al. (2003) for CO2 and CO.

tor of 2 when peatland burning is predominant but is equal to
or lower than GFED3.1 in other months, particularly in May,
leading to the overall lower annual total value in GFED4s.

4.2 Sources of the uncertainty associated with biomass

burning emissions

Uncertainty in any of the six BB emissions datasets consid-
ered in this study could have been introduced from a variety
of measurement and/or analysis procedures, including detec-
tion of fire or area burned, retrieval of FRP, emission fac-
tors (see Table 1), biome types, burning stages, and fuel con-
sumption estimates, some of which are explained in detail
below.

– Fire detection. Most of the current global estima-
tions of biomass burning emissions are heavily de-
pendent on polar-orbiting satellite measurements from
MODIS Terra and Aqua (e.g., MCD14DL, MOD14A1,
MYD14A1, and MCD14ML as listed in Table 1). The
temporal and spatial resolutions of these measurements
impose limitations on their ability to detect and char-
acterize the relevant attributes of fires, such as the lo-
cations and timing of active fires and the extent of the
burned areas. Each of the two MODIS sensors, from
which all of the major BB datasets derive their inputs,
can only possibly observe a given fire location twice in
24 h, which leaves excessive sampling gaps in the diur-
nal cycle of fire activity (Saide et al., 2015). Even for
these few times that MODIS makes observations at its
nominal spatial resolution of 1 km at nadir, it has the po-

tential to miss a significant number of smaller fires (e.g.,
Hawbaker et al., 2008; Burling et al., 2011; Yokelson et
al., 2011), as well as to miss fires obstructed by clouds,
and those located in the gaps between MODIS swaths
in the tropics (Hyer and Reid, 2009; Wang et al., 2018).
In addition, MODIS fire detection sensitivity is reduced
at MODIS off-nadir views, with increasing view zenith
angles, especially toward the edge of scan, where its
ground pixel size is almost a factor of 10 larger that at
nadir (Peterson and Wang, 2013; Roberts et al., 2009;
Wang et al., 2018), resulting in dramatic decreases in
the total number of detected fire pixels and total FRP
(Ichoku et al., 2016b; Wang et al., 2018). Moreover, all
operational remote sensing fire products have difficulty
accounting for understory fires or fires with low thermal
signal or peatland fires such as those in Indonesia, where
smoldering can last for months (Tansey et al., 2008).
These issues can propagate into the uncertainties of the
emissions datasets that are dependent on active fire de-
tection products, especially those based on FRP, e.g.,
GFAS1.2 (Kaiser et al., 2012), FEER1.0 (Ichoku and
Ellison, 2014), and QFED2.4 (Darmenov and da Silva,
2015). This issue also affects FINN1.5 (Wiedinmyer et
al., 2011), which derives the burned area by assuming
each active fire pixel to correspond to a burned area of
1 km2 for most biome types (see details in Sect. 2.1.3),
and GFED4s, which uses burned area product for large
fires but derives burned areas for small fires using the
MODIS active fire product.
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On the other hand, although the sparse diurnal sam-
pling frequency may not necessarily be an issue for
the MODIS burned area product, upon which some of
the emission datasets are based (e.g., GFED3.1), burned
area product may not account for small fires due to its
low spatial resolution of 500 m, which may limit the
identification of small burned scars such as those gen-
erated by small fires from croplands. In addition, the
estimation of biomass burning emission based on the
burned area product, e.g., GFED, is subject to the un-
certainty associated with the estimation of fuel load and
combustion completeness as mentioned earlier.

– Emission factor (EF). The EF, used for deriving indi-
vidual particulate or gaseous species of smoke emis-
sions from burned dry matter in all major BB emis-
sion datasets, heavily depends on the two papers by An-
dreae and Merlet (2001) and Akagi et al. (2011). The
authors of these two studies made significant contribu-
tions by compiling the values of EFs from hundreds
of papers. However, the EFs can have significant un-
certainties (Andreae, 2019), because each EF results
from a particular experiment or field campaign. Some
EFs are derived from lab-based studies whereby sam-
ples of fuels are burned in combustion chambers (e.g.,
Christian et al., 2003; Freeborn et al., 2008), where the
combustion characteristics can be very different from
those of large-scale open biomass burning and wildfires,
and some EFs are derived from field campaigns, where
the measurement locations are often not close enough
to the biomass burning source due to personnel safety
and other logistic factors (Aurell et al., 2019). As dis-
cussed earlier in Sect. 4.1.3, the discrepancy between
GFED4s and GFED3.1 can be partially explained by the
fact that different emission factors were used to derive
these two products (also see Table 2). This situation will
not change much even if the EF value from the latest es-
timation by Andreae (2019) were used.

– Biome types. The uncertainty of estimating BB emission
could be partially attributed to different definitions of
major biome types, because the scaling factor of emis-
sion coefficient for the FRP-based BB datasets (i.e.,
GFAS and QFED) or the emission factor used by all
BB datasets will be assigned according to the biome
type where the fire event occurs. The six BB emission
datasets examined in this study have different defini-
tions of major biome types, for example, there are six
major biome types applied in GFED4.1s (Table 1 in
van der Werf et al., 2017), but eight in GFAS1.2 (Ta-
ble 2 in Kaiser et al., 2012), and only four in QFED2.4
(Table 2 in Darmenov and da Silva, 2015). In partic-
ular, peat combustion is an important emission source
in some regions, such as equatorial Asia (e.g., Kiely
et al., 2019). However, not all the emission datasets

include peat biome or consider its unique characteris-
tics. Among the emission datasets based on burned ar-
eas, GFED3.1 and GFED4s consider peat, but FINN1.5
does not. In QFED2.4 and FEER1.0, the peat biome is
not explicitly identified. Thus, such differences in the
approaches to the processing of contributions from spe-
cific biomes may contribute to the differences between
emission datasets in some regions.

– Burning stages. Most current BB emission datasets do
not distinguish the different burning stages, such as
the flaming and smoldering stages that have distinctive
emission characteristics. Typically, flaming dominates
the earlier stage of a fire while smoldering dominates
the later part. In the case of boreal forest fires, for ex-
ample, about 40 % of the combustion originates from
the flaming phase while 60 % comes from the smol-
dering phase (Reid et al., 2005). In addition, smolder-
ing combustion produces more OC and CO than flam-
ing combustion, whereas flaming combustion produces
more BC and carbon dioxide (CO2) than smoldering
(e.g., Freeborn et al., 2008).

4.3 Sources of the uncertainty associated with aerosol

modeling

The model-related biases in the GEOS model, which other
models most probably also suffer from, include, for example,
inaccurate representations of horizontal and vertical transport
of aerosol by wind, fire emission plume height, and estima-
tion of aerosol removal in models. Furthermore, the produc-
tion of secondary organic aerosol (SOA) in biomass burning
plumes, which has been observed in lab studies and ambient
plumes (e.g., Bian et al., 2017; Ahern et al., 2019), is missing
in these GEOS simulations. Given the sparsity of the mea-
surements of surface and vertical concentrations at the global
scale, we implemented an approach to evaluate model sim-
ulation uncertainty globally due to biomass burning aerosol
emissions by evaluating the resulting AOD against that from
satellite data and AERONET measurements, following the
studies by Petrenko et al. (2012) and Zhang et al. (2014).
We acknowledge the uncertainties in calculating AOD, such
as uncertainties associated with assumptions of aerosol size
distribution, optical properties, aerosol water uptake, and ver-
tical distribution of aerosol (e.g., Reddington et al., 2019).
In addition, Ge et al. (2017) showed that the choice of dif-
ferent meteorological fields can also lead to uncertainty in
simulating the modeled aerosol loading. For instance, me-
teorological fields from ECMWF and the National Centers
for Environmental Prediction (NCEP) can yield a factor of 2
difference in the resulting surface PM2.5 concentration dur-
ing the fire season of September in the Maritime Continent.
Furthermore, the ratio of OA to OC is 1.4 in our study, as
first determined by White and Roberts (1977). However, this
OA/OC ratio of 1.4 is at the low end of the generally sug-
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gested range of 1.2–2.5 (Turpin and Lim, 2001; Zhang et al.,
2005; Bae et al., 2006; El-Zanan et al., 2005; Aiken et al.,
2008; Chan et al., 2010). Observations suggest that OA/OC
values of 1.6 ± 0.2 should be used for urban aerosols and
2.1 ± 0.2 for nonurban aerosols (Turpin and Lim, 2001). En-
hancing this ratio can obviously increase the resulting AOD,
but a more accurate measurement of this ratio during biomass
burning is needed.

5 Conclusions and recommendations

In this study, we compared six global biomass burning
aerosol emission datasets in 2008, i.e., GFED3.1, GFED4s,
FINN1.5, GFAS1.2, FEER1.0, and QFED2.4. We also exam-
ined the sensitivity of the modeled AOD to the different BB
emission datasets in the NASA GEOS model globally and in
14 regions. The main results are summarized as follows.

The biomass burning OC emissions derived from
GFED3.1, GFED4s, FINN1.5, GFAS1.2, FEER1.0, and
QFED2.4 can differ by up to a factor of 3.8 on an annual
average, with values of 15.65, 13.76, 19.48, 18.22, 28.48,
and 51.93 Tg C in 2008, respectively. The biomass burning
BC emissions can differ by up to a factor of 3.4 on an an-
nual average, with values of 1.76, 1.65, 1.83, 1.99, 3.66, and
5.54 Tg C in 2008, respectively. In general, higher biomass
burning OC and BC emissions are estimated from QFED2.4
globally and regionally, followed by FEER1.0.

The best agreement among the six emission datasets oc-
curred in Northern Hemisphere Africa (NHAF), equatorial
Asia (EQAS), Southern Hemisphere Africa (SHAF), and
Southern Hemisphere South America (SHSA), where the
biomass burning emissions are predominant in determining
aerosol loading, with the top coefficient of variation rank-
ings (1–4) and relatively low max/min ratio (a factor of 3–
4). The least agreement occurred in the Middle East (MIDE),
temperate North America (TENA), boreal North America
(BONA), and Europe (EURO), with the bottom coefficient
of variation rankings (14–11) and large max/min ratios (a
factor of 66–10). It seems that the diversity among the six
BB emission datasets is largely driven by QFED2.4, which
estimates the largest emission amount for almost all regions
(except for equatorial Asia).

In Southern Hemisphere Africa (SHAF) and Southern
Hemisphere South America (SHSA) during September 2008,
where and when biomass burning aerosols are dominant over
other aerosol types, the amounts of biomass burning OC
emissions from QFED2.4 and FEER1.0 are at least double
those from the remaining four BB emission datasets. The
AOD values simulated by the NASA GEOS based on these
two BB emission datasets are the closest to those from MISR
and AERONET, but still biased low. In particular, at Alta Flo-
resta in SHSA, they can account for 36 %–100 % of the ob-
served AOD, and at Mongu in SHAF the AOD values simu-
lated with the six biomass burning emission datasets only ac-

count for 15 %–49 % of the observed AOD. Overall, during
the biomass burning peak seasons at most of the representa-
tive AERONET sites selected in each region, the AOD simu-
lated with QFED2.4 is the highest and closest to AERONET
and MISR observations, followed by that of FEER1.0. Con-
sidering that regional-scale transport and removal processes
as well as wind fields are the same across the six BB emis-
sion experiments since they were run under the same model
configurations except for BB emission, it is evident that en-
hancement of BB emission amounts in all six BB emission
datasets will be needed (although to different degrees) for
the model AOD simulations to match observations, partic-
ularly in SHAF (Mongu) and SHSA (Alta Floresta), except
for QFED2.4 in SHSA. Although the result of this study is
partially model-dependent, it sheds some light on our un-
derstanding of the uncertainty of the simulated AOD asso-
ciated with the choice of biomass burning aerosol emission
datasets.

Based on the results of the current study, it is appropri-
ate to make some recommendations for future studies on im-
proving BB emission estimation. Our understanding of the
complexity, variability, and interrelationships between dif-
ferent fire characteristics (behavior, energetics, emissions)
still needs to be improved (Hyer et al., 2011). More accu-
rate estimation of emission factors (EFs) for different ecosys-
tem types and burning stages would greatly improve the
emission overall, as demonstrated by the discrepancy be-
tween GFED3.1 and GFED4s (see Sect. 4.1.3). The global
BB emission datasets driven by fire remote sensing and re-
trievals of FRP and burned-area products, which have hith-
erto depended heavily on MODIS, can be augmented with
products from higher-resolution sensors such as the Visible
Infrared Imaging Radiometer Suite (VIIRS) and the global
suite of geostationary meteorological satellites such as Me-
teosat (covering Europe, Africa, and the Indian Ocean), Geo-
stationary Operational Environmental Satellite (GOES, cov-
ering North, Central, and South America), and Himawari
(covering east Asia, Southeast Asia, and Australia). Also,
measurements from the recent field campaigns such as WE-
CAN (https://www.eol.ucar.edu/field_projects/we-can, last
access: 17 January 2020) and FIREX-AQ (https://www.esrl.
noaa.gov/csd/projects/firex-aq/science/motivation.html, last
access: 17 January 2020) are expected to contribute toward
advancing our knowledge of biomass burning emissions in
North America. The evaluation in this study has been solely
based on remotely sensed AOD data, including retrievals
from both satellite (MISR) and ground-based (AERONET)
sensors. Continuous mass concentration measurements are
needed to validate the fire-generated aerosol loading in spe-
cific contexts, such as in analyzing collocated surface and
vertical aerosol concentrations and composition, at least in
the major BB regions.
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Data availability. The GFED3.1 biomass burning dataset can be
accessed through the link https://daac.ornl.gov/VEGETATION/
guides/global_fire_emissions_v3.1.html (van der Werf et al., 2010).
The link to the GFED4s dataset is http://www.globalfiredata.org
(van der Werf et al., 2017). The FINN1.5 emissions dataset
is archived at http://bai.acom.ucar.edu/Data/fire/ (Wiedinmyer et
al., 2011). The GFAS1.2 emissions dataset is available at https:
//apps.ecmwf.int/datasets/data/cams-gfas/ (Kaiser et al., 2012).
The FEER1.0 dataset is available at http://feer.gsfc.nasa.gov/data/
emissions/ (Ichoku and Ellison, 2014). The QFED2.4 can be down-
loaded from the website https://portal.nccs.nasa.gov/datashare/iesa/
aerosol/emissions/QFED/v2.4r6/ (Darmenov and da Silva, 2015).
MISR level 3 AOD data can be downloaded from the website https:
//eosweb.larc.nasa.gov/project/misr/mil3mae_table (Kalashnikova
and Kahn, 2006). AERONET Version 3 Level 2.0 data can be down-
loaded from the websites https://aeronet.gsfc.nasa.gov/new_web/
download_all_v3_aod.html (Holben et al., 1998; Giles et al., 2019).
The GEOS model results can be obtained by contacting the corre-
sponding author.
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