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Six potential biomarkers for bladder cancer: 
key proteins in cell‑cycle division and apoptosis 
pathways
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Abstract 

Background:  The bladder cancer (BC) pathology is caused by both exogenous environmental and endogenous 
molecular factors. Several genes have been implicated, but the molecular pathogenesis of BC and its subtypes 
remains debatable. The bioinformatic analysis evaluates high numbers of proteins in a single study, increasing the 
opportunity to identify possible biomarkers for disorders.

Methods:  The aim of this study is to identify biomarkers for the identification of BC using several bioinformatic 
analytical tools and methods. BC and normal samples were compared for each probeset with T test in GSE13507 and 
GSE37817 datasets, and statistical probesets were verified with GSE52519 and E-MTAB-1940 datasets. Differential gene 
expression, hierarchical clustering, gene ontology enrichment analysis, and heuristic online phenotype prediction 
algorithm methods were utilized. Statistically significant proteins were assessed in the Human Protein Atlas database. 
GSE13507 (6271 probesets) and GSE37817 (3267 probesets) data were significant after the extraction of probesets 
without gene annotation information. Common probesets in both datasets (2888) were further narrowed by analyz-
ing the first 100 upregulated and downregulated probesets in BC samples.

Results:  Among the total 400 probesets, 68 were significant for both datasets with similar fold-change values (Pear-
son r: 0.995). Protein-protein interaction networks demonstrated strong interactions between CCNB1, BUB1B, and 
AURKB. The HPA database revealed similar protein expression levels for CKAP2L, AURKB, APIP, and LGALS3 both for BC 
and control samples.

Conclusion:  This study disclosed six candidate biomarkers for the early diagnosis of BC. It is suggested that these 
candidate proteins be investigated in a wet lab to identify their functions in BC pathology and possible treatment 
approaches.
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Background
Bladder cancer (BC) is a widespread malignant tumor 
of the genitourinary system. It has a high mortality and 
recurrence risk, thus posing a significant health risk 

worldwide. The incidence rate of BC is proportional to 
the developmental stage of the region, but also depends 
on the developmental level of the population. In both 
situations, its incidence rises as the developmental stage 
increases [1].

The prevalence of BC is multidimensional; further-
more, the causative processes in its occurrence and pro-
gression are complex. Its pathology is caused by both 
exogenous environmental and endogenous molecular 
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factors. Smoking and tobacco usage is one of the lead-
ing factors [2], which can be preventable. However, BC 
is still highly prevalent in men and women in all conti-
nents [1]. Last but the least, the Human Developmental 
Index (HDI) levels have been clearly implicated in several 
databases to be proportional to BC incidence [1, 3, 4]. 
Several genes have been implicated in the pathogenesis of 
BC [5, 6]. The treatment options for BC include conven-
tional chemotherapy and immune checkpoint inhibitors, 
but fail to treat every individual [7]. Hence, personalized 
approaches and precise biomarker discoveries remain 
important.

Currently, the most common source of large-scale 
molecular data is transcriptome data for malignancies. 
High-throughput approaches such as microarray tech-
nology generate a large amount of genomic and expres-
sion data which are publicly available through various 
online repositories. The generation of big data neces-
sitates the employment of high-throughput computer 
approaches and several methodologies can be utilized for 
statistical analysis. Bioinformatics, which is the intersec-
tion of biology, information science, and computation, 
was once an emerging component of cancer research [8], 
but now is one of the most common initial approaches 
prior to wet lab studies.

Methods
The aim of this research is to identify biomarkers for the 
early diagnosis and treatment of BC by using a variety of 
bioinformatic analytical tools and methods.

BC gene expression data sources
Four different datasets were downloaded from the gene 
expression omnibus (GEO) database (geneo​ntolo​gy.​
org), including GSE13507 [Illumina] [9], GSE37817 [Illu-
mina] [10], GSE21519 [Illumina] [11], and E-MTAB-1940 
[Affymetrix] [12]. The latter two were used for validation 
studies. The datasets were downloaded from the Array-
Express database in a normalized arrangement, and Affy-
metrix gene IDs were obtained accordingly (ebi.​ac.​uk/​
array​expre​ss/).

Data processing and statistical tests
R 3.4.0 programming language was utilized for the statis-
tical tests [13]. Student’s T test was used to compare gene 
expression levels in different groups.

Experimental design
BC and normal samples were compared for each probe-
set by T test in the GSE13507 and GSE37817 datasets 
with Venn diagrams using the online tool Venny 2.1 
[14], and volcano plots were generated. The analysis was 
restricted to the first 100 upregulated and downregulated 

probesets. The median values of common probesets in 
the BC and normal samples were calculated. Then, “Pear-
son r” values were calculated for the gene expression 
values. With this approach, tumor and normal “r values” 
were obtained for all samples. Hierarchical clustering 
analysis was performed with Cluster 3.0 using Euclidean 
distance and complete linkage parameters [15]. The Heu-
ristic Online Phenotype Prediction (HOPP) algorithm 
was applied as previously reported [16].

Functional enrichment analysis
Gene ontology (GO) enrichment analyses were per-
formed using the PANTHER Classification Systems 
database [17]. Gene sets at p<0.05 were considered to be 
significant.

Candidate hub gene identification
A network analysis was performed using the Search Tool 
for the Retrieval of Interaction Genes 10.5 (STRING) 
database [18]. Protein-protein interaction (PPI) networks 
for differentially expressed genes (DEGs) were built on 
high confidence (0.700) interaction scores.

Results
Following the subtraction of probesets lacking gene 
annotation information, the comparison provided 
6271 and 3267 significant probesets in GSE13507 and 
GSE37817 datasets, respectively (Fig.  1a). These two 
datasets showed significant overlapping for 2888 probe-
sets (43.4%). To narrow the significant probesets, the 
first 100 upregulated and downregulated probesets in the 
tumor were selected with respect to their order of sig-
nificance. For this purpose, a total of 200 probesets were 
compared from both datasets (GSE13507, GSE37817). 
Among these 400 probesets, 68 (20.5%) were significantly 
overlapping (Fig. 1b) and these mutual probesets showed 
similar fold-change values in the same direction (Pearson 
r: 0.995) (Fig. 1c; Table S1). All probesets were visualized 
in Volcano plots (Fig. 1d).

GO enrichment analysis
Among the 68 mutually significant probesets, a GO 
enrichment analysis was performed for the 42 upregu-
lated (Fig.  2a) and 26 downregulated genes (Fig.  2b). 
The genes were enriched for biological processes, cel-
lular components, and molecular functions. Some sta-
tistically significant pathways included, but were not 
limited to, GO:0051301: Cell division (fold enrichment: 
23.72, p=7.1E−22); GO:0000280: Nuclear division 
(fold change: 28.69, p= 1.4E−14); GO:0140014: Mitotic 
nuclear division (fold change: 46.42, p= 2.2E−13); 
GO:0000070: Mitotic sister chromatid segregation (fold 
change: 52.08, p=4.2E−11); GO:1902099: Regulation of 
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metaphase/anaphase transition of cell cycle (fold change: 
78.35, p=4.2E−08); GO:0031577: Spindle checkpoint 
(fold change: 91.49, p= 1.1E−03); GO:0006260: DNA 
replication (fold change: 14.68, p= 2.8E−02). The PPI 
analysis indicates a strong interaction between all 42 
upregulated proteins. Particularly, strong interactions 
between CCNB1, BUB1B, AURKB, CCNB2, CDC20, 
CDCA5, CENPF, and KNTC1 proteins were noticeable.

Validation
For the mutual 68 genes, two validation studies were per-
formed using the GSE52519 and E-MTAB-1940 datasets. 
Out of the 68 probesets, 11 were missing in the GSE52519 
dataset; hence, the validation was performed with 57 probe-
sets (excluded probesets: ILMN_1792494, ILMN_1768291, 
ILMN_1808347, ILMN_1733950, ILMN_1663332, 
ILMN_1745594, ILMN_1747118, ILMN_1750347, 
ILMN_171251667, ILMN_1712574). The GSE52519 data-
set included 9 BC samples and 3 healthy bladder samples. 
Normal samples were distinguished from BC samples with a 
hierarchical clustering analysis (Fig. 3a). Where BC samples 

were observed to form three clusters, subtypes 1, 2, and 3 
(ST1, ST2, ST3). Two tumor samples showed closer prox-
imity to normal samples, and this was observed with the 
HOPP (Fig. 3b).

The second validation performed with the 
E-MTAB-1940 dataset was a 96 Affymetrix platform. 
Hence, the Affymetrix probesets corresponding to 
the genes of interest were determined, and out of the 
68 genes, 52 were identified. The hierarchical cluster-
ing analysis performed with these probesets showed 
some separation between normal and tumor samples. 
Although, many tumor samples were clustered in the 
same group with normal samples, and one normal sam-
ple was clustered with tumor samples (Fig. S1).

Protein and tumor database analysis
The investigation of the common 68 proteins in The 
Human Protein Atlas database ([19]; prote​inatl​as.​org) 
revealed a similar association between tumor and nor-
mal tissues at the protein level for CKAP2L, AURKB, 
CDC25A, APIP, and LGALS3.

Fig. 1  Common probesets between GSE13507 and GSE37817 datasets are determined using Venny diagrams a without restriction [common 
2888 probesets, 34.4%] and b with restriction to the first 100 upregulated and downregulated in both datasets [common 68 probesets, 20.5%], c 
mutual probesets expressed similar fold-change values in the same direction (Pearson r: 0.995), d all probesets in both datasets were represented 
by volcano plots where each point represent a single probeset with fold change values on the x axis and logarithmic t test p value on the y axis [red 
and blue (first 100) dots indicating significant probesets, gray dots indicating non-significant probesets]

http://proteinatlas.org
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Discussion
In this study, we performed bioinformatic analysis using 
microarray analysis to identify biomarkers related to BC 
which hold the potential to substantially sort between 
protein patterns for BC and normal tissue. Four datasets 
were used herein to categorize DEGs and validate results. 
The fact that the common probes were excessively high, 
we opted to select the first 100 upregulated and down-
regulated probes in tumor samples. With this approach, 
the high number of significant probesets (2888), which is 
an indication that the probability of false positives may be 
low, was narrowed to 68 common significant probesets. 
The comparable fold-change values of the shared probe-
sets in both datasets behaved in the same manner. That 
is, the common proteins were upregulated and downreg-
ulated in both datasets. This is indicative that the effect 
of these common probesets on the formation of tumo-
rigenesis can be determined independently in different 
experiment settings, thus possessing strong differentiat-
ing properties between cancer and healthy tissue.

GEO and STRING analysis
The GO enrichment analysis conducted with the 68 com-
mon probes demonstrates that most of these genes have 
functions related to cell division and mitosis; additionally, 

they were mostly found to encode proteins found in the 
“cell cycle-related pathways.” These included “regulation 
of cell cycle checkpoints” and “separation of sister chro-
matids,” which are key pathways of cellular and nuclear 
division, and are proposed to lead to cancer development 
[20]. The lack of commonly downregulated genes in BC 
samples indicates that these genes may have false-posi-
tive findings. Nevertheless, GEO data and STRING anal-
ysis results suggest that the trigger for BC development 
may be by accelerating biological mechanisms and path-
ways rather than inhibiting them. This could contribute 
to the selection of drugs and treatment approaches that 
suppress the accelerated pathways.

Specifically, the interaction between eight DEGs 
(CCNB1, CCNB2, CDC20, CDCA5, CENPF, KNTC1, 
BUB1B, and AURKB) was particularly apparent. CCNB1 
has previously been reported in several studies on BC 
[21–23]. It encodes a key regulatory protein involved 
in the replication of nuclear matter by creating a com-
plex with CDC2 (cell division cycle) also known as p34. 
Together, they control the mitosis at the G2/M-specific 
checkpoint [24]. Although CDC2 was not detected in this 
study, other regulatory genes responsible for the cell divi-
sion cycle were enriched in the GEO and STRING anal-
ysis. This is likely to imbalance in the mitotic activity in 

Fig. 2  The protein-protein interaction (PPI) analysis reveals a significant core networks between mutually upregulated differentially expressed 
genes (DEGs), but b nearly no connections between downregulated DEGs were observed
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BC samples. The CCNB1 gene is located on chromosome 
5q13.2 and is composed of 9 exons; it encodes a 2029 bp 
mRNA and its longest transcript encodes a protein of 
433 aa. Some SNPs on this gene have been previously 
reported in relation to cancer development; however, 
these SNPs have not been assessed in BC yet.

The spindle checkpoint kinase BUB1B (BUB1 mitotic 
checkpoint serine/threonine kinase beta) is involved 
in mitotic checkpoint and has recently been reported 
in a study as a hub candidate gene for BC [24]. It is 
thought to be localized to the kinetochore and delays 

the anaphase-promoting complex/cyclosome, enabling 
chromosomes to properly segregate [25]. Located on 
chromosome 15q15.1, it encodes an mRNA of 3669 bp 
and a protein of 1050 aa, and its impaired activity has 
been implicated in the formation of breast cancer [26].

Furthermore, similar oncogenes, including CCNB1, 
CDC20, and AURKA from the aurora kinase group 
were reported as hub genes by Zhang et  al. [27], 
recently. Our study also supports their Go and KEGG 
enrichment analyses of DEGs, which implies the impor-
tance of mitotic checkpoints.

Fig. 3  The first validation study conducted with the GSE52519 dataset a revealed four clusters for the 57 mutual probesets, the rightmost group in 
the heat map represents the normal samples (N), two BC samples were located in the same cluster (ST1), four BC samples were clustered in the third 
group (ST2), and the fourth cluster included three BC samples that clustered separately (ST3); this validation included the CKAP2L and AURKB genes 
[red arrows] that were upregulated in ST2 and ST3 [BC and control samples are represented on the vertical axis, probes (genes) on the horizontal 
axis; red, black, and green colors represent high, medium, and low gene expression levels, respectively]. b The Heuristic Online Phenotype 
Prediction (HOPP), a gene expression analysis algorithm that employs PEARSON (r) correlations, grouped both (normal and BC) phenotypes and 
predicted two BC samples along with the normal sample
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Validations studies
Two validation studies were conducted. The first one 
showed clear differentiation between tumor and normal 
samples. Almost none of the upregulated genes in tumor 
samples had high expression in normal samples. How-
ever, several upregulated genes in normal samples were 
also upregulated in some of the BC samples. Thus, genes 
with increased expression in the BC showed an enhanced 
discrimination power. This initial validation clustered 
the probes into four distinct groups. Two BC samples 
(ST1) were clustered with healthy tissues (N) and did 
not express the upregulated genes in BC, but rather 
expressed genes that were downregulated in tumor sam-
ples. The ST2 cluster containing 4 tumor samples showed 
increased expression in genes that were upregulated in 
the tumors. They behaved as expected from tumor sam-
ples. The final cluster (ST3) included 3 BC samples and 
expressed slightly less the upregulated genes in tumor 
samples. This indicates that based on the common 57 
gene expressions, BC samples revealed subgroups that 
are comparable to or distinct from healthy tissue sam-
ples. Due to the fact that the datasets lacked information 
on tumor subtypes, a clustering of probes based on BC 
subtypes could not be implemented in this study. Nev-
ertheless, provided that the dataset includes the BC sub-
type information, this can be accomplished and might 
offer alternative approaches and specific genes for per-
sonalized treatments.

The second validation dataset, although acquired from 
a different platform, was also capable of distinguishing 
between subtypes based on the common 52 genes out 
of 68, but to a lower extent. This dataset was composed 
of 86 samples with 4 normal samples and separated the 
BC samples into 3 subtypes. The distinction was not as 
apparent as it was in the first validation, due to the fact 
that there were multiple probesets corresponding to the 
same gene. Moreover, some probesets had no contribu-
tion to the separation, but nevertheless, a separation 
between BC subtypes was still noticeable.

Thus, based on the validation studies, the 68 featured 
proteins have been produced in two different platforms 
and distinguished not just BC from normal tissue but 
also differentiated between subtypes of BC.

Protein database
Protein database investigations led to the prominence 
of four of these 68 proteins (CKAP2L, AURKB, APIP, 
LGALS3) which were found consistent with the results 
of statistical protein levels presented herein. CKAP2L 
(cytoskeleton-associated protein 2-like) is involved in 
spindle organization and cell cycle progression from pro-
metaphase to telophase [28]. AURKB (aurora kinase B), 
a member of the kinase family, is thought to have a role 

in the control of chromosomal alignment and segrega-
tion during mitosis by interacting with microtubules. 
A group of small-molecule inhibitors of AURKB, with 
ongoing or completed Phase I and II trials, have recently 
been proposed as potential drugs for cancer treatment 
[29]. Given that the expression levels of CKAP2L and 
AURKB statistically increased in BC samples, this could 
be a promising approach to investigate. APIP (APAF-1 
interacting protein) is a protein found mostly in the cyto-
sol and interacts with Apaf-1 (apoptotic protease activat-
ing factor-1), which holds a central role in the initiation 
to form the apoptosome complex and downstream path-
way to intrinsic apoptosis [30]. APIP is thought to block 
the intrinsic mitochondrial apoptosis pathway via two 
routes, one Apaf-1-dependent [31] and the other Apaf-
1-independent [32]. The downregulation of APIP expres-
sion in BC tissue samples could, however, be indicative 
of the absence of a regulatory protein. Similarly, mRNA 
and protein expressions of APIP were reported down-
regulated in non-small cell lung carcinoma [33]. LGALS3 
(galectin 3), a member of the galectin family of carbo-
hydrate-binding proteins, has previously been reported 
to induce apoptosis in human breast cancer cell lines 
through TRAIL signals that were dependent on increased 
PTEN activation and decreased PI3K/AKT survival path-
way [34]. Downregulation of LGALS3 in the BC tissue 
most likely intervenes with TRAIL-induced apoptotic 
pathways. However, these findings contradict Oka et  al. 
[35], who reported that overexpression of LGALS3 pro-
tects J82 human bladder cancer cells against TRAIL-
induced apoptosis [35]. This contradiction can most 
likely be explained by the diverse apoptotic molecular 
pathways in different cell lines [34, 35].

BC is one of the most studied cancer types in the bio-
informatic analysis due to its prevalence in humanity 
[27, 36, 37]. However, the use of different datasets as well 
as various types of statistical approaches, which improve 
constantly diverse biomarkers is constantly being pre-
dicted for BC [27, 36, 37], thus underlying the multiple 
factorial nature of BC and increasing the value of bioin-
formatic studies.

Conclusions
Considering these results, it seems that these 68 proteins, 
validated with different datasets on different platforms can 
be suggested as prominent candidate proteins for further 
investigations for biomarker detection. Moreover, based 
on the supportive findings, the six featured proteins can 
be proposed as possible biomarkers for BC, for which our 
laboratory has begun cell culture investigations to confirm 
our results. However, their efficacy in the BC subtype dif-
ferentiation yet remains unclear. The global burden of BC 
has been previously reported [3, 4], and most developed 
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countries in all five continents with high to moderate HDI 
levels suffer from BC today. Still, an increase is predicted 
in the next two decades, for which the countries with the 
highest HDI levels are still in the lead. This fact increases 
the urgency to uncover accurate biomarkers for early 
detection, prognosis assessment, and most importantly 
repurposing drugs or the discovery of new target agents 
and different treatment approaches. As a closing remark, 
it is of utmost importance to observe the long-term effects 
of the COVID-19 pandemic, which might have a reflection 
on the incidence and mortality rates of BC.
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