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Sixteen new lung function signals identified through
1000 Genomes Project reference panel imputation
Marı́a Soler Artigas et al.#

Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease.

In 38,199 European ancestry individuals, we studied genome-wide association of forced

expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000

Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550

Europeans. We identify 14 novel loci (Po5� 10� 8) in or near ENSA, RNU5F-1, KCNS3,

AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two

novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the

genetic determinants of these traits and pulmonary diseases in which they are altered.
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L
ung function, as measured by spirometry, predicts morbidity
and mortality1,2. Altered lung function is a key criterion for
the diagnosis of chronic obstructive pulmonary disease

(COPD), a leading cause of death worldwide3,4. The ratio of
forced expiratory volume in 1 s (FEV1) over forced vital capacity
(FVC) defines patients with airflow obstruction, while FEV1 is
used to assess the severity of the obstruction. Reduced FVC values
are seen in restrictive lung diseases such as pulmonary fibrosis5.
While environmental risk factors, such as tobacco smoking or air
pollution, play a significant role in determining lung function6,7,
genetic factors are also important contributors, with estimates of
heritability ranging between 39 and 54% (refs 8,9).

Genome-wide association studies (GWAS) of around 2.5
million common (minor allele frequency (MAF)45%) single-
nucleotide polymorphisms (SNPs) in Europeans have identified
32 loci associated with lung function at genome-wide significance
level (Po5� 10� 8)10–14. However, as for other complex
traits15,16, these loci only explain a limited proportion of the
heritability11,13. Among explanations for the ‘missing heritability’
are a large number of, as yet, undetected common variants
with modest effect sizes, in addition to low-frequency
(1%oMAFr5%) and rare (MAFr1%) variants with larger
effect sizes16,17. Of particular relevance to low-frequency variants,
phase 1 of the 1000 Genomes Project18 sequenced 1,092
individuals from 14 populations, providing an imputation
reference panel of B38 million SNPs and 1.4 million indels,
including autosomal and X chromosome variants.

The aim of the current study, undertaken within the SpiroMeta
consortium, was to improve coverage of low-frequency variants
and detect novel loci associated with lung function by under-
taking imputation of GWAS data to the 1000 Genomes Project18

Phase-1 reference panel in 38,199 individuals of European
ancestry. We meta-analysed GWAS results across 17 studies
and followed up the most significant associations with in silico
data in up to 54,550 Europeans. We identify 14 new loci
associated with lung function at genome-wide significance level,
and novel distinct signals at two previously reported loci. These
include two low-frequency variant association signals, which
seem to be explained by non-synonymous SNPs. The results of
these analyses implicate both previously considered and novel
mechanisms influencing lung function.

Results
We undertook a meta-analysis of 17 GWAS imputed using the
1000 Genomes Project18 Phase-1 reference panel in a study of
38,199 individuals of European ancestry in stage 1 (Fig. 1), of
which 19,532 were individuals not included in the discovery stage
of previous meta-analyses of lung GWAS10–13. Characteristics of
cohort participants, genotyping and imputation are shown in
Supplementary Table 1. Each study adjusted FEV1, FEV1/FVC
and FVC, for age, age2, sex, height and principal components for
population structure, separately for never and ever smokers.
Fourteen studies additionally undertook analyses for X
chromosome variants (33,009 individuals, Supplementary Fig. 1
and Methods). Inverse normally transformed residuals were then
used for association testing within each smoking stratum,
assuming an additive genetic effect. Within each study, we
combined smoking strata association summary statistics using
inverse variance-weighted fixed-effects meta-analysis, and applied
genomic control19 to account for residual population structure
not accounted for by principal components. We subsequently
combined study-specific estimates across studies using inverse
variance weighing, and applied genomic control19 after fixed-
effects meta-analysis. The genomic inflation factor across
autosomal variants was 1.03 for each of the three traits, and

across X chromosome variants was 1.04 for FEV1 and 1.00 for
FEV1/FVC and FVC. Quantile–quantile plots are presented in
Supplementary Fig. 2a. Variants with effective sample sizes (N
effective, product of sample size and imputation quality summed
across studies) o70% were filtered out, and a total of 8,694,268
variants were included in this genome-wide study.

Forty-eight SNPs and seven indels in independent autosomal
chromosome regions (±500 kb either side of sentinel variant)
with stage 1 Po5� 10� 6 were followed up in stage 2 using in
silico data from four studies comprising 54,550 individuals (Fig. 1;
Supplementary Table 2). One SNP on the X chromosome also
met these criteria and was followed up in a subset of three studies
comprising 52,359 individuals (Supplementary Fig. 1;
Supplementary Table 2). Characteristics of follow-up (stage 2)
cohort participants, genotyping and imputation are shown in
Supplementary Table 1. Stage-2 studies adjusted the traits for age,
age2, sex, height and principal components to account for
population structure and ever-smoking status, and also undertook
association testing on the inverse normally transformed residuals
assuming additive genetic effects. Stage-2 estimates were
combined across studies, and then with stage-1 estimates, using
inverse variance-weighted fixed-effects meta-analysis. Thirteen
SNPs and three indels, each representing new signals of
association, met a genome-wide significance threshold corrected
for multiple testing (Po5� 10� 8) after combining stage-1 and
stage-2 results (Table 1; Fig. 2), of which 10 SNPs and three indels
achieved independent replication meeting a Bonferroni-corrected
threshold for 56 tests (Po8.93� 10� 4) in stage 2 alone.

Sixteen novel association signals for FEV1, FEV1/FVC and FVC.
Of the 16 novel signals reaching genome-wide significance, two
represent distinct new signals for FEV1/FVC in previously reported
loci10,12 (stage-1 P value conditioned on previously reported
variant o5� 10� 6). Among the remaining 14, five new loci were
identified for FEV1, six new loci for FEV1/FVC and three new loci
for FVC (Table 1). The sentinel variants at the 16 loci were in or
near the following genes: MCL1-ENSA (1q21.3), LYPLAL1-
RNU5F-1 (1q41), KCNS3-NT5C1B (2p24.2), AK097794 (3q25.32),
NPNT (4q24), GPR126-LOC153910 (6q24.1), ASTN2 (9q33.1),
LHX3 (9q33.1), PTHLH-CCDC91 (12p11.22), TBX3 (12q24.21),
TRIP11 (14q32.12), RIN3 (14q32.12), EMP2-TEKT5 (16p13.13),
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Figure 1 | Study design for autosomal chromosome analyses. The

discovery stage (stage 1) included 17 studies and 38,199 individuals. Fifty-

five variants were followed up in stage 2, which comprised four studies and

54,550 individuals.
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LTBP4 (19q13.2), MIAT-MN1 (22q12.1) and on chromosome X,
AP1S2-GRPR (Xp22.2) (Supplementary Fig. 2b,c). To gain further
insight into the associated variants, we assessed whether the novel
sentinel variants, or their proxies, were associated with gene
expression in lung tissues20 and blood21 (Methods, Supplementary
Methods; Supplementary Table 3a) or were in DNase
hypersensitivity sites22 in relevant cell types (Methods;
Supplementary Table 3b). For relevant genes, we investigated
RNA-seq splice isoforms in human bronchial epithelial cells
(Supplementary Methods; Supplementary Fig. 3), searched for
evidence of protein expression in the respiratory system23

(Supplementary Table 3c), assessed differential expression across
the pseudoglandular and canalicular stages of fetal human lung
development (Methods; Supplementary Table 3d) and assessed
evidence for differences in gene expression in bronchial epithelial
brush samples from COPD cases and smoking controls (Methods;
Supplementary Table 3e).

The two novel signals in known loci were the strongest
(Po5� 10� 23) association signals after meta-analysing

stage 1 and 2. The strongest signal was for a low-frequency
SNP near GPR126 (rs148274477, MAF¼ 2.4%, intergenic on
chromosome 6) associated with FEV1/FVC (P¼ 9.6� 10� 26,
Table 1) and in high linkage disequilibrium (LD, r2¼ 0.85) with a
missense variant (rs17280293 (Ser123Gly), Supplementary
Table 3f) in GPR126, but distinct from the previously reported
signal for FEV1/FVC in this region10,13 (stage-1 P value for
rs148274477 conditioning on rs3817928 (ref. 10) and rs262129
(ref. 13)¼ 1.86� 10� 7, unconditional stage-1 P¼ 2.68� 10� 9).
GPR126 encodes a G-protein-coupled receptor and is expressed
in adult and fetal lung tissue24,25 (Supplementary Table 3d).
Other studies have shown that GPR126 is required for mice
embryonic viability and cardiovascular development26, and that
GPR126 is expressed in adult mice lung27. More recently, GPR126
has been shown to bind type-IV collagen, a major collagen in the
lung, leading to cAMP signalling28.

The second strongest signal (P¼ 1.5� 10� 23, Table 1) was an
intronic SNP (rs6856422) in NPNT on chromosome 4 associated
with FEV1/FVC, distinct from the previously discovered signal for

Table 1 | Variants associated with FEV1, FEV1/FVC or FVC.

rs number
(chr:position)

Gene (function) eQTL

gene
Coded
allele/
other
allele

Measure Stage 1 Stage 2 Meta-analysis

Coded
allele
freq.

N Beta
(s.e.)

P Coded
allele
freq.

N Beta (s.e.) P Beta (s.e.) P

rs6681426
(chr1:150586971)

MCL1

(dist.¼ 34,757),
ENSA

(dist.¼ 7,628)

ARNT G/A FEV1 0.36 37,944 0.042
(0.008)

1.07� 10� 7 0.35 5,4301 0.021
(0.006)

1.13� 10� 3 0.029
(0.005)

4.35� 10�9

rs201204531
(chr1:219963090)

LYPLAL1

(dist.¼ 576,883),
RNU5F-1

(dist.¼ 83,529)

— A/ATG FEV1/FVC 0.41 34,866 �0.038
(0.008)

1.98� 10�6 0.38 53,760 �0.027
(0.006)

1.77� 10� 5
�0.031
(0.005)

2.68� 10� 10

rs61067109
(chr2:18292452)

KCNS3

(dist.¼ 178,227),
NT5C1B

(dist.¼443,537)

— G/A FEV1/FVC 0.77 37,416 �0.050
(0.009)

3.09� 10�8 0.77 54,341 �0.042
(0.007)

6.56� 10�9
�0.045
(0.006)

1.40� 10� 15

rs6441207
(chr3:158282459)

AK097794

(ncRNA_intronic)
MLF1 C/T FVC 0.59 36,173 0.036

(0.008)
4.54� 10�6 0.59 53,174 0.036

(0.006)
5.85� 10�9 0.036

(0.005)
1.27� 10� 13

rs6856422
(chr4:106841962)

NPNT (intronic) — G/T FEV1/FVC 0.53 31,446 �0.044
(0.008)

1.30� 10� 7 0.56 49,026 �0.055
(0.006)

1.15� 10� 17
�0.051
(0.005)

1.51� 10� 23

rs148274477
(chr6:142838173)

GPR126

(dist.¼ 70,770),
LOC153910

(dist.¼ 9,419)

— C/T FEV1/FVC 0.98 30,398 �0.161
(0.027)

2.68� 10�9 0.97 50,047 �0.162
(0.019)

5.63� 10� 18
�0.162
(0.015)

9.58� 10� 26

rs34886460
(chr9:119359372)

ASTN2 (intronic) — T/TA FEV1/FVC 0.53 37,567 0.041
(0.008)

6.75� 10�8 0.54 53,920 0.025
(0.006)

4.07� 10� 5 0.031
(0.005)

4.72� 10� 11

rs2274116
(chr9:139094805)

LHX3 (exonic) QSOX2 C/T FVC 0.67 32,004 0.041
(0.009)

2.68� 10�6 0.66 51,730 0.038
(0.007)

4.20� 10�9 0.039
(0.005)

5.55� 10� 14

rs11383346
(chr12:28283187)

PTHLH

(dist.¼ 158,271),
CCDC91

(dist.¼ 126,946)

CCDC91 A/AT FVC 0.41 37,254 �0.043
(0.008)

3.83� 10�8 0.41 53,931 �0.041
(0.006)

4.42� 10� 11
�0.042
(0.005)

9.52� 10� 18

rs10850377
(chr12:115201436)

TBX3

(dist.¼ 79,467),
MED13L

(dist.¼ 1,194,945)

— G/A FEV1 0.67 37,268 �0.047
(0.008)

6.68� 10�9 0.65 52,722 �0.028
(0.006)

1.55� 10� 5
�0.035
(0.005)

2.50� 10� 12

rs7155279
(chr14:92485881)

TRIP11 (intronic) ATXN3 G/T FEV1 0.64 37,691 �0.041
(0.008)

1.39� 10� 7 0.64 54,471 �0.022
(0.006)

4.17� 10�4
�0.030
(0.005)

1.41� 10�9

rs117068593
(chr14:93118229)

RIN3 (exonic) — C/T FEV1 0.82 34,496 �0.048
(0.010)

2.72� 10�6 0.81 52,572 �0.027
(0.008)

5.68� 10�4
�0.035
(0.006)

2.25� 10�8

rs12149828
(chr16:10706328)

EMP2

(dist.¼ 31,789),
TEKT5

(dist.¼ 15,033)

— G/A FEV1/FVC 0.83 33,999 0.049
(0.010)

3.16� 10�6 0.83 50,807 0.035
(0.008)

3.33� 10� 5 0.040
(0.007)

7.65� 10� 10

rs113473882
(chr19:41124155)

LTBP4 (intronic) — T/C FEV1/FVC 0.98 32,207 �0.174
(0.033)

1.48� 10� 7 0.99 52,907 �0.138
(0.028)

1.00� 10�6
�0.153
(0.021)

9.95� 10� 13

rs134041
(chr22:28056338)

MIAT

(dist.¼ 983,898),
MN1

(dist.¼ 87,927)

— T/C FEV1 0.43 37,669 �0.045
(0.008)

4.19� 10� 9 0.44 52,770 �0.018
(0.006)

4.19� 10� 3
�0.028
(0.005)

3.03� 10�9

rs7050036
(chrX:15964845)

AP1S2

(dist.¼ 91,708),
GRPR

(dist.¼ 176,579)

— T/A FEV1/FVC 0.38 32,285 �0.041
(0.007)

4.37� 10�9 0.39 50,530 �0.013
(0.005)

1.60� 10� 2
�0.023
(0.004)

4.14� 10�8

Chr., chromosome; dist., distance; eQTL, expression quantitative trait loci; FDR, false discovery rate; FEV1, forced expiratory volume in 1 s; freq., frequency; FVC, forced vital capacity.
Results are shown for each sentinel variant associated (Po5� 10�8) with FEV1, FEV1/FVC or FVC in a joint analysis of up to 92,744 individuals of European ancestry, ordered by chromosome and
position. The allele frequency presented in the table corresponds to the coded allele (Coded allele freq.), which was chosen as the reference allele in the 1000 Genomes Project reference panel, and in
most instances (but not always) is the major allele. Two-sided P values are given for stage 1, stage 2 and the meta-analysis of both stages. Variants reaching independent replication in stage 2 (P¼0.05/
56¼8.93� 10�4) are indicated with their stage-2 P value in bold. The sample sizes (N) shown are the effective sample sizes. The effective sample size within each study is the product of sample size
and the imputation quality metric. Beta values reflect effect-size estimates on an inverse-normal transformed scale after adjustments for age, age2, sex, height and ancestry principal components, and
stratified by ever-smoking status. ‘eQTL gene’ presents a gene expressed in the lung, whose expression is associated with the highest ranking proxy for the sentinel variant (ranking on r2 with sentinel
first, all with r240.8, and on eQTL P-value second, all with Po5� 10� 5) with FDR o10%.
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FEV1 in this region10,12,13. The stage-1 P value for this variant
conditioned on the previously reported sentinel SNPs (rs17036341
(ref. 10) and rs10516526 (refs 12,13)) and on the sentinel SNP for
FEV1 in this analysis (rs12374256, INTS12 intron) was 4.7� 10� 6

(unconditional stage-1 P¼ 1.30� 10� 7). Proxies of the sentinel
SNP were associated with expression of INTS12 and GSTCD in
blood (Supplementary Table 3a). INTS12, GSTCD and NPNT are
contiguously positioned at 4q24, and are all expressed in adult and
fetal lung tissues (Supplementary Table 3c,d). Our previous work
characterizing GSTCD and INTS12 showed that they are oppositely
transcribed genes that are to some extent co-ordinately regulated,
although while GSTCD expression in human lung tissue is
ubiquitous, INTS12 expression was predominantly in the nucleus
of epithelial cells and pneumocytes29.

Among the 14 novel loci, six novel loci were associated with
FEV1/FVC. One of them was a low-frequency variant
(rs113473882, intronic in LTBP4 on chromosome 19,
MAF¼ 1.5%, Table 1) in almost complete LD (r2¼ 0.99) with a
missense variant (rs34093919, Asp752Asn, Supplementary
Table 3f) in LTBP4, which encodes a protein that binds
transforming growth factor beta (TGFb) as it is secreted and
targeted to the extracellular matrix. Mice deficient in ltbp4
displayed defects in lung septation and elastogenesis, which may
be TGFb2 and fibulin-5 dependent30, and disruption of this gene
in mice led to abnormal lung development, cardiomyopathy and

colorectal cancer31. Variants near LTBP4, uncorrelated (r2o0.05)
with the sentinel SNP we report here, have been associated with
COPD32 and smoking behaviour33. A further novel FEV1/FVC
locus mapping near AP1S2 is the first to be reported for lung
function on the X chromosome; sentinel SNP (rs7050036,
intergenic) proxies were associated with the expression of
AP1S2 and ZRSR2 in lung tissue (Supplementary Table 3a).
Other new loci for FEV1/FVC were in or near KCNS3 (2p24.2),
ASTN2 (9q33.1), RNU5F-1 (1q41) and TEKT5 (16p13.13).

The strongest signal for FEV1 in a novel locus was upstream of
TBX3 on chromosome 12 (Table 1); TBX3 is involved in the
TGFb1 signalling pathway34. At a second novel locus for FEV1

(rs7155279, TRIP11 intron on chromosome 14, Table 1), proxies
of the sentinel variant were associated with lung and blood
expression of TRIP11. TRIP11 encodes a protein associated with
the Golgi apparatus35. In the lung, rs7155279 showed strongest
association with expression of ATXN3 (Supplementary Table 3a),
which encodes ataxin 3, a deubiquitinating enzyme. Expanded
trinucleotide repeats in ATXN3 cause spinocerebellar ataxia-3
(ref. 36). In blood, a proxy (r2¼ 0.94) for rs7155279 showed
strong association (P¼ 3� 10� 34, Supplementary Table 3a) with
the expression of FBLN5. Fibulin-5 was shown to be implicated in
tissue repair in COPD37 and elastogenesis and lung
development30. A third signal for FEV1 was a missense variant
(rs117068593, Arg279Cys, Supplementary Table 3f) in RIN3 on
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Figure 2 | Manhattan plots for association results. (a) FEV1, (b) FEV1/FVC and (c) FVC. Manhattan plots ordered by chromosome and position for stage-

1 results. Variants with Po5� 10�6 are indicated in red. Novel signals that reached genome-wide significance after meta-analysing stage 1 and stage 2 are

labelled with the nearest gene. Only variants with N effective Z70% are presented here.
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chromosome 14 (Table 1), which was B632 kb from the TRIP11
sentinel SNP (rs7155279) and independent from it
(r2¼ 8.84� 10� 5). Although this is the first report of association
of a RIN3 variant with lung function, a correlated variant (rs754388,
r2¼ 0.99) was recently associated with moderate to severe COPD,
although the association did not replicate in an independent
study38. In a fourth novel region for FEV1, on chromosome 1, a
sentinel SNP, rs6681426, B8 kb downstream of ENSA (Table 1)
and a second signal B700kb apart (rs4926386, Supplementary
Table 2a) were both associated with ARNT expression in lung
(Supplementary Table 3a). ARNT is differentially expressed during
fetal lung development (Supplementary Table 3d) and acts as a co-
factor for transcriptional regulation by hypoxia-inducible factor 1
during lung development39 and may regulate cytokine responses40.
SNP rs6681426 was also associated with the expression of LASS2
(also known as CERS2) in lung tissue (Supplementary Table 3a);
lass2 knock-out mice develop lung inflammation and airway
obstruction41. The other new locus for FEV1 was near MN1
(22q12.1).

All three novel loci for FVC had sentinel variants or close
proxies associated with expression of a nearby gene in lung,
implicating CCDC91, MLF1 and QSOX2, located on chromo-
somes 12, 3 and 9, respectively. The putative function of the key
genes in each of the two known and 14 novel loci for FEV1, FEV1/
FVC and FVC are summarized in Supplementary Table 4.

Functional characterization of novel signals. The protein pro-
ducts of genes nearest to the sentinel variant of novel signals for
lung function were expressed in bronchial epithelial cells, pneu-
mocytes or lung macrophages (Supplementary Table 3c). Among
the 16 novel signals of association with lung function, sentinel
variants or close proxies were cis expression quantitative trait loci
(eQTLs) in lung for ARNT, MLF1, QSOX2, CCDC91 and ATXN3
(Table 1; Supplementary Table 3a), and in eight loci the sentinel
variant or at least one strong proxy (r240.8) was in a DNase
hypersensitivity site in a cell type potentially relevant to lung
function (in or near ENSA, RNU5F-1, ASTN2, CCDC91, TBX3,
RIN3, TEKT5 and MN1, Supplementary Table 3b). The sentinel
variant association was explained (conditional P40.01) by a mis-
sense variant in each of the two novel signals in which we detected
a low-frequency sentinel variant (near GPR126 and in LTBP4), and
was explained in four of the remaining novel signals by a putatively
functional variant (in or near ENSA, AK097794, TEKT5 and MN1,
Supplementary Table 3f and Methods). Genes in four of the novel
loci showed differential expression across the pseudoglandular and
canalicular stages of fetal lung development, particularly EMP2
(Supplementary Table 3d). MLF1 and ATXN3 showed differences
in expression levels in bronchial brushings between COPD cases
and controls (Supplementary Table 3e). We detected novel splice
isoforms of 420% abundance for GFM1, TRIM32, LTBP4 and
MN1 in human bronchial epithelial cells (Supplementary Fig. 3;
Supplementary Methods).

Association in children. To assess whether the 16 new sentinel
variants associated with lung, function in adults may act through
an effect on lung development, we assessed their association in
the ALSPAC study42 that includes 5,062 children (Supplementary
Table 5a). Eleven of the 16 sentinel variants showed consistent
directions of effect in adults and children. The association with
FVC of variant rs6441207 on chromosome 3 in the noncoding
RNA AK097794 exceeded a Bonferroni-corrected threshold for 16
tests (Supplementary Table 5a).

Association with smoking and gene by smoking interaction.
The 16 new variants had consistent effect sizes in never smokers

and ever smokers, and no gene–smoking interaction (P40.05) in
stage 1 (Supplementary Table 5b). We found no evidence that any
of these signals were driven by smoking behaviour. Only the two-
base-pair insertion on chromosome 1 (rs201204531) revealed an
association (P¼ 1.5� 10� 3) with smoking behaviour (heavy-
versus never-smoking status) that met a Bonferroni-corrected
threshold for 16 tests (Supplementary Table 5c). However, this
variant also showed an association with FEV1/FVC in never
smokers, and the allele associated with higher likelihood
of being a smoker was associated with increased FEV1/FVC
(Supplementary Table 5b,c).

Associations with other traits. We queried the GWAS catalog43

for variants in 2-Mb regions centred on the sentinel variant for
the 16 loci (Supplementary Table 5d). Five loci contained variants
associated with height44–46 (Supplementary Table 5d). In the
GPR126 and LHX3 loci, the previously reported height variants
were not correlated (r2o0.2) with the lung function variants
reported here. In the AK097794, CCDC91 and TRIP11 loci, the
variants associated with height were correlated (r240.3) with the
lung function sentinel variants, but the alleles associated with
reduced height were associated with increased FEV1 or FVC.
Associations with other traits have been reported for variants in
LD (r240.3) with sentinel variants in regions of RIN3 (Paget’s
disease47 and bone mineral density48), ENSA (body fat mass49

and melanoma50) and LHX3 (thyroid hormone levels51). None of
the novel signals relate to known asthma loci, and the association
findings were consistent after removing individuals with asthma
(Supplementary Fig. 4).

Genetic architecture of lung function traits. The proportion of
the additive polygenic variance explained by the 49 signals dis-
covered to date (Supplementary Table 6), including new and
previously reported signals10–14 is 4.0% for FEV1, 5.4% for FEV1/
FVC and 3.20% for FVC (Supplementary Table 7). These
estimates are likely upper bounds on the proportion of the
variance explained due to the winner’s curse bias. Across the 49
signals, we observed larger effect sizes for associations with lower-
frequency variants (Fig. 3), supporting the hypothesis that lower-
frequency variants will contribute to explaining the missing
heritability16.

We examined the increase in coverage of low-frequency and
common variants by the 1000 Genomes Project reference panel,
compared with the HapMap imputation reference panel, at both
the novel and previously reported loci (Supplementary Fig. 5a).
The two association signals where the 1000 Genomes sentinel
variants had low MAF (o5%), were not present when restricting
the results only to variants that could be imputed using the
HapMap imputation panel (rs113473882 and rs148274477 in
Supplementary Fig. 5a).

For each of the 32 previously discovered regions10–14, we
identified the most strongly associated variant present on the
1000 Genomes Project18 reference panel and the most strongly
associated variant present on the HapMap reference panel using
stage-1 results, and compared the stage-1 MAFs between these
two groups of variants. The 1000 Genomes sentinel variants in or
near GPR126 (rs148274477), TGFB2 (rs147187942) and MMP15
(rs150232756) had MAFs that were more than twofold lower than
the HapMap sentinel variant MAFs (Supplementary Fig. 5b) and
were statistically independent (r2r0.06) from the previously
discovered HapMap-imputed sentinel variants13. The GPR126
1000 Genomes-imputed sentinel was described above as one of
the 16 new signals. We tested the association of the 1000
Genomes-imputed sentinel variants near TGFB2 and MMP15 in
UK BiLEVE (Supplementary Table 8), and found supportive
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evidence of association for the signal near TGFB2 (rs147187942,
MAF¼ 9%, P¼ 5.7� 10� 3).

Pathway analyses. We undertook a pathway analysis using
MAGENTA v2 (ref. 52) and stage-1 genome-wide results for FEV1,
FEV1/FVC and FVC (Supplementary Methods). For
FVC, the platelet-derived growth factor signalling, and the
chromatin-packaging and -remodelling pathways were signi-
ficant (P¼ 2� 10� 4, false discovery rate (FDR)o0.3% and
P¼ 1.82� 10� 4, FDRo4%, respectively) (Supplementary Table 9).

Discussion
In this study, we aimed to improve coverage of low-frequency
variants and detect novel loci associated with lung function, by
undertaking imputation of GWAS data in 17 studies and 38,199
individuals to the 1000 Genomes Project18 reference panel, and
by following up the most significant signals in an additional
54,550 individuals. Overall, 16 new association signals attained a
genome-wide significance threshold corrected for multiple testing
(Po5� 10� 8) after meta-analysing stage 1 and stage 2, including
15 autosomal and one X chromosome signal. While two of the
new findings relate to novel signals for FEV1/FVC in previously
reported regions10,12, five new loci were identified for FEV1, six
new loci for FEV1/FVC and three new loci for FVC. Including the
16 signals discovered in these analyses, the number of lung
function signals discovered to date is 49 (refs 10–14), and they
jointly explain a modest proportion of the additive polygenic
variance (4.0% for FEV1, 5.4% for FEV1/FVC and 3.2% for FVC).

Some of the 49 distinct lung function signals10–14 seem to
cluster close to each other. If we define regions as 500 kb either
side of the sentinel variants, there are three regions that each
include two distinct signals (in or near INTS12-GSTCD-NPNT,
GPR126 and PTCH1 (refs 10,12)), so that the 49 signals would
map to 46 loci. If we use a wider definition of region (1,000 kb
either side of the sentinel), there are four regions that each
include two distinct signals (in or near INTS12-GSTCD-NPNT,
GPR126, PTCH1 (refs 10,12) and TRIP11-RIN3). In addition, the
human leukocyte antigen region on chromosome 6 includes three
distinct signals (in or near ZKSCAN3-NCR3-AGER10,12,13)
within 3.8Mb. Furthermore, we have shown evidence of an
additional signal in the TGFB2 region, and the new lung function
signal in LTBP4 lies 179 kb away from a known COPD signal32.
These findings are consistent with reports from very large studies
of height and lipids53,54, which report multiple signals in
associated regions, and highlight the importance of taking into
account LD between variants to improve our understanding of

known regions. Multiple signals within known regions are likely
to explain some of the hidden heritability of these traits.

To identify pathways relevant to lung function, we undertook
additional analyses using MAGENTA, which have implicated
pathways for platelet-derived growth factor signalling and chroma-
tin-packaging and -remodelling. Independent analyses undertaken
in a concurrent study by the UK BiLEVE consortium, which focused
on the extremes of the lung function distribution55, highlight the
histone subset of the chromatin-packaging and -remodelling
pathway. The TGFb signalling pathway has now been implicated
by three independent loci: an FEV1/FVC signal explained by a
missense variant in LTBP4, which encodes a protein that binds
TGFb; an FEV1 signal upstream of TBX3, which is involved in the
TGFb1 signalling pathway34; and a previously reported signal
downstream of TGFB2 (ref. 17). In addition, a pathway involving
fibulin-5 has been implicated by two of the novel loci (LTBP4 and
TRIP11). The identification, through different approaches, of
pathways which appear to be involved in determining lung
function should help focus future functional studies.

Pathways affecting lung function also have the potential to
affect COPD risk, since lung function measures are used to
diagnose the disease. Currently, 13 signals (in or near TGFB2,
TNS1, RARB, FAM13A, GSTCD, HHIP, HTR4, ADAM19, AGER,
LOC153910, C10orf11, RIN3 and THSD4) out of the 49 lung
function signals discovered to date10–14 have also shown
association with some definition of COPD38,56–60. This
illustrates that the study of lung function measures is a
powerful approach to bring insights into the genetics of COPD.

In agreement with previous findings for other lung function
loci12,13, none of the 16 new associations seem to be driven by
either smoking behaviour or by a gene–smoking interaction. One
variant showed association with smoking behaviour that met a
Bonferroni correction for 16 tests in UK BiLEVE. This variant also
had an effect in never smokers in stage 1, and the allele associated
with increased lung function was also associated with increased risk
of smoking, which does not suggest an association with lung
function mediated by smoking behaviour. Variants in five out of the
16 loci associated with lung function in this study have also shown
associations with height44–46. However, the variants associated with
height were either independent of those associated with lung
function, or if they were correlated, the alleles associated with
increased height, were associated with decreased FEV1 or FVC. If
the association with lung function was driven by an effect on height,
we would expect consistent direction of effect between these two
traits. Therefore, the associations identified for lung function in
these regions are not likely to be driven by associations with height.

This study had a large follow-up stage, which included 54,550
individuals, of which 48,943 were contributed by the UK BiLEVE
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Figure 3 | Minor allele frequency against effect-size plots (a) FEV1, (b) FEV1/FVC and (c) FVC. MAF is plotted against stage-1 effect sizes for variants

within the 33 known10–14 and the 16 new signals, which had stage-1 Po0.05 for association with FEV1, FEV1/FVC and FVC separately. Known signals are

represented with blue circles and new signals are represented with orange triangles.
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study. UK BiLEVE is a particularly powerful study since it has
sampled UK Biobank individuals from the extremes of the lung
function distribution, and it has spirometry performed in a
uniform way across individuals. Had these data been available
when we undertook the discovery stage of this study, their
addition would have greatly improved the discovery power.
Nevertheless, incorporating these data into the follow-up stage
improved power to provide replication and deal with potential
winners’ curse bias. Another strength of the current study design
was the increased coverage of common and low-frequency
variants obtained through the imputation to 1000 Genomes
Project18 reference panel. This enabled us to detect two low-allele-
frequency variants (with MAF of 1.5 and 2.4% and stage-1 effect
sizes of 0.17 and 0.16 s.d. units, respectively) that have an effect on
lung function. No associations with lower allele frequency variants
have been detected in this study, despite having power 480% in
discovery to detect associations (Po5� 10� 6) for variants with
MAF of 0.5 and 1%, and effect sizes above 0.3 and 0.2 s.d. units,
respectively. The poorer imputation quality for low-allele-
frequency variants coupled with the strict criteria we used to
select variants for follow-up (N effective Z70%) have probably
affected our ability to detect rare variants. For instance, a variant
representing an additional signal for FEV1/FVC in the GSTCD-
INTS12-NPNT region, reported by the UK BiLEVE study, where it
was directly genotyped55, would have been detected in this
analysis had we used a more lenient threshold (N effective460%).
Imputation quality for rare variants will improve as larger
imputation reference panels become available.

In summary, 16 new association signals for lung function have
been identified in this study, including two signals explained by
non-synonymous low-frequency variants. These findings high-
light new loci not previously connected with lung function or
COPD, and bring new insights into previously detected loci. This
study also highlights the added value of imputing to new
reference panels as they become available. Understanding the
molecular pathways that connect the newly identified loci with
lung function and COPD risk has the potential to point to new
targets for therapeutic intervention.

Methods
Study design. The study consisted of two stages. Stage 1 was a meta-analysis of 17
GWAS in a total of 38,199 individuals of European ancestry. Supplementary
Table 1 gives the details of these studies. Fifty-six variants selected according to the
results in stage 1 were followed up in stage 2 in 54,550 European individuals.

Stage-1 samples. Stage 1 comprised 17 studies: B58C (T1DGC and WTCCC),
BHS1 and -2, EPIC (obese cases and population-based studies), the EUROSPAN
studies (CROATIA-Korcula, ORCADES, CROATIA-Split and CROATIA-Vis),
GS:SFHS, Health 2000, KORA F4, KORA S3, LBC1936, NFBC1966, NSPHS,
SAPALDIA, SHIP and YFS (see Supplementary Table 1a for the definitions of all
abbreviations). All participants provided written informed consent and studies
were approved by local Research Ethics Committees and/or Institutional Review
Boards. Measurements of spirometry for each study are described in the
Supplementary Note. The genotyping platforms and quality-control criteria
implemented by each study are described in Supplementary Table 1b.

Imputation. Imputation to the all ancestries 1000 Genomes Project18 Phase-1
reference panel released in March 2012 was undertaken using MACH61 and
minimac62 or IMPUTE2 (ref. 63) with pre-imputation filters and parameters as
shown in Supplementary Table 1b. Specific software guidelines were used to impute
the non-pseudoautosomal part of the X chromosome. The pseudoautosomal part
of the X chromosome was not included in these analyses. Variants were excluded if
the imputation information, assessed using r2.hat (MACH and minimac) or .info
(IMPUTE2), was o0.3.

Data transformation and association testing in stage 1. Linear regression of
age, age2, sex, height and principal components for population structure was
undertaken on FEV1, FEV1/FVC and FVC separately for ever smokers and never
smokers. The residuals were transformed to ranks and then transformed to nor-
mally distributed z-scores. These transformed residuals were then used as the

phenotype for association testing under an additive genetic model, separately for
ever smokers and never smokers. For X chromosome analyses, residuals for males
and females were analysed separately and dosages for males were coded 0 for 0
copies of the coded allele and 2 for 1 copy of the coded allele. The software used
was specified in Supplementary Table 1b. Studies with related individuals analysed
ever smokers and never smokers together adjusting the regression for ever-smoking
status and used appropriate tests for association in related individuals, as described
in the Supplementary Note.

Meta-analysis of stage-1 data. Quality-control checks on the stage-1 data were
undertaken using GWAtoolbox64 and R version 3.0.2 (see URLs). All meta-analysis
steps were undertaken using inverse variance-weighted fixed-effects meta-analysis.
Effect estimates were flipped across studies so that the coded allele was the reference
allele in the 1000 Genomes Project18 reference panel. For each study with unrelated
individuals, autosomal chromosomes results were meta-analysed between ever
smokers and never smokers. After that, all study-specific standard errors were
corrected using genomic control19. Study-specific genomic inflation factor estimates
are shown in Supplementary Table 1a. Finally, effect-size estimates and s.e. were
combined across studies, and genomic control19 was applied again at the meta-
analysis level. For the X chromosome, studies of unrelated individuals meta-analysed
smoking strata estimates within sex strata and then meta-analysed pooled sex strata
estimates. After that, genomic control19 was applied to each study and results were
meta-analysed across studies. Genomic control19 was applied again after the meta-
analysis. To describe the effect of imperfect imputation on power, for each variant we
report the effective sample size (N effective), which is the sum of the study-specific
products of the sample size and the imputation quality metric. Meta-analysis statistics
and figures were produced using R version 3.0.2 (see URLs).

Selection of variants for stage 2. Variants with N effective o70% were filtered
out before selecting variants for follow-up (8,916,621 variants remained after
filtering). Independent regions (±500 kb from the sentinel variant) were selected
for FEV1, FEV1/FVC and FVC if the sentinel SNP or indel had Po5� 10� 6. If the
same variant was selected for different traits, it was followed up for all the traits. If
two different variants were selected for different traits within the same region, or if
any of the regions selected had already been identified in previous GWAS10–14 but
the sentinel variant was different from that previously reported, conditional
analyses were undertaken to assess whether the signals within the same regions
were distinct. If previously reported sentinel SNPs for a region were strongly
correlated (r240.9), we only conditioned on the SNP that had shown the strongest
association. If two variants were selected for different traits within the same new
region, both variants were taken forward if their P-value conditioning on the other
variant was o5� 10� 6; if not, only the variant with the most significant P value
was taken forward. Variants within known regions were only taken forward if their
P value conditioned on the previously reported variant was o5� 10� 6.
Conditional analyses were undertaken using GCTA65, and B58C data were used to
estimate LD. In total, 56 variants (49 SNPs and seven indels) were taken forward
for follow-up, two of which were distinct signals within previously reported
regions10,12,13. These variants are listed in Supplementary Table 2. Previously
reported signals10–14 were not followed up.

Stage-2 samples. The 48 SNPs and seven indels on autosomal chromosomes were
followed up in up to 54,550 individuals from four studies with in silico data:
ECRHS, PIVUS, TwinsUK and UK BiLEVE (see Supplementary Table 1a for the
definitions of all abbreviations). All participants provided written informed consent
and studies were approved by local Research Ethics Committees and/or Institu-
tional Review Boards. One SNP in the chromosome X was followed up in 52,359
individuals from PIVUS, TwinsUK and UK BiLEVE. Measurements of spirometry
for each study are described in the Supplementary Note.

Meta-analysis of stage-2 data. All stage-2 studies undertook linear regression of
age, age2, sex, height, ever-smoking status and principal components for popula-
tion structure, if available, on FEV1, FEV1/FVC and FVC, then the residuals were
transformed to ranks and to normally distributed Z-scores. These transformed
residuals were then used as the phenotype for association testing under an additive
genetic model. For the X chromosome analyses, allele dosages for hemizygous
males were coded as 2. Effect sizes were flipped to be consistent with the stage-1
estimates, using the reference allele in 1000 Genomes Project18 as the coded allele.
Genomic control19 was applied for studies that undertook the analysis genome-
wide. Effect estimates and s.e. were combined across the stage-2 studies using an
inverse variance-weighted meta-analysis.

Combination of stage 1 and 2 and multiple testing correction. A meta-analysis
of stage-1 and stage-2 results was undertaken using inverse variance-weighted
meta-analysis. We take into account the multiple tests undertaken by describing an
association as genome-wide significant if it has Po5� 10� 8. In addition, we
assessed whether any of the findings achieved independent replication in stage 2
using a threshold corrected for the number of variants followed up (0.05/
56¼ 8.93� 10� 4).
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Functional characterization of novel loci. A series of analyses were undertaken to
provide insights into the expression of genes within the 16 loci (defined as ±1Mb
either side of the sentinel variant) represented here. Blood21 and lung tissue20 eQTL
analyses were undertaken for variants in these loci that were in LD (r240.3) with the
sentinel variant in the region. We assessed whether variants within these loci that
were strongly correlated with the sentinel variants (r240.8) were in DNase
hypersensitivity sites as defined by ENCODE22 for cells potentially relevant to lung
function. We also carried out conditional analyses, using GCTA65, of sentinel
variants conditioning on functional variants within the loci to assess whether the
association signals were explained by functional variants (P value of the sentinel
variant conditioned on the functional variant, conditional P, 40.01). Functional
variants were defined using SIFT66, PolyPhen-2 (ref. 67), CADD68 and GWAVA69

databases. Additional analyses were undertaken for a subset of priority genes within
the 16 loci (description of the selection is given in the Supplementary Methods).
These included RNA-seq analyses to confirm messenger RNA expression in a lung-
relevant cell (bronchial epithelium) and detect novel splice isoforms; assessment of
differential expression across pseudoglandular and canalicular stages of human fetal
lung development using gestational age as a continuous variable in linear
regression25, and assessment of differences in expression levels in bronchial
brushings between COPD cases and smoking controls70. Details for all these analyses
are provided in the Supplementary Methods.

Associations with other traits. The association of the 16 sentinel variants with
the following traits was assessed: lung function in children undertaking the same
analysis as for adults in the ALSPAC data set42; gene by smoking interaction by
undertaking a Z-test comparing the effect of a given variant in ever smokers and in
never smokers using stage-1 results; smoking behaviour by undertaking a logistic
regression analysis with heavy- versus never-smoking status as an outcome in the
UK BiLEVE data set. In addition, the GWAS catalog43 was queried for variants in
2-Mb regions centred on the sentinel variant for the 16 loci. Variants that were
genome-wide significant (Po5� 10� 8) in the GWAS catalog43 and were in LD
(r240.3) with the sentinel variants, or were in genes that contained at least one
variant in LD (r240.3) with the sentinel variants were selected.

Pathway analyses. Stage-1 GWAS results were tested for enrichment of known
biological pathways using MAGENTA v2 (ref. 52). Six databases of biological
pathways, including Ingenuity Pathway (June 2008, number of pathways n¼ 81),
KEGG (2010, n¼ 186), PANTHER Molecular Function (January 2010, n¼ 216),
PANTHER Biological Processes (January 2010, n¼ 217), PANTHER Pathways
(January 2010, n¼ 94) and Gene Ontology (April 2010, n¼ 1778), were tested. An
FDR threshold of 5% was used and significance thresholds were Bonferroni
corrected for each database. Genes within 500 kb either side from the sentinel
variants were flagged in the analysis. Sensitivity analyses were run after removing
genes in the human leukocyte antigen region on chromosome 6. More details on
the method are provided in the Supplementary Methods.

Additional analyses. Heterogeneity tests were undertaken for the 16 sentinel
variants in stage 1. We undertook stepwise conditional analyses as performed by
GCTA65 in each locus to identify additional signals. Full methods and results are
described in the Supplementary Notes.
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