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A procedure for calculating virial coefficients for parallel hard lines, squares, and cubes is outlined, and 

the sixth and seventh virial coefficients are computed for these models. The essential step in the evaluation 

of the star integrals lies in the recognition of the fact that only a few" subintegrals" contribute to each 

virial coefficient, relative to the total number of labeled star integrals. Both the sixth and seventh virial 

coefficients are negative for hard cubes, a fact interesting from the point of view of phase transitions. Ap­

proximations to the excess entropy are given for squares and cubes. 

The procedure for the star integrals is extended to the calculation of approximations to the pair distribu­

tion function and the potential of the mean force. These functions are calculated through the fourth ap­

proximation for hard lines, squares, and cubes. 

The topological graphs needed for the above investigations, together with the values of the related 

integrals in one dimension, are displayed. 

I. INTRODUCTION 

STATISTICAL mechanics correlates the observed 

macroscopic properties of a system with the in­

ferred microscopic properties of the system. The con­

figurational integral 

depends upon the intermolecular potential energy 

function cf>(r) and is related to the macroscopic equa­

tion of state by 

(2) 

P, V, and T have their usual thermodynamic mean­

ings; N is the number of molecules; k is Boltzmann's 

constant; and <I>(rl" " "rN) is the total potential energy 

of the system, which we will assume can be written 

<I>(rl""" rN) = Lcf>ij(rij). 
i<i 

(3) 

The correlation of macroscopic with microscopic 

variables implicit in (2) is not very useful because the 

configurational integral is ordinarily too difficult to 

evaluate. Ursell and Mayer,! using a formalism heavily 

dependent on graph theory, were able to convert (1) 

into a form more useful from the point of view of the 

equation of state. Before giving these results we will 
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G. Hoover, in partial fulfillment of the requirements for the Ph.D. 
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1 H. D. Ursell, Proc. Cambridge Phil. Soc. 23, 685 (1927); 
J. E. Mayer and M. G. Mayer, Statistical Mechanics (John 
Wiley & Sons, Inc., New York, 1940). 

make a brief digression into the related theory of 

graphs.2 

The graphs in which we are interested consist of a 

number of points (representing molecules) and lines 

[a line connecting the molecules i and j represents the 

function !ij=exp( -cf>dkT) -1]. If it is possible to 

trace a path of lines from any point in a graph to any 

other point in the graph the graph is called connected. 

If after removing a point from a connected graph, 

together with all of the lines adjacent to the missing 

point, the resulting graph is connected (no matter 

which point has been removed), the first graph is 

termed a star. Evidently the set of connected graphs 

includes the set of stars. We will denote the number of 

topologically different connected graphs of n unlabeled 

points by C(n) and the corresponding number for 

stars by S(n). By way of orientation we giveS in Table 

I C(n) and Sen) for n<8. The stars of less than eight 

points are listed in Appendix 1. 

With any graph Gi is associated a number gi, the 

number of topologically distinct ways in which the 

graph may be labeled. In Fig. 1 we display the six 

connected graphs of four points together with the gi 

(which we call the degeneracy of the graph) for each 

graph. 

The Ursell-Mayer formalism makes use of graph 

theory, finally obtaining the two Mayer equations 

N 

P/kT= Lbnzn (4) 
n=l 

2 D. Konig, Theorie der Endlichen und Unendlichen Graphen 
(Chelsea Publishing Company, New York, 1950); C. Berge, 
Theorie des graphes et ses applications (Dunod, Paris, 1958); 
R. J. Riddell, dissertation, University of Michigan, 1951; G. W. 
Ford, dissertation, University of Michigan, 1954. 

3 R. J. Riddell, reference 2. 
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TABLE I. The number of topologically different connected 
graphs C(n) and star graphs Sen) for n<8. 

n: 2 3 4 5 6 7 

C(n): 2 6 21 112 853 

Sen): 1 3 10 56 468 

and 

N 

p==N IV = Lnbnz", (5) 
..... 1 

where Z is the thermodynamic fugacity, divided by k T, 

and the bn are cluster integrals over the coordinates of n 

molecules: 

1 J C(n) 

b,,==- L g;C;(n)dr1" ·drn • (6) 
nlV i=1 

If the bn are known, Z can be eliminated between the 

two Mayer equations, giving the well-known virial 

equation of state 

PI k T = p+ B2/J2+ B3/J3+ B4P4+ B6/J5+ B6P6+ • •• , (7) 

where Bn is the nth virial coefficient. Born and Fuchs4 

were able to show that only the star integrals contribute 

to the equation of state, getting finally, 

N l-n J S(n) 

PlkT=p+ L -p'" L giS;(n) dr1" ·drn • (8) 
n=2 n!V ;=1 

As we can see from Table I, the number of integrals 

necessary to the calculation of successive terms in (8) 

increases rapidly with n. Furthermore the integrals be­

come unmanageable, for realistic potentials, with n 

greater than 2 or 3. In the following section we will 

introduce a potential which is particularly useful be­

cause the necessary star integrals are easy to perform. 

Before going on, we stress the fact that the virial equa­

tion of state is useful only in the region where the 

convergence of the virial series is rapid, and that for the 

full equation of state an attack through the distribu­

tion functions or some other method is necessary. 

2. HARD-CUBE MODEL 

The hard-cube model was introduced by Geilikman,5 

who calculated B2 and B3 for a hard-cube gas. Zwanzig6 

FIG. 1. The connected 
graphs of four points. 
The gi indicate the num­
ber of ways each graph 
can be labeled. 

• M. Born and K. Fuchs, Proc. Roy. Soc. (London) A166, 391 
(1938). 

6 B. T. Geilikrnan, Proc. Acad. Sci. U.S.S.R. 70, 25 (1950). 
a R. W. Zwanzig, J. Chern. Phys. 24, 855 (1956). 

pointed out the intimate connection of the two- and 

three-dimensional cases (squares and cubes) with the 

one-dimensional case (lines), and used the one-di­

mensional results of Riddell and Uhlenbeck7 to calcu­

late virial coefficients through B5 for cubes. TemperleyS 

has extended these calculations to gases of more than 

three dimensions. As noted in an earlier communica­

tion,9 we have computed B6 for lines, squares, and 

cubes and will here present the method of calculation 

used together with our results for B 7, the excess entropy, 

the radial distribution function, and the potential of 

the mean force for such molecules. 

The hard-cube potential is illustrated in Fig. 2. The 

least realistic property of this potential, which depends 

upon the fixed Cartesian coordinate system, is that the 

molecules cannot rotate, behaving as if their moments 

of inertia were infinite. This feature, together with the 

cubic, rather than spherical, symmetry is essential 

~nl.:nl.:n 
-v v -g v -0" V 

-2-. ~ ~ 
(lyl.lotl <u) 1IIII,IZi "v) (111,1)'1" 0') 

FIG. 2. The hard­
cube potential. The 
molecular side length 
is u. 

in establishing the one-, two-, and three-dimensional 

correlation. 

Let us consider a star integral contributing to one 

of the virial coefficients through Eq. (8), for instance 

an integral which has not yet been evaluated analyti­

cally for hard spheres. Because an! function containing 

the coordinates of two hard cubes, !ii(Xij, Yij, Zii), may 

be written as the product !ii (Xii)!ii (Yii)!ii (z;j) , it is 
clear that the complicated three-dimensional integral 

above may be factored into the product of three (equal) 

one-dimensional integrals, and, as we shall see, the 

one-dimensional integrals are easily evaluated. This 

property of factorization can also be used to advantage 

in calculations of the pair distribution function. The 

one-dimensional connection is also useful as a helpful 

check in calculations because the vi rial coefficients,1O 

cluster integrals,ll radial distribution function,12 and 

thermodynamic properties of the hard-line gas are well 

known. 

7 R. J. Riddell and G. E. Uhlenbeck, J. Chern. Phys. 21, 2056 
(1953). 

8 H. N. V. Ternperley, Proc. Phys. Soc. (London) B70, 536 
(1957). 

• W. G. Hoover and A. G. DeRocco, J. Chern. Phys. 34, 1059 
(1961) . 

10 L. Tonks, Phys. Rev. 50, 955 (1936). 
11 R. J. Riddell, reference 2. 
12 Z. W. Salsburg, R. W. Zwanzig, and J. G. Kirkwood, J. 

Chern. Phys. 21, 1098 (1953). 
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3. CALCULATION OF VIRIAL COEFFICIENTS 

As we see from Egs. (7) and (8), the nth virial 

coefficient Bn is given by 

1-nj Sen) 

Bn=- L: giSi(n)drl" ·drn. 
nlV i=l 

(9) 

This form applies in one, two, and three dimensions, 

keeping in mind that dr represents dx, dxdy, and dx:1ydz, 

respectively, in these cases. For convenience we assign 

the sign of each contributing star integral to the gi for 

that star, so that all integrals are positive and In=Iln, 

where I is a star integral and we indicate dimensionality 

with a subscript. Using this convention we may write 

Eg. (9) for n = 2·· ·4: 

(10) 

Ba=~j /\ drl" ·dr3 
3V u , (11) 

(12) 

We will now consider the evaluation of a typical star 

integral contributing to B6 to illustrate our methods. 

Let 

(13) 

Because the integral in (13) is independent of the 

location of molecule 1 for large V, we place 1 at the 

origin and cancel the factor of V-I. Specializing to one 

dimension, 

(molecule 1 at origin), 

where we have assigned an arbitrary labeling to the 

star. We now note that the integral indicated in (14) 

can be written as the sum of 61=720 integrals in which 

a given molecular ordering, from left to right, is main­

tained, because there are 61 different ways of ordering 

the molecules on a line. We could evaluate the integral 

for each of these orderings, but because of the sixfold 

symmetry of the integrand it is sufficient to consider 

only those orderings in which the leftmost molecule is 

number 1, and then to multiply the results of these 

120 integrals by 6 to obtain I. We will therefore con­

sider orderings such as 123456 and 135246, but not 

654321 or 531642. If the integrand had no symmetry it 

FIG. 3. The f functions charac-
terizing w, x, and y subintegrals t!!!jl 

are indicated as lines connecting w 
the molecules. 

t!!!Jl 
y 

would be necessary to consider each of the 720 order­
ings. 

One could next list the 120 orderings, put in limits 

of integration with the help of the restrictions imposed 

by the ordering and by the I functions, and set out to 

evaluate the integrals. This is in fact the way in which 

we originally attacked the problem. It soon becomes 

obvious, while carrying out this procedure, that many 

of the integrals obtained are identical in form and 

value. Altogether only 14 distinct kinds of integrals 

are found, some occurring more often than others. 

We will now describe these fourteen "subintegrals" 

and show how· to determine, from the form of the 

integrand of the star integral, how many times each 

occurs. 

Let us first consider those orderings in which the last 

molecule is number 2 or number 6 (so that 134562 and 

123456 are included in this category). Because an I 
function (/I2 or lSI) connects the first and last molecules 

in these orderings it is clear that the upper limit of 

integration on the rightmost molecule is u, the range of 

the intermolecular force. Because of the restriction 

that the ordering from left to right be maintained 

throughout the integration, all of the molecules are 

between the first (which is at the origin) and the last 

(which must be somewhere between the origin and u). 

Thus all of the restrictions imposed by the I functions 

are automatically satisfied, and the I functions may be 

removed from the integrand. Using 123456 as an 

example of this type of integral we have 

123456 = j /I2/2a/34/45/66/61dx.flxadx4dxodXa 

(0<X2<Xa<X4<X6<Xa<U) 

The use of w, x, y, z, and a as integration variables is 

convenient in deciding whether or not two different 

orderings give rise to the same subintegral. We use w 

to indicate the coordinate of the second molecule in 

the ordering, x for the third molecule, and so on. We 

will term an integral of the kind found in Eg. (15) au 

integral, because all of the upper limits of integration 

are u. A u integral will always result when ani function 

in the integrand connects the first and last molecules 

in the ordering under consideration. 

Suppose we now consider an ordering in which 

molecule 1 is connected by an I function to the next-to-
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TABLE II. Characteristics of the one-dimensional subintegrals contributing to f Odr2° 0 ° drs. 

Value X 
Ordering Diagram Sub integral Name 5 !/ (1'. 

, 
123456 • • • • J [dw [dx [dy [dZ fda (1' 1 

o W x II Z , 
1 [[[[[W 124563 T • • T dw dx dy dz da w 2 

o 10 x Y z 

124653 T 
, 

• T • 
, [ [ [ [+w [+w 

o dw w dx x dy y dz z da ww 3 

, 1 [ [ [+w [+w [+w 126453 
T , • • dw dx dy dz da www 4 

o w x y z 

~ 
[ [ [ r+w [+x 125634 dw dx dy dz da wx 5 

o w .c II Z 

, J n • T [ [ [+w [+w [+x 126435 T dw dx dy dz da wwx 7 
o w x y z , 1 [ [ [+w [+x [+x 126345 T n • T dw dx dy dz da wxx 9 
o w x y z 

132645 , 
T • U , 1 [ [ [ [+w [+y 

o dw w dx .c dy y dz z da wy 7 

, I , I [ [ [+w [+w [+Y 126534 T T dw dx dy dz da wwy 11 
o w.r y z 

, 
U I [ [ [+w [+x [+y 126354 T n T dw dx dy dz da wxy 16 

o w.t y z 

, , [r[r[+x 123564 T • • J dw dx dy dz da x 3 
o w x y z 
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Table II (continued) 

ValueX 
Ordering Diagram Subintegral Name 5 !juS 

123654 t • 
, , . , t I[ [+z [+~ 

o dw w dx x dy 11 dz z da xx 6 

123645 
, 

• T U , 1 t [[[+"'[+Y o dw w dx "dy 11 dz. da xy 9 

123465 t • • , S 1 
[[[[[+11 o dw w dx x dy 11 dz z da y 4 

last molecule, but not to the last one. We know that 

the upper limits of the first four integration variables 

are (J', but the last upper limit depends upon the de­

tails of the ordering. If the last molecule is connected 

to the second by an f function then the upper limit on 
the rightmost integration would be (J'+w. Similarly, 

other orderings will give rise to integration limits of 

(J'+x or (J'+Y. In Fig. 3 we indicate these possibilities 

pictorially, showing the f functions (as lines) which 

are used to determine the integration limits. The 

following orderings typify these kinds of subintegrals: 

[ f IT /" f" JIT+x = dw dx dy dz da=3(J'5j51 
o to x '1/ z 

(17) 

j" J" fIr fIT /"+11 = dw dx dy dz da=4(J'5j5!. 
o w :e 'II Z 

(18) 

We will term the three kinds of subintegrals appearing 

in (16)-(18) as w, x, and y subintegrals, deriving the 
name from the rightmost integration limit. It is easy 

to see that a z subintegral could not be obtained with 

six molecules, because if the last molecule is connected 

only to the next-to-Iast, the configuration could not be 

derived from a star. Thus we have disposed of all 

possible cases in which the first molecule is connected 

to the last, or to the next-to-Iast molecule. 

One may go on to consider the other possibilities. 

In each case the lower integration limits are deter­

mined by the ordering, and the upper integration limits 

are determined by both the ordering and the f functions 

in the integrand. Rather than describe the individual 

cases, we list in Table II all of the possibilities found for 

six molecules, together with the integration limits, 

values, and names of the related subintegrals, and an 

ordering giving each type of subintegral. 

Let us now calculate the integral I of Eq. (14) in 

terms of the subintegrals listed in Table II. We have 

already shown that all orderings with molecules 2 or 6 

in the last position give rise to (J' integrals. We will 

therefore list, in Table III, only those orderings in 

which one of the molecules 3, 4, or 5 occupies the last 

position. (By further use of symmetry we could avoid 

consideration of half of these cases, but for complete­

ness each of the 72 permutations is included in the 
table.) Sorting these contributions to the integral by 

type, adding in the (J' integrals from 1···2 and 1···6 

orderings, and multiplying by six, we have I expressed 
in terms of the subintegrals. These totals are given in 

Table IV. The total number of occurrences is, of course, 
720. From the values of the sub integrals listed in Table 
II we calculate the value of I. Adding all of the con­

tributions we find [=2112US/51=88US/5. The value of 
the integral in two dimensions is just (88(J'·/5)2= 

77 44(J'lO /25; the three-dimensional case gives (88(J'5 j 5) 3 = 
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TABLE III. Subintegrals contributing to f 0 dr.·. ·dr6 for 72 representative linear orderings. 

Ordering Type Ordering Type 

124563 w 142563 w 

124653 ww 142653 ww 

125463 w 145263 w 

125643 ww 145623 w 
126453 www 146253 ww 

126543 www 146523 w 

123564 x 132564 w 

123654 xx 132654 ww 

125364 x 135264 w 
125634 wx 135624 w 

126354 wxy 136254 ww 

126534 wwy 136524 w 

123465 y 132465 y 

123645 xy 132645 wy 

124365 x 134265 x 
124635 wx 134625 x 
126345 wxx 136245 wx 

126435 wwx 136425 x 

6814720-15/125. In order to get the contributions of 

gf O dr2· .. dra 

to Ba one must multiply these results by 60, the number 

of topologically distinct ways in which the points of a 

hexagon may be labeled. 

In general, one follows the above procedure for each 

of the stars contributing to the Bn of interest. One 

might expect that no two different star integrals would 

have the same representation in terms of subintegrals. 

We find two pairs of seven-point graphs with identical 

representations (numbers 380, 381 and 420, 421 in 

Appendix I) however, so that the corresponding set of 

subintegrals does not uniquely specify the star in 

question. The values found for all stars of less than 

eight points13 are listed in Appendix I. 

TABLE IV. Total subintegral contributions to f o dr.· •• drs. 

Subintegral: tT W ww www wx wwx wxx 

occurrences: 288 120 72 24 36 12 12 

Subintegral: wy wwy wxy x xx xy Y 

occurrences: 12 12 12 72 12 12 24 

13 These stars, together with all other graphs of less than eight 
points may be found in "Diagrams of All Seven Point Graphs" 
by F. Harary and D. W. Crowe, Project R287, Horace H. 
Rackham School of Graduate Studies, University of Michigan 
(mimeographed; supplied to the authors, with many corrections, 
by G. W. Ford), 1953; a list of smaller graphs was prepared by 
F. Harary, also in 1953. F. Harary and R. Z. Norman plan to 
include a complete list of these graphs in a book now in prepration. 

Ordering Type Ordering Type 

152463 x 162453 wwx 

152643 wx 162543 wxx 

154263 x 164253 wx 

154623 x 164523 x 

156243 wy 165243 xy 

156423 y 165423 y 

152364 w 162354 wwy 

152634 ww 162534 wxy 

153264 w 163254 wx 

153624 w 163524 x 

156234 ww 165234 xx 

156324 w 165324 x 

142365 w 162345 www 

142635 ww 162435 www 

143265 w 163245 ww 

143625 w 163425 w 

146235 ww 164235 ww 

146325 w 164325 w 

A slight further simplification arises because some 

pairs of subintegrals are equal. We note, for example, 

that any ordering giving rise to an x subintegral 

corresponds exactly to a ww subintegral on reversal 

of the ordering. There are three other such pairs in 

Table II: 'IffWW=y, wwx=wy, and wxx=xy. The values 

of such pairs of subintegrals are clearly equal by sym­

metry. One would expect the number of such pairs to 

approach half the total number of subintegrals for n 

large, as the relative number of subintegrals with a 

center of symmetry must decrease. In Table V we list 

the number of subintegrals contributing to the nth 

virial coefficient for n<8. Each pair is counted as only 

one subintegral in this table. 

The number of different sub integrals increases 

rapidly with n. Let us define Ll as the number of 

different subintegrals with one-letter names other than 

0- (including w, x, y, •.• ); L2 as the number with two­

letter names; and L3 as the number with three-letter 

names. One can easily show, by considering diagrams 

like those in Table II, that 

n (n-3) 
L1= Ll=--, (19) 

.. >3 11 

.... (n-4) (n-l) 
L 2= LCLIJ= , (20) 

.. >4 .. >3 21 

L3= tCi:Ctl]) = (n-5) en-I) (n). (21) 

.. >5 .. >4 .. >3 3 ! 

We conjecture that the obvious generalization to L .. 

is valid for all n. 
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We now list, in Table VI, all of the subintegrals 

encountered in the evaluation of the first seven virial 

coefficients. We note that the kind of subintegral 

represented by a given ordering follows from the upper 

right-hand corner of the so-called adjacency matrix 

in which the ordering is preserved in the labeling of the 

rows an.s!. columns. The adjacency matrix has aij= 1 if 

an f function connects molecules i and j, and a,j=O 

otherwise. The relation of the subintegrals to the 

adjacency matrix is very useful for machine calcula­

tions. 

We have seen that in order to find the virial co­

efficients one classifies each contributing star in terms 

of subintegrals, obtains the value of the related star 

integral, mUltiplies by the number of ways in which the 

star may be labeled, and adds, finding Bn by Eq. (9). 

Although the procedure is straightforward, a con­

siderable amount of labor is involved, and in the case 

of B 7, which requires the evaluation of 468 integrals, 

each integral being the sum of 7! subintegrals, the task 

was given to an IBM 704 computer. 

For the machine calculations, one reads each star 

into the computer in the form of an adjacency matrix; 

the machine then examines all of the orderings for each 

star, finding the number of times each subintegral 

contributes to the star integral in question. As the 

values of the sub integrals are known the computer 

can then calculate Bn. 

Two important means of checking the results for the 

star integrals are available. First, as we have noted, 

all of the virial coefficients in one dimension are known 

to be + 1 where u is taken as unit length. Second, the 

integral corresponding to an open ring (.L\~, D, 0, 
••• ) is known exactly14: 

(-2)n/", (SinX)" 
l(n ring) = -- - dx 

7r 0 X 

( -1)" 
=--[n,,-1-n(n-2)n-l+n(n-l) (n-4)n-l/2 

(n-l) ! 

-n(n-l) (n-2) (n-6),,-1/6+··· J, (22) 

where u = 1 and the first n terms are taken for 12,,-1 

TABLE V. Number of distinct subintegrals contributing to Bn. 

n: 

Subintegrals: 

Equal pairs: 

2 

1 

o 

3 

1 

o 

4 5 6 

2 4 10 

o 4 

7 

26 

16 

14 The integral appearing in (22) is taken from a notebook be­
longing to G. E. Uhlenbeck, who kindly lent it to the authors; 
see E. T. Whittaker and G. N. Watson, Modern Analysis (Cam­
bridge University Press, London, 1958), 4th ed., p. 123. 

TABLE VI. Values and names of all subintegrals contributing 
to B2•• ·B7. 

n=2 n=3 

Subintegral ValueXl! Subintegral ValueX2! 

u u 

n=4 n=7 

Subintegral ValueX3! Subintegral ValueX6! 

u 1 u 1 

w 2 w 2 

ww=x 3 

n=5 www=y 4 

Subintegral ValueX4! wwww=z 5 

u 1 wx 5 

w 2 wwx=wy 7 

ww=x 3 wwwx=wz 9 

wx 5 xx 6 

wxx=xy 9 

n=6 wwxx=xz 12 

Subintegral ValueX5! xxx=yy 10 

u 1 wxxx=yz 14 

w 2 wwy 10 

ww=x 3 wwwy=wwz 14 

lI)WW=Y 4 wxy 14 

wx 5 wwxy=wxz 21 

wwx=wy 7 xxy=wyy 16 

wxx=xy 9 wxxy=wyz 26 

wwy 11 wwyy = xxz 26 

wxy 16 xyy 19 

xx 6 wxyy=xyz 35 

wwwz 19 

wwxz 30 

wxxz = wwyz 40 

wxyz 61 

and 12", Using this formula one finds +88/5 for the 

integral over 0, and -5887/180 for the integral over 

0, in agreement with the values appearing in Ap­
pendix 1. 

Our results for the virial coefficients are given in 

Table VII, together with B1••• Bo as calculated by 

earlier workers.o.G The virial coefficients are given first 

in terms of the edge length u as unit length, then in 

units of B2 as unit volume. Both sets of units are 

found in the literature. In Table VIII we list the 

cluster integrals and "irreducible cluster integrals," 

I'n=-(n+l)Bn/n, together with the known values 

for hard spheres,!5 and those derived from a special 

16 See J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954), p. 157; B6 for hard spheres is known only approximately: 
A. W. Rosenbluth and M. N. Rosenbluth, J. Chem. Phys. 22, 
881 (1954). 
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TABLE VII. Virial coefficients for hard lines, squares, and cubes. First set of values is for u=1. Second set is for B,=1. 

B, B, B3 

Lines 

Squares 2 3 

Cubes 4 9 

BI B, B3 

Lines 1.0000 1.0000 1.0000 

Squares 1.0000 1.0000 0.7500 

Cubes 1.0000 1.0000 0.5625 

"Gaussian" model used by Ford l6 in which it is assumed 

that the f functions are Gaussian in form. These 

numbers are all given in terms of B2=unit volume. 

It is interesting to see the fairly close numerical agree­

ment between the hard-cube and hard-sphere results, 

as contrasted with the poorer agreement between 

these and the Gaussian model. 

The most interesting feature of these results is the 

fact that B6 and B7 are negative for parallel hard cubes. 

This is interesting from the point of view of phase 

transitions because negative vi rial coefficients are 

necessary to produce isotherms with flat portions or 

van der Waals loops. As previously pointed out,9 nega­

tive virial coefficients for cubes do not imply such 

behavior for spheres, although these results are cer­

tainly suggestive. Alder and Wainwright17 believe that 

Ba and B7 are both positive for hard spheres, although 

B. Bo Bs B7 

11 67 121 17827 

3 18 40 10800 

34 455 -2039 -169149119 

3 144 108 3888000 

B. B. Bs B7 

1.0000 1.0000 1.0000 1.0000 

0.4583 0.2326 0.0945 0.0258 

0.1771 0.0123 -0.0184 -0.0106 

they cannot estimate the magnitudes of these co­

efficients precisely. In Figs. 4 and 5 we have plotted 

the equation of state for hard parallel squares and 

cubes, with separate curves for six and seven virial 

coefficients to give an idea of the densities at which 

these coefficients become important in the two and 

three-dimensional cases. The closest-packed volume 

Vo is Nu2 for hard squares, and Nu3 for hard cubes. 

Although the one-dimensional case is a solved prob­

lem, we think it is worthwhile to present the results of 

an investigation to determine which subintegrals con­

tribute to the one-dimensional virial coefficients. Be­

cause each contributing star integral is expressible in 

terms of subintegrals, it is possible to calculate the 

net contribution of each kind of subintegral to each 

virial coefficient. We will illustrate this process for 

B4 ; the results for B2" 'B7 are given in Table IX. 

TABLE VIII. Cluster integrals bn and irreducible cluster integrals fln for five models. Unit volume is B,. 

b, b, b3 b. b5 b6 b7 

Lines 1.000 -1.000 1.500 -2.667 5.208 -10.800 23.343 

Squares 1.000 -1.000 1.625 -3.236 7.214 -17.277 43.493 

Cubes 1.000 -1.000 1. 719 -3.705 9.054 -23.971 67.087 

Spheres 1.000 -1.000 1.688 -3.554 

Gaussian 1.000 -1.000 1.872 -4.522 12.554 -38.045 122.706 

fll fl, fl3 fl. fl. fl6 

Lines -2.000 -1.500 -1.333 -1.250 -1.200 -1.167 

Squares -2.000 -1.125 -0.611 -0.291 -0.113 -0.030 

Cubes -2.000 -0.844 -0.236 -0.015 +0.022 +0.012 

Spheres -2.000 -0.938 -0.383 

Gaussian -2.000 -0.386 +0.167 -0.016 -0.046 +0.035 

16 G. W. Ford, dissertation, University of Michigan, 1954. 
17 B. ]. Alder and T. E. Wainwright, J. Chern. Phys. 33, 1447 (1960). 
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Three different types of stars contribute to B,: 

0, rsJ, and r8l. In terms of subintegrals, 

1(0) = 16o+8w, 

1(1SJ) =20o+4w, 

l(iZI) = 24u. 

(23) 

(24) 

(25) 

Taking the degeneracies into account one finds that 

only the u subintegrals contribute to the one-di­

mensional B •. From Table IX we see that this is true 

for B2••• B7! We have not been able to prove this 

relation generally or to find a parallel in two or more 

dimensions; the following three facts are relevant 

however. 

(1) RiddelP8 has shown that the net number of lines 

in the stars of n points (calling lines negative for stars 

with odd numbers of lines and positive for stars with 

even numbers of lines) is -n!/2. This result, coupled 

with the observation that each line in a star of n points 

will give rise to 2[ (n- 2)!J u subintegrals of value 

1/(n-1)! each, gives for the net value of all u sub­

integrals contributing to a given Bn , 

(-n!/2) 12[(n- 2) !Jl (lI[n-1]!) =n!/ (l-n). (26) 

This is the reciprocal of the factor appearing in Eq. 

(9), indicating that the u subintegrals are just suffi­

ciently numerous to give a virial coefficient of + 1 in the 

one-dimensional case. The other subintegrals must 

therefore cancel out collectively, if not individually. 

(2) In one individual case, for each value of n>3, 

it is possible to point out a subintegral which will give 

a net one-dimensional contribution of zero. This is the 

subintegral corresponding to the following kind of 

diagram: '1J!;;!? . This corresponds to the w sub-

'" 

,., 

SIX AND SEVEN VlRlAL COEFFICIENT 

EQUATIONS OF STATE FOR 

HARD SQUARES 

1.5234'71015 

VJY.-

FIG. 4. Equation of state for hard spheres. 

18 R. J. Riddell, reference 2, p. 96. 

t 2 

on 

... 

.. 

_ Six Vlrl"1 C .. lflelenll 

SIX AND SEVEN VIRIAL COEFFICIENT 

EQUATIONS OF STATE FOR 

HARD CUBES 

Seven VI rial Coefficients 

1.5 2 7 10 15 

V/V.-.. 

FIG. 5. Equation of state for hard cubes. 

integral for B4, wx for BD, wxy for B 6, and so on. Because 

n-3lines may be added to the diagram above, without 

changing the type of subintegral involved, the number 

of times the subintegral will contribute to stars of 

n+m lines and n points is just 

and the number of contributions to stars of odd num­

bers of lines must equal that to stars of even numbers 

of lines. 

(3) One can easily show that the net number of u 

subintegrals for the stars of n points is the same, 

except for a possible difference in sign, as the number 

of u subintegrals derived from the star corresponding 

to an open ring, being ±n!(n-2)!. This result indi­

cates the hopelessness of trying to find approximations 

for the star integrals in order to sum the virial series 

exactly. The total contribution of all stars to Bn (in 

one, two, or three dimensions) is, for those potentials 

which we are considering at least, of the order of 

magnitude of the contribution of a single type of star, 

and the error in an excellent approximation would 

undoubtedly exceed this for large n. 

Using the virial coefficients in Table VII one can 

calculate approximations to the thermodynamic prop­

erties of hard square and hard cube gases. For such 

gases the entropy in excess of the ideal gas value is 
given by19 

S. N N 

-=In(LB,,p''-l)- LB"pn-l/(n-l). 
Nk _1 ,,=2 

(27) 

18 For a derivation see T. L. Hill, Statistical Mechanics 
(McGraw-Hill Book Company, Inc., New York, 1956), p. 221. 
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TABLE IX. Subintegral contributions to the one-dimensional virial coefficients. 

B. Contributions X 1/2! B. Contributions X 1/41 B. ContributionsX1/5! 

Lines rr Lines rr w Lines rr w x+ww wx 

-1 4 2 1 5 -6 -3 -2 -1 
5 -5 -1 6 42 16 10 2 

Total -1 6 1 0 7 -70 -19 -10 -1 
8 36 7 2 0 
9 -9 -1 0 0 

B. Contributions X 1/3! Totals -2 0 10 1 0 0 0 

Lines rr Totals -6 0 0 0 

3 -1 

Total -1 
B6 Contributions X 1/6! 

Lines rr w x+ww y+unvw wx xx wy+wwx xy+wxx wwy wxy 

6 24 10 12 4 3 1 2 2 1 1 
7 -336 -127 -132 -46 -28 -9 -22 -12 -5 -3 
8 1304 437 398 134 67 26 48 20 8 3 
9 -2121 -622 -492 -148 -68 -26 -40 -12 -5 -1 

10 1798 465 302 72 34 9 14 2 1 0 
11 -979 -218 -108 -18 -9 -1 -2 0 0 0 
12 364 66 22 2 1 0 0 0 0 0 
13 -91 -12 -2 0 0 0 0 0 0 0 
14 14 1 0 0 0 0 0 0 0 0 
15 -1 0 0 0 0 0 0 0 0 0 

Totals -24 0 0 0 0 0 0 0 0 0 

B7 Contributions X 1/7! 

Lines rr w x+ww y+www z+wwww wx wy+wwx wz+unvwx xx 

7 -120 -42 -60 -36 -12 -13 -14 -4 -9 
8 2880 978 1268 700 252 249 260 94 171 
9 -20070 -6528 -7704 -3954 -1442 -1363 -1364 -516 -943 

10 63610 19642 21128 10062 3560 3375 3174 1150 2313 
11 -113641 -33243 -32448 -14124 -4650 -4756 -4086 -1346 -3023 
12 133040 36900 32256 12538 3688 4372 3316 950 2386 
13 -113620 -29702 -22856 -7738 -1968 -2841 -1834 -438 -1249 
14 74510 18137 12018 3436 728 1339 702 132 445 
15 -38305 -8520 -4720 -1092 -182 -453 -180 -24 -105 
16 15472 3058 1358 238 28 105 28 2 15 
17 -4845 -816 -272 -32 -2 -15 -2 0 -1 
18 1140 153 34 2 0 1 0 0 0 
19 -190 -18 -2 0 0 0 0 0 0 
20 20 1 0 0 0 0 0 0 0 
21 -1 0 0 0 0 0 0 0 0 

Totals -120 0 0 0 0 0 0 0 0 

Lines xy+wxx xz+wwxx yy+xxx yz+wxxx wwy wwz+unvwy wxy wxz+wwxy xxy+ wyy 

7 -10 -4 -4 -4 -4 -6 -1 -4 -2 
8 162 72 62 50 75 82 31 42 30 
9 -742 -314 -322 -180 -363 -322 -132 -130 -138 

10 1538 586 730 282 762 574 243 190 254 
11 -1744 -570 -798 -220 -862 -550 -243 -152 -222 
12 1204 320 454 90 592 310 145 70 98 
13 -538 -110 -146 -20 -264 -108 -53 -18 -22 
14 154 22 26 2 76 22 11 2 2 
15 -26 -2 -2 0 -13 -2 -1 0 0 
16 2 0 0 0 1 0 0 0 0 

Totals 0 0 0 0 0 0 0 0 0 

Lines wyz+wxxy xxz+wwyy xyy xyz+wxyy wwwz wwxz wxxz+wwyz wxyz 

7 -2 -2 -1 -2 -1 0 -2 -1 
8 24 18 10 14 14 6 12 4 
9 -70 -58 -35 -32 -54 -22 -26 -6 

10 88 84 52 32 91 31 26 4 
11 -54 -58 -35 -14 -78 -21 -12 -1 
12 16 18 10 12 36 7 2 0 
13 -2 -2 -1 0 -9 -1 0 0 
14 0 0 0 0 1 0 0 0 

Totals 0 0 0 0 0 0 0 0 
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We have used Eq. (27) to calculate excess entropies for 

hard squares and hard cubes. The results are displayed 

in Figs. 6 and 7. On the hard-cube plot we have in­

cluded the molecular dynamical results of Alder and 

Wainwrightl7 for hard spheres of diameter u, recalcu­

lated for Vo==7rN u3/6. It is interesting to note that at 

low densities the excess entropy depends upon the 

magnitude of the excluded volume Vo and the results 

for cubes and spheres are approximately equal. At 

higher densities, where the geometry of the interacting 

molecules becomes important, large differences occur. 

All of the values for the excess entropy are negative, 

as one would expect, because the excluded volume of 

the molecules makes some configurations inaccessible 

for cubes and spheres which are accessible for ideal gas 

molecules. 

4. CALCULATION OF THE RADIAL DISTRIBUTION 
FUNCTION 

The Ursell-Mayer development of the pressure in 

powers of z may be generalized20 to the calculation of 

pair, triplet, and higher distribution functions. To 

find, for example, the pair distribution function, one 

places two molecules at rl and r2 and integrates over 

all of the other molecules to get the probability of the 

configuration as a function of rl and r2. Using n2(rI2) 

to represent the pair distribution function, we have 

i . 
~ 

.;;; . 
"' 

SIX AND SEVEN VIRIAL COEFFICIENT 

EXCESS ENTROPIES FOR 

Hard Sphere 

Dota of Ald,r 

and Wainwright: 000 

I.e 2 

HARD CUBES 

IV. = N.rl 

3 4 7 10 
VlV.-

FIG. 7. Excess entropy for hard cubes. 

The radial distribution function g( r12) is just the ratio 

of the number of molecules separated by a distance 

r12 in the gas of interest to the number of molecules 

separated by r12 in an ideal gas at the same density. 

That is, g(r12) =n2 (real gas)/n2 (ideal gas). 

In order to convert Eq. (28) for n2 into a series in z, 

one introduces the modified cluster integrals bn * (rI2) : 

exp[-/f>(r12) /kTJjC, (n+1) 

bn*(r12) == L g,C.*(n+l) 
n! .=1 

Xdr3' ,·drn+l, (29) 

(28) where the C,*(n+1) are graphs of n+1 points, which 

would become (or remain) connected if the line linking 

molecules 1 and 2 were added. With the help of these 

modified cluster integrals one shows that 

SIX AND SEVEN VIRIAL COEFFICIENT 

EX CESS ENTROPIES FOR 

HARD SQUARES 

o~ 

______ -L ______ -L ____ -L ____ 

~ 

____ 

~ 

1.5 2.5 3 VlV._ 

FIG. 6. Excess entropy for hard spheres. 

N-l 

n2(rI2) = Lnbn*QN-n-l/QN' (30) 
n=1 

Using the fact that Z=QN-l/QN with the expansion of z 

in powers of p from inversion of Eq. (5), 

z=p+ ( - 2b2)p2+ (8b22- 3b3) p3 

+( -40b23+30b2ba-4b4)p4 

+ (224b2C 252b22b3+48b2b4+27b32_Sb.)p6+"" (31) 

we find 

n2(rI2) =p2bl*+p3(2b2*-4bl*b2) 

+p4(3b3*-12b2*b2-6bl*b3+20bl*b22) 

+p5(4b4*-24b3*b2+72b2*b22-18b2*b3 

+ 72bl*b2b3-112bl*b23- 8b1*b4) +, , '. (32) 

20 J. E. Mayer and E. W. Montroll, J. Chern. Phys. 9, 2 (1941); 
see also J. de Boer, Repts. Progr. Phys. 12,305 (1949). [The coefficient of the p4 term in Eq. (32) is given 
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incorrectly in at least two references.2!J On expanding 

the coefficients of each power of p in terms of 

exp[-</>(r12)/kTJ and the / functions, a large amount 

of cancellation occurs, leaving 

+ (p5/6) f (6 ('] +6 tv +12 ~ +12 11 

+6 f1 +6 f1 + -h +12 'tv +3 Q +12 11 

+12 ~ +12 tv, +6 f1 +6 (j'I; +6 f1 +3 "Ii 

+3 ~ + 12 1Sl +6 ~ +6 ~ +6 <fit +3 ~ 

+6 * + ~ )dradr.dr6+"']. (33) 

where the coefficients prefixed to each graph indicate 

how many times the graph occurs in the full expansion. 

[In Eq. (33) we indicate molecules 1 and 2 by OO.J 

The integrals in (33) are closely related to the 

integrals for the virial coefficients. We see that all 

graphs which become stars when the line corresponding 

to /12 is added will appear in the expansion of n2. The 

evaluation of the integrals is, a~ with the star integrals, 

straightforward. Again the one-dimensional integrals 

are simply related to the two- and three-dimensional 

integrals. If the value of a one-dimensional integral 

over a "doubly rooted" graph appearing in (33) is 

P(x), where P is a polynomial, then in three dimen­

sions the corresponding integral is P(x)P(y)P(z). 

Because of the symmetry of the hard-cubes model, 

only the absolute values of x, y, and z will enter into 

the values of the integrals. We will delete the absolute 

value signs on all coordinates so that our equations, 

as written, will apply only to the region O<x, y, z. 

Before illustrating the procedure by evaluating one 

integral, let us list the principal complications which 

make the distribution function problem harder than 

the virial coefficient problem for hard lines, squares, 

and cubes. 

(1) More types of graphs must be considered. To 

compute the fifth virial coefficient one evaluates 10 

types of integrals. The corresponding term in the pair 

distribution function involves 24 types of integrals. 

(2) Two kinds of molecules, not just one, are in­

volved in distribution function calculations, the fixed 

.1 J. de Boer, reference 20, p. 340; J. O. Hirschfelder et at., 
reference 15, p. 147. 

molecules, 1 and 2 in the pair case, and the other 

molecules, whose coordinates are the integration varia­

bles. Thus, many different kinds of linear orderings are 

possible. For five molecules the orderings 12 ••• , 

1.2 •• , 1 •• 2., 1 ••• 2, .12 •• , .1.2., .1 •• 2, 

•• 12., •• 1.2, and ••• 12 must all be considered; 

each of these possibilities gives rise to its own set of 

subin tegrals. 

(3) The polynomial in ')2=r, which is the value of 

an integral over a doubly rooted graph, has a different 

form for different ranges of r. In general, different 

polynomials apply in each of the regions O<r< 1, 

l<r<2, . ", where we are setting u=1. 

(4) More ingenuity is required in setting up the 

integration limits. It is no longer possible in all cases 

to write the integration limits by casual inspection. 

Because of these difficulties we have calculated the 

pair distribution function through the fourth approxi­

mation only, including all terms appearing in Eq. (33). 

In principle one could evaluate any such integral in a 

straightforward way; in practice the labor involved 

soon becomes prohibitive. 

We will now consider one example in detail to illu­

strate our methods. Let us take the one-dimensional 

integral 

(34) 

which contributes to the fourth approximation to the 

pair distribution function. Because 1 and 2 are fixed, 

we need consider only S!/2 linear orderings, assuming 

that 1 is to the left of 2. We notice by symmetry that 

some of the classes of orderings must be equal. These 

are 12 ••• and ••• 12, 1.2 •• and •• 1.2, 1 •• 2. 

and .1 • • 2, •• 12. and .12 ••. Further, the integral 

must vanish for r>2 by inspection of (34). 

In Table X we give the subintegrals for each of the 

60 orderings contributing to (34) in the ranges O<r<l, 

and l<r<2, finally adding these contributions to 

obtain I. Diagrams indicating which f functions are 

used to set the integration limits are included with each 

kind of ordering. To find the total contribution of I to 

the pair distribution function we multiply the final 

total in Table X by +6, plus because the number of 

lines is even, and 6 because the doubly rooted graph 

can be labeled in six different ways. Proceeding in this 

way one can evaluate all of the integrals contributing 

to gJ, g2, and ga, where the radial distribution function 

is given by 

g(x, y, z, p) =n2/p2 = exp[ -q,(x, y, z) /kTJ 

X[I+pgl+p2g2+paga+···]. (35) 
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TABLE X. Subintegrals contributing to f l><J dr3dr4dr6' 

Ordering Diagram Integral for 0<r<1 Integral for 1<r<2 

••• 12=12 ••• : 

2, '[ [ IX . 34512 • T • 9 2 r_t
dw 

r_I
dx 

_ldy 
Vanishes 

35412 

43512 

b 4 f~ldW f:l
dX f~tdY 45312 • • • 0 

Vanishes 
53412 
54312 

Totals: (6-12r+6r2
) /6 0 

•• 1.2=1.2 •• : 

34152 , • » • 2, 
fdW f~ldxL:dY Vanishes 

35142 T • 0 , 2> 
fdW f~ldX i~ldY Vanishes 

43152 
53142 

Jt 2> 45132 • 0 • 4fdW f~ldxf~ldY Vanishes 
54132 

Totals: (18r- 27r2+9,-3) /6 0 

•• 12.=.12 •• : 

, • ~ 0 ~ 
tdW i'~ldX L: dy 

34125 Vanishes 

T • 0 9 ~ 
tdW i~ldX f~ldY 54123 Vanishes 

43125 
35124 • ~ 

4 tdW i~ldX i~ldY 53124 • 0 0 Vanishes 
45123 

Totals: (8- 21r+ 18r2-5,-3) /6 0 
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Table X (continued) 

Ordering Diagram Integral for O<r< 1 Integral for l<r<2 

.1 •• 2=1 •• 2.: 

31452 • 0 i • 9 {dW ~w dx l~ldY [ jW jW+1 
r_ldw 

0 dx r dy 

31542 
, 0 • , 2> 

{dW ~w dx i~ldY [~ldW [:ldX i~ldY 

41352 
41532 • 2> 4[dW jWdx [ dy 51342 0 • • Vanishes 

51432 o 0 1-1 

Totals: (18rL 15,-3) /6 (12-12r+3r2)/6 

1 ••• 2: 

b • t • 9 [~ldW ~w dx {dY 13452 {dW{dX{dY 

? • · , d 
2[dW[dX[dY 2 1~ldW fdx fdY 13542 

14352 o w x 

14532 6 , • ~ 9 
3 {dW{dX{dY 3 1~ldW fdx [dY 15342 

15432 

Totals: (6r3) /6 (12-6r)/6 

.1.2.: 

~ 0 t 0 , 
[ [ fW+1 [ [ fW+I 31425 

o dw W_ldx 
r dy '_ldw W_Idx

, dy 

• ?i • 6 , o I 

51423 1_ldw f dx I dy Vanishes 

31524 

• • 41325 0 • 0 [ t fW+I 41523 r_ldw 
0 dx r dy Vanishes 

51324 

Totals: (24r-42r2+ ~9r3)/6 (8-12r+6rL ,-3)/6 
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Table X (continued) 

Ordering 

••• 12 

12 ••• 

•• 1.2 

te2 •• 

•• 12. 

.12 •• 

.1 •• 2 

1 •• 2. 

1 ••• 2 

.1.2. 

Total =1: 

Contribution to I for O<r< 1 

(6-12r+6r2)/6 

(6-12r+6r2
) /6 

(18r-27r2+9r3)/6 

(18r-27r2+9r3)/6 

(8- 21r+ 18rLSr3) /6 

(8-21r+18rL Sr3)/6 

(18r2-1Sr3)/6 

(18r2-lSr3) /6 

(6r3)/6 

(24r-42r2+ 19r3)/6 

(28-6r-12r2+3r3) /6 

The doubly rooted graphs of n points contribute to 

gn-2. All of the graphs contributing to gl" " "g3, together 

with their values in one dimension are listed in Ap­

pendix II. 

Because the radial distributiol). function has cubic 

rather than spherical symmetry, the locations of 

maxima and minima in the function depend upon 

direction as well as distance from the origin. In Table 

XI we have tabulated gl"" "g3 as calculated from the 

data in Appendix II for hard lines, squares, and cubes 

with u= 1. For squares we have tabulated these func­

tions along the line x = ° ( DO), as well as along 

x=y( (0); for cubes we have tabulated gl"" "g3 

along the lines x=y=O; x=O, y=z; and x=y=z. This 

serves to point out the angle dependence of the "radial" 

distribution function for these molecules. 

It is worthwhile to list some of the ways in which 

these results can be checked. All but the first of the 

six checks listed could be applied to potentials other 

than. the special cases with which we have been con­

cerned. 

(1) One may compare the one-dimensional radial 

distribution function with the well-known exact re­

sult12
: 

'" 
exp(cp/kT)g(r) =p-l~)+(r-k) (p/[1-pJ)k(r-k)k-t 

k=l 

Xexp {- (r-k)(p/[l-pJ) l/(k-l)!, (36) 

where o+(r-k) =1 for r>k and ° for r<k. Expanding 

the first few terms of (36) in powers of p we find that 

for 0<r<2, gl=2-r, g2=!(7-6r+r2) , g3=i(34-

39r+12r2-rl
); for 2<r<3, gl=O, g2=!(-9+6r-r2

), 

Contribution to I for 1 < r< 2 

° 
° 
° 
° 
° 
° 
(12-12r+3r2)/6 

(12-12r+3r2)/6 

(12-6r)/6 

(8-12r+6rL r3) /6 

(44-42r+ 12r2-r3) /6 

g3= (-98+87r-24r2+2r3); for 3<r<4, gl =0, g2=0, 

g3= (M-48r+12r2-r3), in agreement with the re­

sults we obtain using Appendix II. 

(2) Setting r=O in the expression for any doubly 

rooted graph integral gives the value of the corre­

sponding star integral. For example, !><l becomes 

rsJ on setting r=O, and the value of 

reduces to the proper value, 14/3, for r =0. 

(3) The integral of the value of any doubly rooted 

graph from ° to 1 will be equal to one-half the value 

of the corresponding star integral. For example, 

gives 29/8, while from Appendix I the value of the 

corresponding star integral over t2:SJ is 29/4. 

(4) In some cases doubly rooted graph integrals 

may be derived by inspection from simpler integrals. 

For example, 

(S) The radial distribution function must satisfy 

the Ornstein-Zernicke relation,22 

kT(ap/ap)N.T= l+p [0 dr[g(r) -lJ. 
o 

22 J. de Boer, reference 20, p. 364. 
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TABLE XI. gl, g2, and g. for hard lines, squares, and cubes. 

Lines Squares Cubes 

CD cP @ ~ cP 
d gl(d) gl(O, d) gl(d, d) gl(O,O,d) gl(O, d, d) gl (d, d, d) 

1.00 1.0000 2.0000 1.0000 4.0000 2.0000 1.0000 
1.10 0.9000 1.8000 0.8100 3.6000 1.6200 0.7290 
1.20 0.8000 1.6000 0.6400 3.2000 1.2800 0.5120 
1.30 0.7000 1.4000 0.4900 2.8000 0.9800 0.3430 
1.40 0.6000 1.2000 0.3600 2.4000 0.7200 0.2160 
1.50 0.5000 1.0000 0.2500 2.0000 0.5000 0.1250 
1.60 0.4000 0.8000 0.1600 1.6000 0.3200 0.0640 
1. 70 0.3000 0.6000 0.0900 1.2000 0.1800 0.0270 
1.80 0.2000 0.4000 0.0400 0.8000 0.0800 0.0080 
1.90 0.1000 0.2000 0.0100 0.4000 0.0200 0.0010 
2.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

d g2(d) g2(0, d) g2(d, d) g2(0, 0, d) g2(0, d, d, ) g2(d, d, d) 

1.00 1.0000 3.5000 0.5000 12.5000 2.0000 -1.2500 
1.10 0.8050 2.8200 0.1480 10.0800 0.7721 -1.4358 
1.20 0.6200 2.1800 -0.1156 7.8200 -0.1420 -1.4417 
1.30 0.4450 1.5800 -0.3020 5.7200 -0.7859 -1.3294 
1.40 0.2800 1.0200 -0.4216 3.7800 -1.2000 -1.1481 
1.50 0.1250 0.5000 -0.4844 2.0000 -1.4219 -0.9356 
1.60 -0.0200 0.0200 -0.4996 0.3800 -1.4860 -0.7200 
1. 70 -0.1550 -0.4200 -0.4760 -1.0800 -1.4239 -0.5212 
1.80 -0.2800 -0.8200 -0.4216 -2.3800 -1.2640 -0.3520 
1.90 -0.3950 -1.1800 -0.3440 -3.5200 -1.0319 -0.2191 
2.00 -0.5000 -1.5000 -0.2500 -4.5000 -0.7500 -0.1250 
2.10 -0.4050 -1.2150 -0.1640 -3.6450 -0.4921 -0.0664 
2.20 -0.3200 -0.9600 -0.1024 -2.8800 -0.3072 -0.0328 
2.30 -0.2450 -0.7350 -0.0600 -2.2050 ------{).1801 -0.0147 
2.40 -0.1800 -0.5400 -0.0324 -1.6200 -0.0972 -0.0058 
2.50 -0.1250 -0.3750 -0.0156 -1.1250 -0.0469 -0.0020 
2.60 -0.0800 -0.2400 -0.0064 -0.7200 -0.0192 -0.0005 
2.70 -0.0450 -0.1350 -0.0020 -0.4050 -0.0061 -0.0001 
2.80 -0.0200 -0.0600 -0.0004 -0.1800 -0.0012 -0.0000 
2.90 -0.0050 -0.0150 -0.0000 -0.0450 -0.0001 -0.0000 
3.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

d g3(d) g3(0, d) g3(d, d) ga(O, 0, d) g3(0, d, d) ga(d, d, d) 

1.00 1.0000 5.5556 -0.3333 32.4444 0.0556 -3.4722 
1.10 0.7148 3.9876 -0.5663 23.3804 -1.0834 -1.1508 
1.20 0.4587 2.6116 -0.6344 15.6124 -1.3301 0.7241 
1.30 0.2305 1.4196 -0.5855 9.0765 -0.9846 2.0718 
1.40 0.0293 0.4036 -0.4599 3.7085 -0.2911 2.8943 
1.50 -0.1458 -0.4444 -0.2912 -0.5556 0.5558 3.2495 
1.60 -0.2960 -1.1324 -0.1065 -3.7796 1. 4071 3.2292 
1.70 -0.4222 -1.6684 0.0729 -6.0276 2.1535 2.9403 
1.80 -0.5253 -2.0604 0.2312 -7.3636 2.7217 2.4907 
1.90 -0.6065 -2.3164 0.3572 -7.8516 3.0702 1.9778 
2.00 -0.6667 -2.4444 0.4444 -7.5556 3.1852 1.4815 
2.10 -0.4363 -1.4361 0.4752 -3.2853 3.0496 1.0561 
2.20 -0.2440 -0.6045 0.4519 0.1802 2.7193 0.7186 
2.30 -0.0877 0.0606 0.3966 2.8891 2.2890 0.4663 
2.40 0.0347 0.5689 0.3261 4.8901 1.8289 0.2879 
2.50 0.1250 0.9306 0.2526 6.2315 1.3886 0.1687 
2.60 0.1853 1.1556 0.1845 6.9618 1.0001 0.0934 
2.70 0.2177 1.2539 0.1267 7.1294 0.6807 0.0487 
2.80 0.2240 1.2356 0.0816 6.7828 0.4360 0.0239 
2.90 0.2063 1.1106 0.0491 5.9704 0.2621 0.0109 
3.00 0.1667 0.8889 0.0278 4.7407 0.1481 0.0046 
3.10 0.1215 0.6480 0.0148 3.4560 0.0787 0.0018 
3.20 0.0853 0.4551 0.0073 2.4273 0.0388 0.0006 
3.30 0.0572 0.3049 0.0033 1.6261 0.0174 0.0002 
3.40 0.0360 0.1920 0.0013 1.0240 0.0069 0.0001 
3.50 0.0208 0.1111 0.0004 0.5926 0.0023 0.0000 
3.60 0.0107 0.0569 0.0001 0.3034 0.0006 0.0000 
3.70 0.0045 0.0240 0.0000 0.1280 0.0001 0.0000 
3.80 0.0013 0.0071 0.0000 0.0379 0.0000 0.0000 
3.90 0.0002 0.0009 0.0000 0.0047 0.0000 0.0000 
4.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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FOR HARD LINES 
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,-
FIG. 8. Potential of the mean force for hard lines. 

(6) From the virial theorem one may derive, for 

hard cubes, the equation PV/NkT=1+4pg(surface), 

where g(surface) is the average value of g(x, y, z, p) 

on the surface of a cube of twice unit side length. This 

relation can be checked as can the analogous results for 

lines and squares. 

To conclude this section on the radial distribution 

function let us examine the potential of the mean force23 

for hard line~, squares, and cubes. This potential, 

'It (r12) , is given by 

and is the potential energy of the average force on 

mo!ecule 2 along r12 with molecule 1 (for convenience) 

at the origin. In Figs. 8-10 we have plotted w/kT for 

hard lines, squares, and cubes at a volume of 3Vo, 
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THE MEAN FORCE POTENTIAL FOR 

HARD SQUARES 

2 3 d_ 4 

FIG. 9. Potential of the mean force for hard squares. 

23 J. de Boer, reference 20, p. 358. 

THE MEAN FORCE POTENTI AL FOR 

HARD CUBES 

d- 4 

FIG. 10. Potential of the mean force for hard cubes. 

using the radial distribution function data from 

Table XI in Eq. (37). Because g(x) is known exactly 

for hard lines [Eq. (36)J, we include wexact/kT for 

comparison with W(gl" 'ga)/kT in Fig. 8. We do not 

mean to imply, by using V=3Vo for lines, squares, 

and cubes, that Wexact will be equally close to W (gl ' , , g3) 

in each case. It might, for example, be better to use 

equal values of p1ln for comparison, where n is the 

number of dimensions. As in the case of hard spheres,23 

we see that the mean force for lines, squares, and 

cubes is attractive for some values of the separation 

and number density. Again, the results for squares 

and cubes are strongly dependent upon angle as well as 

distance. 

S. CONCLUSION AND REMARKS 

The foregoing calculations for hard lines, squares, 

and cubes are interesting in illustrating the difficulties 

involved in using the exact cluster treatment of the 

configurational integral. The facts that (1) some virial 

coefficients are negative for hard cubes, and (2) 

that only a single kind of subintegral contributes to 

B2" 'B7 for hard lines, are both interesting and stimu­

lating, because the physical basis of these results is 

not understood. The techniques used here are rather 

T ABLE X~1. B. a~d B, for triangles, squares, equilateral hexa­
gons, and Circles. Flfst set of values is for Vo is N. Second set is 
for B.iE 1. 

6 0 0 0 
B. 3.0000 2.0000 2.0000 2.0000 

Ba 7.0000 3.0000 3.1111 3.1280 

B. 1.0000 1.0000 1.0000 1.0000 

B. 0.7778 0.7500 0.7778 0.7820-

• 0.7820= (4/3) - (V3/1r). 
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specialized but may prove of value in suggesting treat­

ments for more complicated potentials. Finally, the 

large amount of numerical data available from this 

investigation will permit rather exacting tests for any 

approximate theory of the configurational integral 

problem. 

We note here that for other simple parallel molecules 

the integrations are more difficult. In Table XII we 

list for comparison B2 and Ba for parallel triangles, 

squares, equilateral hexagons, and circles,24.1o first in 

units of VoIN, then in units of B 2• It is interesting to 

see that in the latter units Ba is the same for triangles 

and hexagons. A system which is particularly easy to 

study from the point of view of the virial equation of 

state is a mixture (two-dimensional) of hard lines, 

some pointing east-west and the rest north-south; 

for such a system one finds that B2 is positive, B3 is 

zero, and B4 is negative. 

Notes added in proof. It is clear that the equation 

of state for the two-dimensional mixture of hard lines 

(north-south, east-west) is identical with the equation 

of state for a corresponding mixture of hard parallel red 

and greensquares,such thatcf>RR=O,cf>GG=O,andcf>RG=cf> 

(hard parallel squares). The nonvanishing star integrals 

for north-south and east-west lines of length L are 

identical to the corresponding star integrals for squares 

of side length L/2. 

Upon examination, it is found that most of the 

integrals vanish, and applying the expressions of 

Mayer25 for the vi rial coefficients of mixtures, one 

finds for the case of an equimolar mixture, using the 

appropriate entries in our Appendix I, the results: 

B2=1/4, B3=0, B4=-1/48, B6=-1/192, where unit 

area is L2. (2) We have noticed that the net number of 

points of degree m~n-l is zero for the stars of n<8 

points. The degree of a point is simply the number of 

points to which it is directly linked by lines. [Refer 

to Eqs. (23), (24), and (25) and the remarks that 

follow J. 
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APPENDIX I 

Graphs and Integral Values for All Stars of Less than 
Eight Points 

In this appendix we list all of the stars contributing 

to the first seven virial coefficients, together with the 

values of the one-dimensional integrals. The star:s are 

numbered serially for each value of n, the number of 

points, and ordered according to (1) number of points, 

(2) number of lines, and (3) value of the one-dimen­

sional integral. These values are derived from the 

following form of the integral 

This form is chosen so as to make all values appear as 

integers. 

Three numbers are associated with each star: first, 

the serial index; second, g, the number of ways in which 

a star may be labeled, positive if the number of lines 

is even, negative if odd; third, the value of the integral, 

which is always taken as positive. 

I Graph g Value I Graph g Value I Graph g Val"" 

1 -- -1 2 10@ +1 120 14~ -15 l4B8 

16 -1 6 10 +60 2112 15@-~0 1396 

10 
+, ,2 20-~0 1756 16 <J:.}-120 1'56 

2[S] 
-6 28 ,9-lBO 1728 17<rSl>-~0 1352 

,~ +1 24 4Q-180 1676 18~-~0 1352 

10-12 230 5~+180 1552 19G-180 1320 

2e+60 196 6€:d +15 15~ 200>-180 1304 

, 'f;;) +10 192 79+720 1524 21~-720 l2!I8 

4 R; -10 180 e~+~o 1504 22~ -90 12SS 

5 (/S) -60 174 9(1)+180 1504 2'~-~0 1264 

6Q-30 164 10CJ+~0 1480 24Q-~0 12~ 

7€}) +30 152 11C+1BO 14« 25e-~O 1224 

B (f!J +15 144 1200 +90 1400 266 -60 1176 

9@-10 132 13e+~0 1404 2700 -10 1152 
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I Craph g Value I Graph g Value I Graph I! Value I Graph g Value I Graph I! Value I Graph I! Value 

28~ +90 1240 42@ -45 1040 56e -1 720 56 t;J;i +5040 H2O. 70a +5040 12616 84(J;[} -630 12816 

29@+360 1204 43~ -60 1000 1 0-360 23548 57~+2520 13216 7l~+1260 12544 65~-1260 12744 

30@> +90 1200 449-360 992 202520 19284 58Q+2520 13168 n@+2520 12432 '66~ -210 12696 

3l~+360 1180 45® -60 9tl4 ,G+2520 18596 59®+2520 13156 73 (;) +1260 12236 87 (}-5040 l2644 

32 @+360 1148 
4
60-180 964 4(/]+l26O 18176 60@+2520 13116 74 r;};) +2520 12104 68 (!!i; -5040 12606 

"<[)+360 1128 478 -90 960 5 r:::y +1260 1'7124 61@)+252O 13064 75@ +630 11816 89®-2520 12606 

34~+360 1120 48~ +60 960 6Q-1260 16648 62(ij+2520 13016 76(jJ) -21 15120 90@-2520 13606 

35(J;) +180 1112 49~ +20 936 7Q-5040 16384 6'~+5040 12976 77~ -840 13824 91@-5040 12548 

36E} +72 1100 50~+180 916 a@-l26O 16176 648+5040 12976 76QJ} -630 13416
1 

92@-1260 12520 

370 +45 1088 51~+180 888 90-2520 16098 65~+1260 12866 79@,-1260 13088 93(!j-2520 12516 

380+360 1068 520 +15 864 100-2520 16098 660}+2520 12668 8O~-2520 13020 94t;;;;;;;-2520 12408 

39@7 +60 1056 539 -60 840 11@-252O 16000 67 r:;s; +2520 12824 6l®-2520 13020 I 95@-5040 12284 
f 

40W-18O 1064 54~ -45 816 12G-5040 15896 68([;)+1260 12760 82~-2520 12996 96~ -6'0 12216 

41@-360 1044 55~ +15 768 13 r:;;; -2520 15896 69W+5040 12630 83 @-2520 12996 97~-2520 12196 

I Graph g Value ! Graph g Value I Graph g Value I Graph g Value I Graph g Value I Graph II Value 

14a -420 15780 28~+2520 14688 42a +1260 13812 ~-2520 12184 112Cdt-5040 11926 12@-5040 U510 

150-1260 15700 29@+5040 14460 43~+2520 13808 99 r:;)j;j,-2520 12168 n@-S040 11848 127®1260 11460 

16 r;;t) -2520 15616 30~+2520 14320 44Q+2520 13808 looQ-1260 12168 114~-2520 11626 ~252O ll448 

17tJ-504O 15498 31 Q+1260 14320 45~+1260 13776 101@-2520 12156 115@-2520 11816 129Q,-1260 11444 

18&-2520 15428 32(;)+2520 14236 46 (5;p +2520 13704 102@-2520 12144 116~-2S20 11792 13@-5040 11438 

-1260 15428 33~ +840 14232 47CiJ; +2520 13704 10,f£{J>-2520 12120 117Q-2520 11792 131~040 11418 

200 -630 15032 348+5040 14208 48 Q +5040 13586 104G-1260 12080 llBU-126O 11740 132@-2520 11406 

210-5040 14926 35@+5040 14208 49@+1260 13560 1OSct;:)-2520 12052 1l~-2520 11712 133@-2520 mea 

226-1260 14852 36 +1260 14172 50@+5040 13476 '106~-5040 12006 12~5040 ll710 134~20 1U64 

23C1J -840 14592 37~+1260 14144 518+2520 13336 107@-s040 12006 121~1260 11672 1"~2520 11'32 

24r3; -840 14508 38Q+~O 14032 52(;d+1260 13332 100@-1260 12000 122@.5040 11622 136~20 11332 

2500-2520 14446 39Q+5040 14032 53c;f;9 +630 13312 1~-2520 11940 123~2520 11608 137WS040 l129B 

26e +21 15360 40 c:;) +5040 14032 540+2520 13276 110@-2520 11928 124Q-5040 11598 1~-1260 11248 

27@ +420 15192 410+2520 13876 550+1260 13276 1110-5040 ll926 12581260 11568 1390-630 l1224 
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I Graph g Value 

140®2520 11184 

141~-2520 11112 

142~-2520 11084 

1430-2520 11002 

1440-630 U056 

145~5040 11004 

146Q-1260 10960 

147Q-5040 10930 

l48~5040 10910 

149@-5040 10888 

150~-1260 10072 

15162520 10012 

152@-630 10784 

153C!}f) -420 10752 

I Graph g Value 

18~+5040 10750 

183@+63O 10728 

184C!tf;+2520 10720 

185@.2520 10692 

186@.2520 10692 

lB7@+5040 10638 

188e252O 10628 

189(J)+2520 10624 

19O@.1260 10616 

191~+1260 10576 

192@.2520 10568 

193@+5040 10566 

194@+315 10560 

195~2520 10556 

W. G. HOOVER AND A. G. DE ROCCO 

I Graph g Value I Graph g Value 

154@-2520 10732 168~5040 11218 

155~-2520 10604 169@+2520 11180 

156®-1260 10332 170Q+1260 11052 

157@-1260 10244 171~+2520 11004 

158~+210 12476 172~+2520 11004 

159~+2520 11788 173~+1260 11000 

160@+63O 11720 174@+1260 11000 

161~+2520 11532 175@+2520 10972 

162~ +840 11496 176@+1260 10936 

163@+840 11448 177@+2520 10088 

164~+2520 11412 178~+2520 10068 

165~+1260 11352 17ge+630 10016 

166@r126O 11304 180@5040 10000 

167§'5040 11218 181~+5040 10780 

I Graph g Value I Graph g ValUft 

196®+420 10548 210r:t;;;+5040 10200 

19'1~+2520 10536 211t!tf{)+630 10192 

196Q+5040 10516 212f!S) +420 10188 

199c;&+5040 10500 213@+1260 10164 

2oo~+2520 10368 214G+5040 10162 

20Q+2520 10368 215®+5040 10138 

202~ +630 10336 216~+5040 10120 

203~+2520 10312 217~+5040 10078 

204~2520 10312 21805040 10068 

205~+2520 10304 219@+2520 10056 

206Q+2520 10296 220~5040 10050 

207~+420 10296 221~+5040 10022 

2OOQ+1260 10248 222@.2520 10016 

209~2520 10236 223@+2520 10012 

I Graph g Value 

·224 ® +2520 9960 

225 ~ +840 9972 

I Graph g VAlue 

238@+1260 9'124 

239 @ +2520 9684 

I Graph g Value 

252 ~ -630 10576 

253 ~ -315 10320 

226(2) +2520 9968 240~ +840 9612 254~ -126010312 

227 ® +1260 9960 241 ~ +2520 9588 255@ -1260 10208 

228 Q +630 9928 242@ +2520 9544 256~ -5040 10100 

22900 +1260 9880 2439 +2520 9536 257~ -2520 10072 

23O@ +2520 9648 

231 (;} +5040 9636 

232~ +1260 9824 

233@ +2520 9'188 

234@+1260 

235~+5040 

9776 

9'154 

236 (!:;) +1260 9'144 

237 © +5040 9'140 

I Graph g Value 

·266~-2520 9'128 

267~ -210 9'120 

268@-1260 9696 

269~-5040 9654 

270~-252O 9636 

mflj -840 9624 

272f!!} -630 9600 

27'~-2520 9500 

274 r:;}J) -5040 9488 

275@-l26O 9464 

276 (jj}jf} -1260 9456 

277~ -420 9456 

278~-2520 9428 

279~-5040 9410 

244@+2520 

245@+5040 

246~ +1260 

247~+1260 

9386 

9372 

9312 

248 @ +840 9276 

249 @ +1260 9248 

250 r:) +2520 9232 

l251 +35 9216 

~""""~-"-'" =~= 

I Graph g Value 

2BO@t-1260 9J68 

281@-2520 9352 

2B2~ -840 9348 

283~-5040 9338 

2840-2520 9320 

285@J-5040 9288 

2B6@-1260 9288 

'lHI f!f2j -2520 9280 

288~-1260 9280 

289~-5040 9266 

290@;-1260 9244 

291@-5040 9226 

292~-1260 9216 

293~-126O 9204 

258@ -420 

259~ -2520 

9960 

260~ -1260 9916 

261@ -2520 9900 

262@-2520 

263 @-2520 

9904 

264;;jfJ;; -630 9640 

265 e; -2520 9'128 

I Graph g Value 

294 @-2520 9176 

295 ~-2520 9176 

296~-2520 9112 

29'1~-5040 9106 

298@-2520 9076 

299~-2520 9068 

3006 -630 9048 

301~-1260 9016 

302 rtf§) -1260 9004 

303~-1260 8992 

'04~ -6}O 6976 

305@-5040 B964 

'06~-2520 8964 

'07@-1260 8964 
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I Graph II Value 1 Craph. S Value I Graph II Value I Graph II Val ... I Graph II Value I Graph II Value 

3OOQ-1260 8936 322 ti!J -2520 8572 )36@; +630 9200 392~-1260 82C6 406@-2520 7622 420~-2520 7184 

m@-2520 8932 323 (f) -5040 8568 3Y1~"1260 9004 393 ff/f!jj -35 82C6 407 ~-1260 7584 421~-1260 7184 

310~-2520 8922 324~-25Z0 8532 338~ .;840 8940 
L y 

'94~-2520 8068 4C6@ -630 7512 422 ~-1260 7152 

311~-5040 8878 325 -25:10 8516 339~+1260 f'HI2 '95~ -420 8040 409~-126O 7504 , . 423@; -420 7128 

312~-2520 8824 326[L -2520 ~) 
'L. 

8478 340~+5040 8856 '96~-1260 7968 410 ~-5040 7500 424~ -140 7128 

313~-1260 6792 
('ill 

327" -1260 
"tJJi 

8440 341~ ..630 8800 3'11@ -315 7952 4U@-2520 7416 425~ -315 7056 

314Q-5040 B786 328 c::9 -1260 8416 342~+1260 67C6 396@ -210 7920 412 t!lj-2520 7400 426~ -70 7056 

315@ -105 B784 329@}-1260 8Y16 343~"5040 8696 39ge-252O 7864 4139-1260 7Y12 4276 -252 7020 

3l6®-1260 6740 330~-2520 8336 344 ¢J;) ->2520 8680 400@-1260 7864 414@ -630 7360 428~-2520 7009 

317 ¢!!f) -2520 6720 331({;f; -210 8280 345(f/;i} +2520 8616 401 r:tfii -1260 7716 415~-252O 7324 1429~ -420 6'112 

318Q-252O 8672 332@ -630 8272 346~+1260 8568 402ff}) -840 7716 416~-2520 7292 430e ..6,0 7456 

'19®-5040 8662 333~ +210 9480 347~+2520 8564 403~ -840 7716 417®-1260 7272 431~ +840 7368 

320®-252O 8656 334~ +1260 9228 34S~+1260 8536 404~-126O 7104 418~ -840 7224 432~ +210 7272 

321@-2520 8580 335~ +420 9216 349~+1260 8520 405 (jjiJ) -630 7696 419~-5040 7204 433 (:if!} +105 7200 

-

I Graph g Value I' Graph « Value I Graph g •• -

350@) +420 8496 364~+252O 8212 3'18 @ ->2520 'l9Ot 

351 9+5040 8476 365f!/!;p +1260 8196 Yl9@+2520 7672 I Graph g Value I Graph g Value I Graph. g Value 

352~+1260 8464 366@ +315 8192 380®+2520 'lB6S 

353 (fj!fj +1260 8456 367 a +210 8160 381@+2520 7868 

434~+l26O 7132 

435~ +6}O 7048 

4460 +420 6624 4580 -630 6192 

447~+1260 65521 4598 -315 6096 

354@+126O 8448 368~+126O 8104 :lS2~+5040 '7848 436~+1260 7032 448~+1260 6540 460~ +140 6120 

355 tf/fjf) +105 8448 369 e H260 8092 383~ ..630 '7848 4Y1O+1260 6944 449~ +105 6528 4610 +35 6048 

356~+2520 8436 YlO~+2520 8C64 384 +1260 7816 438@+252O 6856 4508 -105 6960 462 40 +420 5964 

357~+2520 SY/6 Yll@ .. 2520 8060 385~+2520 714S 4390+2520 6S36 4518 -420 6576 463e ..630 5856 

358~+5040 B294 Yl2~+5040 7990 386 !f/S) +2520 7692 440 (!l!J +1260 6816 452~-1260 6488 4640 +105 5760 

359~+2520 8288 373~+252O 7968 3B7@->2520 7672 441@J +252 6780 4538 -105 6480 4650 -105 5616 

360~+1260 8272 Yl4 (!) .. 1260 7960 388@+2520 7640 

361~+l26O 8244 375® ..6}O 7960 389@ +420 7584 

, 

442~+126O 6728 

4438 +315 6120 

4549 -420 6360 4660 -105 S5Z0 

455~-1260 6312 4670 ->21 5280 

362~+2520 8232 Yl6~+2520 7952 390tfj? +105 7488 444~ +420 6696 4560 -210 6288 
468_ 

-1 5040 

363~+2520 8212 m@+1260 7944 391@ +360 7476 445~+2520 6660 457e-126O 6204 
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r Graph g Value 

158~+210 12456 

217~+5040 10078 

'26~-2520 8418 

'27 ${} -1260 8440 

~ t!!J:; +1260 8536 

360 r:;;s; +1260 8272 

419 qJff; -5040 7204 

APPENDIX II 

Doubly Rooted Graphs and Integral Values for Less 
than Six Points 

In this appendix we list all of the doubly rooted 

graphs contributing to the first four approximations to 

I Graph g O<r<1 l<r<2 2<r<3 

1 1\ +1 2- r 2- r 0 

n 6 
_ 2:r2 

9- 6r+ 
2 

9- 6r+ r2 1 -2 r 

2 M +1 8- 8r+ 2:r
2 s.. Bn 2r2 0 

3 Vl +4 6- 2r- r 
2 

B- 6r+ r2 0 

4 

B 
-1 6- 4r 8- Br+ 2r2 0 

1 +6 32 _12/+3r3 
32 _12/+3"3 

64-48r+I2:r2_ r3 

( for 2 < r < 4 ) 

2 

~ 
-.<; 36-18r-12:r

2 
+6r3 54-63r+24r2_3r3 0 

3 -12 32-12r- 6r2+2r3 32-12r- 6r2+2r3 0 

4 

~ 
-12 26 _12:r2.~ 38-21r + r3 54-45r+12i- r3 

5 -.<; 26 _12r2+2r3 38-2lr + r3 54-45<+12/- r3 

60: -.<; 28 _12r2 
54-54r+18r

2
_2r3 

54-54r+18/ -2r3 

7 

~ 
+1 48-72<+36r2 _6r3 48-72r+ 36/-.<;r3 0 

8 +12 36-30< +3,.3 48-6Or+24i _ 3r3 0 

9W +3 32-24r +2r3 32-24r +2r3 0 

10 

~ 
+12 28- 9r- 6/+ r3 34-21r + r3 0 

11 +12 28-- gr.... 6r2+ r3 J4-21r + r3 0 

the radial distribution function, together with the 

values of the one-dimensional integrals. The graphs are 

numbered serially for each value of n, the number of 

points, and ordered according to (1) number of points, 

(2) number of lines, and (3) value of the one-dimen­

sional integral. These values are derived from the 

following form of the integral 

(n-2)!f S;*(n)dra" ·drn • 

This form is chosen so as to make all coefficients appear 

as integers. 

Because the value of the integral is a function of 

r12=r, it is necessary to tabulate the values separately 

for O<r<l, 1<r<2, "', where we have assigned u 

the value unity. The other numbers associated with 

each graph are the serial index and g, the number of 

ways the graph may be labeled with the root points 

being 1 and 2. Although the integral values for O<r< 1 

do not contribute to the one-dimensional radial dis­

tribution function, these values are needed for the 

distribution functions in two or more dimensions, and 

are included for that reason. 

r Graph g O<r<1 

o 

o 

o 

28-l8r 32-24r 

24-1Br o 


