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The use of the Anisotropy of Magnetic Susceptibility (AMS) has become a rather common

practice in Earth Sciences since the pioneer note by Graham (1954). The versatility of

the technique, and the rapidness in obtaining and processing AMS data largely improved

in the past thirty years, and has generated a wealth of literature, notably on mudrock

fabrics. The assessment of the current trends in magnetic fabric studies reveals that

AMS has one of its largest potential in sedimentary rocks from structural settings where

the ductile component of deformation is cryptic or hindered by the brittle component.

Abundant evidence provided by AMS data reveal that deformation extents beyond the

deformation or cleavage front in contractional settings, including fold-and-thrust belts and

active accretionary prisms, configuring magnetic fabrics as a standard method for fabric

quantification in deformed sedimentary rocks.

Keywords: magnetic anisotropy, rockfabrics, mudrocks, deformation, preferred grain orientation, accretionary
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INTRODUCTION

After John W. Graham proposed 60 years ago, the use of the

anisotropy of magnetic susceptibility (AMS) in rocky materials,

the subject, with no doubt, has gained an enormous popularity.

What Graham referred to as an “unexploited petrofabric element”

in 1954, is nowadays an indispensable tool in a wide range of dis-

ciplines in Earth Sciences. The study of what we know as AMS

in sedimentary rocks begins well before Graham’s time neverthe-

less. Gustav Ising (at the Geophysical Laboratory at Djursholm,

Sweden) was interested in varved clays for geomagnetic purposes,

i.e., secular variation (Ising, 1942). He had been investigating

clay rich sediments since 1926, using first the facility at the

Physical Laboratory of the Stockholm University and then the

Geophysical Laboratory at Djursholm. Although the aim of Ising’s

studies was the record of secular variation in varved sediments,

he noticed that “the two principal axes (of susceptibility) lying

in the horizontal plane posses considerably higher susceptibil-

ity values (10–20%), . . . over the vertical susceptibility.” From the

performed susceptibility measurements obtained, he concluded

that the axis of maximum susceptibility is decisive for the “prob-

lem of determining the secular variation of the declination from

clay measurements.”

Graham’s seminal paper, 25 years after Ising’s work, focused

on the application of AMS to deformed sedimentary rocks, where

considerable research has shown to have its maximum potential.

Indeed he noticed that flat-lying sediments have an oblate mag-

netic susceptibility ellipsoid, whereas folded sandstones from the

Valley and Ridge (Appalachians), have principal axes of maxi-

mum susceptibility that are normal to bedding and minimum

axes normal to the fold axis of the structures. In the current

paper we will further explore the main concept outlined in

Graham (1966), namely that magnetic anisotropy in deformed

sedimentary rocks is appreciable and that it is related to plastic

deformation of sediments very often semiconsolidated.

Shortly after Graham’s work, it was well-established that sed-

imentary rocks acquire a magnetic fabric during deposition

(Granar, 1958; Rees, 1961, 1965; Hamilton and Rees, 1971; Kent

and Lowrie, 1975) and also that cleaved rocks, slates, have a

magnetic fabric that is consistent with the macroscopic foliation

(Fuller, 1960, 1963). Although beyond the scope of this paper, the

application of AMS to the study of igneous rocks also started soon

after to emerge as a powerful fabric tool (Girdler, 1961; Khan,

1962; King, 1966; Heller, 1973; see Bouchez, 1997 and references

therein). The AMS studies have been since then employed for pur-

poses as uncommon as characterizing tsunami deposits (Wassmer

et al., 2010; Schneider et al., 2014) or for understanding preferred

orientation in speleothems (e.g., Zhu et al., 2012).

A remarkable development after Graham’s paper is the concept

of magnetic carriers that contribute to the magnetic anisotropy.

Although what he referred as to “dimensional orientations of

ferromagnetic grains” holds true for many rock types, over the

years it became apparent that both ferromagnetism and param-

agnetism contribute to the total magnetic anisotropy (e.g., Daly,

1967; Parry, 1971), and soon after many scholars emphasized

specifically the role of phyllosilicates to the total fabric (Owens

and Bamford, 1976; Henry, 1983; Henry and Daly, 1983; Rochette

and Vialon, 1984; Borradaile et al., 1986; Lamarche and Rochette,

1987; Borradaile, 1988). Because phyllosilicates (most abundant

paramagnetic minerals in sedimentary rocks) occur as platy

grains whereas magnetite typically as euhedral, they will behave

differently upon stress and therefore is critical to separately char-

acterize their preferred orientation and degree of alignment. Also,

in sedimentary rocks, phyllosilicate minerals often represent a

larger volume fraction than ferromagnetic (accessory) minerals
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and therefore are likely to yield more accurate and represen-

tative fabric information. After the pioneering studies by Daly

(1967) and Parry (1971), a number of scholars became inter-

ested and developed methods aimed at fabric separation (Owens

and Bamford, 1976; Henry, 1983; Rochette and Fillion, 1988, and

more recent Bilardello and Jackson, 2014). The rationale for such

separation of magnetic anisotropies is based on the variation of

susceptibility with either temperature or applied field. Basically

there are two different approaches, namely tensor subtraction

and instrumental isolation of the paramagnetic anisotropy (see

Martín-Fernández and Ferré, 2007 for a comprehensive review).

Here follows a summary of the methods.

Scriba and Heller (1978) and Schmidt et al. (1988) used a

100 µT radial field in a SQUID magnetometer and rotated the

sample about each of three mutually perpendicular axes in steps

of 45◦, for a total of 24 positions, to determine the anisotropy

tensor. Rochette and Fillion (1988) used a vertical-access SQUID

magnetometer and trapped a DC field. By rotating the sample

about a horizontal axis at a frequency of 0.01 Hz and analyzing the

generated signal, they determined the susceptibility anisotropy of

both ferromagnetic and paramagnetic fractions.

The principle of a vibrating sample magnetometer (VSM) is

based on the flux change in the pick-up coil system produced by

a sample that is vibrating (rather than by rotation, as in spinner

magnetometers). There have been several studies using a VSM to

obtain directional hysteresis curves for different positions of the

specimen, and hence enabling to the calculation of a High Field

AMS (Thill et al., 2000; Kelso et al., 2002; Ferré et al., 2004).

The torque magnetometer is possibly the most popular instru-

ment to measure high field magnetic susceptibility (Banerjee and

Stacey, 1967; Owens and Bamford, 1976; Ellwood, 1978; Parma,

1988; Borradaile and Werner, 1994). The basic principle is the

measurement of torque exerted on a sample by an applied mag-

netic field due to the anisotropy of the sample as it is rotated to

different azimuths about an axis perpendicular to the field. The

torque T is given by T = dE/dθ, where E is the energy of magne-

tization of the sample and θ is the direction of the applied field. It

is thus possible to estimate the anisotropy present in the rock from

a Fourier analysis of the torque curve. Hrouda and Jeliınek (1990)

presented a mathematical method for separating the components

by measuring a sample in two different fields above the saturation

magnetization of the ferromagnetic contribution. More recently,

Martín-Hernández and Hirt (2001) presented a mathematical

method that utilizes measurements in several high fields toward

separating the ferromagnetic and paramagnetic components of

the magnetic fabric. By using a larger number of fields, instead of

two as described by Lowrie (1989), a more accurate definition of

the paramagnetic susceptibility tensor can be obtained.

SOURCE OF MAGNETIC SUSCEPTIBILITY

Most studies that followed Graham’s (1954) work focused on sed-

imentary rocks, including sandstones and mudstones. Although

in Graham’s view, the magnetic fabric obeys “dimensional ori-

entations of the ferromagnetic grains” we now know that the

paramagnetic contribution is usually more significant that the

former in these rocks (see Tarling and Hrouda, 1993 and ref-

erences therein). To illustrate this issue of ferromagnetism vs.

paramagnetism in sedimentary rocks, we need to look at the

rock composition and constituents. Sandstones are sedimentary

rocks consisting of detrital sand-sized grains, that form the frame-

work of the sediment, fine-grained matrix between the grains,

and authigenic minerals. The most common detrital mineral in

sandstone is quartz, on average 65% although some sandstones

are made of practically 100% quartz. Feldspar content averages

between 10 and 15%, except in arkoses where it reaches 50%.

The remaining minerals typically include phyllosilicate miner-

als (biotite, muscovite, chlorite, kaolinite, smectite, illite), and

heavy minerals (zircon, rutile, amphiboles, hematite, magnetite,

etc.). Mudstones—a mixture of clay and silt sized particles-

constitute some 45–55% of sedimentary rock sequences. Shale

is a laminated and fissile mudrock, as opposed to the blocky,

non-fissile mudstones. By definition the main constituents of

mudrocks are clay minerals (42% on average) and silt-grade

quartz (38%). Other minerals (less than 5%) include feldspar,

calcite, plagioclase pyrite, etc. Whereas ferromagnetic (sensu

lato), moderate to high susceptibility minerals (e.g. magnetite,

hematite) are minor components, the dominant mineralogy cor-

responds to paramagnetic, lower magnetic susceptibility phases.

Indeed, the average value of bulk magnetic susceptibility of

mudrocks (10−4 to 10−5 SI) suggests that the concentration of

iron oxides such as magnetite is typically less than 0.01 wt%

(Figure 1) which is consistent with the dominance of para-

magnetic susceptibility in mudrocks. Numerous rock-magnetic

studies where paramagnetic and ferromagnetic susceptibilities

have been quantified revealed that typically the former dom-

inates in mudstones (e.g., Martín-Hernández and Hirt, 2001

and references therein), therefore the AMS is dominated by the

paramagnetic component, and most specifically by the shape

anisotropy of clay minerals although very fine magnetic particles

attached to the clay fabric might also contribute (Kodama and

Sun, 1992).

Although there is agreement in that AMS in pelitic rocks is typ-

ically controlled by paramagnetic phyllosilicate minerals, errors

might arise when such very fine magnetic particles, specifically

single domain (SD) magnetite, are present in large quantities.

The magnetic anisotropy of magnetite is determined by its mag-

netic grain size (Stephenson et al., 1986). For multidomain (MD)

particles, the maximum/minimum susceptibility coincides with

the long/short axes of the grains, and therefore the bulk mag-

netic fabric mimics grain orientation. However, in SD particles

the minimum axis of susceptibility is parallel to the long axes of

the grain, producing an “inverse magnetic anisotropy” (Jackson,

1991). The term “inverse magnetic fabrics” was originally coined

by Rochette and Fillion (1988), who actually sought two causative

models: (1) c-axis preferred orientation of ferroan calcite grains

whose maximum susceptibility is parallel to the c-axis, and (2)

single-domain elongated magnetite grains. In mudrocks, the for-

mer is rather uncommon due to the very low concentration of cal-

cite. Several authors have observed “inverse fabrics” in Fe-calcite

rich rocks (Ihmlé et al., 1989; Hirt and Gehring, 1991; de Wall

et al., 2000; Hounslow, 2001). However, because unusually high

proportions of SD magnetite would be required, few rocks show

a net inverse magnetic fabric due to magnetite (Borradaile and

Jackson, 2004). The inverse fabric, i.e., SD-related inverse fabric,
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FIGURE 1 | Bulk susceptibility and mineral contribution. The total

susceptibility in a given rock will depend on both the intrinsic susceptibility

and the concentration of the individual minerals. Magnetite (ferromagnetic)

and some common rock-forming silicates have been shown as a reference.

The gray, horizontal bar shows the susceptibility range for most mudrocks,

revealing that the contribution by paramagnetic grains (in particular

phyllosilicate) is larger than magnetite.

is otherwise rather common in igneous rocks (e.g., Borradaile and

Gauthier, 2001; Zhang et al., 2011).

The topic of inverse fabric related to SD magnetite is explored

in Jackson (1991), and as of today it is still a poorly resolved

topic (e.g., Tarling and Hrouda, 1993). Determining whether SD-

magnetite is producing inverse fabric requires methods that can

isolate different magnetic grain size of magnetite, which include

measurements such as the anisotropy of anhysteretic remanent

magnetization (AARM) (Jackson, 1991). Some theoretical mod-

els for inverse magnetic fabrics have also been developed (e.g.,

Ferré, 2002).

ANISOTROPY OF MAGNETIC SUSCEPTIBILITY (AMS)

The low field magnetic susceptibility of a rock (the ratio of mag-

netization to the applied field or K = M/H) is given by the

total contribution of its bulk mineralogy, including paramag-

netic (e.g., phyllosilicates, iron-bearing feldspars), diamagnetic

(e.g., quartz, calcite) and ferromagnetic (sensu lato; e.g., mag-

netite, goethite, hematite) grains. An intrinsic property of most

of these rock-forming minerals is that their magnetic susceptibil-

ity is anisotropic (Nye, 1957) and thus Kij = Mi/Hj. For example,

it has been demonstrated that magnetic axes in biotite crystals

conform to the density distributions of mineral lattice planes

obtained by x-ray goniometry (Richter et al., 1993; Schmidt et al.,

2009) (Figure 2). These results reveal that densities from x-ray

for chlorite and mica are perfectly reflected by the distribution

of the minimum susceptibility axes. The study by Richter et al.

(1993) was possibly the first demonstration that the normalized

magnetic parameters (Mi = ln (ki/[kmax ∗ kint ∗ Kmin]1/3)

FIGURE 2 | Stereoplots for chlorite and mica dominated specimens,

comparing the x-ray texture data (shaded regions) and the orientation

of the principal axes of magnetic susceptibility (squares = Kmax,

triangles = Kint, dots = Kmin) (modified from Richter et al., 1993). The

minimum susceptibility axes show perfect agreement with the maximum

density of the chlorite and mica basal plane.

correlate directly with March strains as obtained from x-ray tex-

ture goniometry. The study was an important step forward show-

ing the AMS as a sensitive and rapid gage for bulk crystallographic

preferred orientation in rocks, with the advantage of using large

sample volumes (typically about 1 l cm3), as opposed to the

essentially two-dimensional slice used in optical and X-ray meth-

ods (Figure 2). Later studies by Borradaile and Werner (1994),

Martín-Hernández and Hirt (2003), and Biedermann et al. (2014)

have provided more details on the magnetic anisotropy of single

silicate crystals.

AMS defines a symmetric, second-rank tensor that has six

independent matrix elements. When the coordinate system is

referred to the eigenvectors, these trace an ellipsoid that is known

as the magnitude ellipsoid (Nye, 1957) whose semi-axes are the

three principal susceptibilities (Kmax > Kint > Kmin). In sedi-

mentary rocks, AMS depends mostly on the crystallographic pre-

ferred orientation of the individual components, compositional

layering, distribution and size of microfractures, and the shape

fabric of grains. The AMS tensor tracks preferred orientation and

consequently its applications embrace a wide range of disciplines

in Geosciences, and notably in structural geology (e.g., Housen

et al., 1993; Borradaile and Henry, 1997; Martín-Hernández et al.,

2004; Borradaile and Jackson, 2010 and references therein).

SEDIMENTARY MAGNETIC FABRIC

Sediments acquire and develop a magnetic fabric throughout a

long and complex process. The term fabric for sedimentary rocks

involves the grains orientation and packing, and the nature of the
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boundaries between grains. Clay particles in muds tend to have

positively charged edges and negatively charged faces (Langston

and Pask, 1958), which will cause small flocs of edge to face

(EF) particles in the earliest stages of deposition (Bennett et al.,

1991). The peds are often electrostatically connected by long-

chained clay platelets interconnected by high angle EF contacts

(e.g., Kawamura and Ogawa, 2002, 2004). The porosity between

these peds is relatively large (10 µm). During progressive consoli-

dation as overburden pressure increases, the clay platelets collapse

developing face to face (FF) contacts and the porosity is reduced

(Figure 3). The collapse of the clay structure during burial results

in a volume decrease by diminishing macropores. Hence, the nor-

mal progressive consolidation and burial of clay-rich sediments

results in a downsection decrease in porosity. This progressive clay

fabric change during burial determines to large extent the mag-

netic properties, which many scholars have studied throughout

AMS (Housen et al., 1996; Kopf and Berhman, 1997; Kawamura

and Ogawa, 2002, 2004; Schwehr et al., 2006) (Figure 3C).

From the abundant AMS data, it is apparent that the pat-

tern evolution of sediments depositing has a strong imprint on

the AMS. For burial depths of several centimeters, EF contacts

and long chains of clay flakes dominate the clay fabric, which

results in a certain degree of magnetic lineation. The underly-

ing reason is the “magnetic zone axis” (Henry, 1997), which is

expressed as a magnetic lineation and thus ellipsoids are typi-

cally prolate. At depths of several meters clay flakes rotate from

EF to FF contacts, shortening the connectors (Kawamura and

Ogawa, 2004), and hence there is an increase in both the magnetic

foliation and the anisotropy degree (Figure 3C). Although sev-

eral studies suggested that several hundred meters are required to

develop a horizontally preferred orientation in muds (e.g., Moon

and Hurst, 1984; Bennett et al., 1991; Kawamura and Ogawa,

2004), recent magnetic studies show that a horizontal anisotropy

develops much earlier on in the sedimentary column (Taira and

Niitsuma, 1986; Kanamatsu and Matsuo, 2003; Ujiie et al., 2003a;

Kanamatsu et al., 2012; Novak et al., 2014).

Upon progressive increase in overburden, and as clay fabric

changes from EF to FF, magnetic ellipsoids will tend to become

oblate and the anisotropy degree (P) will increase with depth as

porosity decreases and packing increases (Figure 4). An excep-

tion would be when sediments are in a state of overconsolidation.

Overpressured sediments form under many circumstances, such

as under high sediment accumulation rates, mineral dehydration,

gas liberation, and low permeability. As a result, pore fluid escape

is inhibited and it has to temporarily sustain the entire stress act-

ing on the sediment. Sediments become overpressurized in such

high water content zones. Among other effects, such zones of high

water content prevent the EF contacts from changing to FF con-

tacts (Schwehr et al., 2006). More importantly, as will be discussed

below, overpressure weakens the sediments (e.g., Maltman, 1994),

which facilitates grain sliding. The fluid between pores sustains

part of the burial stress, which reduces friction and hence sedi-

ment strength. Overpressured zones are potential sites for shear

and therefore are critical for sediment deformation.

FIGURE 3 | Progressive change of clay microstructure during burial

process. (A) The contact between particles changes from high-angle EF

(edge-to-face) to low-angle EF and FF contact compaction. Particles slide and

rotate normal to the maximum stress direction (modified from Bennett et al.,

1991). (B) Example of mudstone compaction fabrics. Photo on top shows a

weakly oriented clay assemblage, with open pore structure dominated by EF

contacts. The example below shows a more oriented clay population, with as

classic FF contact distribution (modified from Wilson and Wilson, 2014). (C)

Conceptual model of degree of anisotropy evolution with burial. As

compaction progresses, the overall anisotropy of susceptibility increases

shown as the minimum and maximum eigenvalues of the susceptibility

tensor (modified from Schwehr et al., 2006).
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FIGURE 4 | Changes of porosity and anisotropy degree (P) with depth

(IODP Hole 1149A) (modified from Kawamura and Ogawa, 2002).

Underconsolidated layers have been detected via AMS (e.g.,

Schwehr et al., 2006) revealing a new approach to detect com-

paction disequilibrium in marine environments. Such layers are

characterized by a reduced magnetic anisotropy, as compared to

what would be expected in a standard consolidation profile.

MAGNETIC ANISOTROPY AND WEAK DEFORMATION

Since the seminal paper by Graham (1966) where he pointed

out that AMS in sediments indicate “the final shape distortions,”

many scholars have exploited the property in order to retrieve

the strain imprint in sedimentary rocks, particularly in the weak

deformation realm. In the late seventies and through the eight-

ies, and possibly due to the development of improved measuring

techniques (Molyneux, 1971; Jelinek, 1973; Rathore, 1975) rock

magnetic anisotropy studies intensified, and specifically in shales

and slates (Hrouda and Janak, 1976; Kligfield et al., 1977, 1981;

Rathore, 1980; Turner and Gough, 1983; Rochette and Vialon,

1984; Hirt et al., 1988 among others). In anchimetamorphic grade

rocks, AMS has been shown to have a great potential to track

early deformation stages (Hirt et al., 1995, 2000, 2004; Robion

et al., 1995, 1997, 1999; Lüneburg et al., 1999; Gil-Imaz et al.,

2000; Parés and van der Pluijm, 2003; Debacker et al., 2004).

Although Borradaile and Tarling (1981) reported results from

“weakly deformed slates,” the study by Kissel et al. (1986) is pos-

sibly the first to demonstrate the great potential of AMS, as these

authors showed that by using this technique it is possible to detect

very subtle deformation in rocks otherwise considered to be

undeformed. More recent contributions by Aubourg et al. (1991),

Averbuch et al. (1992), Owens (1993), Parés and Dinarès (1993),

Sagnotti and Speranza (1993), Collombat et al. (1995), Parés et al.

(1999), Sagnotti et al. (1999) (also see Borradaile and Jackson,

2004 for a review) take advantage of the sensitivity of AMS to

identify and define the orientation of weak tectonic magnetic fab-

rics arising from phyllosilicate minerals. In most of these exam-

ples, the studied mudrocks are uncleaved, typically flat-lying,

and macroscopically undeformed. Despite the field appearance of

these mudrocks, a subtle, weak tectonic fabric is observed due to

the AMS features. In an effort to merge all these models for fab-

ric development arising from tectonic deformation with magnetic

fabrics, Parés et al. (1999) proposed a model for progressive stages

in AMS evolution in strained mudrocks. The model includes

four type of magnetic fabrics that develop in weakly deformed

mudrocks undergoing progressive deformation and has subse-

quently been observed and adopted in later studies of similar

rock types (Figure 5) (Frizon de Lamotte et al., 2002; Saint-Bezar

et al., 2002; Souqué et al., 2002; Sans et al., 2003; Larrasoaña et al.,

2004; Parés, 2004; Robion et al., 2007; Cifelli et al., 2009; Debacker

et al., 2009; Oliva et al., 2009; Soto et al., 2009; Weil and Yonkee,

2009; Mochales et al., 2010; Pueyo-Anchuela et al., 2010). A com-

mon feature in most of these studies is the realization that AMS

records preferred grain orientation in sedimentary rocks with

no macroscopic strain indicators, even before the appearance of

embryonic cleavage (Ramsay and Huber, 1983). The deformation

pathway represented in Figure 5 summarizes the magnetic fabric

path of mudrocks under progressive deformation (layer parallel

shortening).

A summary of the AMS studies developed in deformed

mudrocks is as follows:

(1) Principal axes of maximum susceptibility (Kmax) are par-

ticularly sensitive to tectonic shortening, as they develop a

magnetic lineation that mimics the intersection of bedding

and tectonic flattening plane (the strain XY plane).

(2) Layer parallel shortening extends well-beyond the “deforma-

tion front” in orogenic settings.

(3) An intermediate fabric (Types IIa and IIb) is very common

where bedding and flattening planes compete to identify the

finite magnetic anisotropy ellipsoid.

AMS DATA FROM ACTIVE ACCRETIONARY PRISMS

SEDIMENTS

Accretionary prims closely resemble fold-and-thrusts belts

exposed onshore, and therefore constitute a natural laboratory to

better understand the mechanical behavior of shortening in the

crust. The process of accretion is a preliminary process in moun-

tain building and hence in continental growth. With the advent of

ocean deep drilling since the mid 1960’s (DSSP, ODP, and IODP),

thousands of meters of sediment from many accretionary prisms

were made available for studying several geologic and geophysic

properties, including AMS, after several decades of drilling in

Barbados, Costa Rica, and Nankai accretionary prisms. Because

large volume of sediments in accretionary prims have never been

exhumed, and they are under active shortening, we can measure

www.frontiersin.org February 2015 | Volume 3 | Article 4 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Geomagnetism_and_Paleomagnetism/archive


Parés Anisotropy of magnetic susceptibility, rock fabrics

FIGURE 5 | Conceptual model of AMS development in mudrocks

undergoing progressive deformation. Type I fabric is essentially a

compaction, sedimentary fabric with Kmin axes normal to the deposition

plane and Kmax axes scatter along it. Type II (a and b) fabric reveals the

imprint of the first lateral shortening on the initial sedimentary fabric

where both LPS (layer parallel shortening) (or shearing) plane and

depositional plane compete to define the total magnetic fabric. Kmax axes

parallel the intersection direction between these two planes. Kmin axes

eventually show a girdle that is parallel to the maximum shortening

direction. Ultimately Kmin axes become parallel to the shortening direction

and Kmax axes remain parallel to the intersection direction and not

necessarily to the maximum extension direction. Rocks deformed by

layer-parallel shearing, Types IIa and IIb ellipsoids show a girdle of Kmin

axes that are plunging away from the tectonic extension direction.

physical properties that are otherwise unavailable in uplifted and

exhumed fold-and-thrust belts.

We will discuss results from the Nankai accretionary prism

(Figure 6), although more data are available by Hounslow (1990),

Housen et al. (1996); Housen (1997) as far as the Barbados accre-

tionary prism, and by Housen and Sato (1995) and Owens (1995)

for the Cascadia. The Nankai trough marks the boundary between

Eurasia and the Philippine Sea Plate along southwest Japan, and

has been the site of deep drilling since DSDP Leg 31 in 1991.

Although Legs 56 and 57 were drilled in the forearc of the Japan

Trench, no magnetic anisotropy data are available for the recov-

ered cores. During Leg 31, Site 298 was drilled into the toe of the

accretionary prism, but unfortunately core recovery was too poor

for any meaningful study.

Taira and Niitsuma (1986) reported the first rock-magnetic

data including AMS in sediments from the active accretionary

prism in SW Japan, along the Ashizuri transect. Two sites from

Leg 87 were studied, 583 and 582, which come from near the

frontal thrust and ahead of the deformation front, respectively

(Figure 7). Site 582, at about 7 km ahead (seawards) of the frontal

thrust, was sampled for AMS between depths 66 to about 750

mbsf (meters below sea floor), including Quaternary turbidites

and Pliocene hemipelagic muds. Site 583, behind the frontal

thrust, was sampled to a depth of 442 m. Because the ages of

the sediments are known and hence the reference paleomagnetic

direction, samples for AMS analysis were re-oriented using rema-

nence data and therefore the principal axes of susceptibility for

these two sites could be referred to geographic coordinates. In this

earliest study in the Ashizuri transect, the AMS data already show

a pattern that later on is observed not only in acretionary prisms

but also in their onshore analogs, foreland basins ahead of fold-

and-thrust belts. Site 582, farther away from the frontal thrust,

reveals a predominance of sub-vertical Kmin axes and a scatter, in

the horizontal plane, of Kmax axes (Figure 7). In contrast, Site 583,

just NW of the frontal thrust, reveals a slightly NW-SE elongated

dispersion of Kmin axes while Kmax have dominantly a NE-SW

direction. In their study, Taira and Niitsuma (1986) interpret the

Kmax grouping to be related to a NE-SW paleocurrent, so axial to

the main trend of the trough. A possible alternative explanation

for the distribution of Kmin axes at Site 583 is a NW-SE tectonic

shortening (as already pointed out by Taira and Niitsuma, 1986).

The fact that ellipsoids at Site 583 are dominantly prolate would

support that interpretation.

Along the second large transect targeted by the ODP and

IODP programs is the so-called “Muroto transect” (Figure 6),

which runs from the Shikoku Basin, in the NE and ahead of

the frontal thrust zone, to the accreted sediments, landward-

dipping zone (Moore et al., 2001), encompassing over 80 km from

the SW to the NE. Unfortunately, only a few sites have been

analyzed for AMS (including Site 808, next to the protothrust

zone, and Site 1178, well in to the overthrusting plate). ODP

Leg 131 (Site 808) was a milestone in the study of active accre-

tionary prisms, as it recovered more than 1000 m of hemipelagic

silt and clay, across the basal décollement of the Nankai Trough
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FIGURE 6 | Regional setting o northern Shikoku Basin and Nankai

Trough region showing existing DSDP, ODP and IODP drilling

transects. FAB, forearc basin; Inset, tectonic map showing plate

tectonic setting of the region; IBT, Izu-Bonin Trench; KPR, Kyushu-Palau

Ridge; FSC, fossil spreading center; PSP, Philippine Sea plate (Moore

et al., 2009).

FIGURE 7 | AMS axes for two DSDP sites in the Ashizuri transect

(Nankai Trough). Lower-hemisphere, equal-area projection of the Kmax

(red squares) and Kmin (black dots) principal axes of susceptibility for

Sites 583 and 582 (re-drawn from Taira and Niitsuma, 1986). Cross

section shows the structural position of the two drill sites along the

transect.
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subduction zone. The AMS study by Owens (1993) possibly

allows for the first time to observe the changes in magnetic fab-

rics above and below a décollement in an accretionary prism.

The samples from below the décollement, covering a depth range

of 950-1050 mbsf, once oriented (using paleomagnetic direc-

tions), reveal a typical depositional fabric, including vertical

Kmin axes and scattered Kmax axes within the depositional plane

(Figure 8). The magnetic ellipsoid is strongly oblate, consistent

with a sedimentary fabric. Above the décollement, between 400

and 935 mbsf, the magnetic ellipsoid moves toward the prolate

field and the axes distribution resembles that of a tectonically

deformed flatlying sedimentary rock, i.e., subvertical Kmin axes

and a SW-NE clustered Kmax axes, so normal to the local short-

ening direction (NW-SE). Later AMS studies of Site 1174 (Ujiie

et al., 2003b), just farther SE, produce very similar patterns to

Site 808C.

The NW part of the Muroto transect includes a locality on the

accreted sediments, which makes possible contrasting the fabrics

of sediments from the overthrusting plate away from the sub-

duction zone. Site 1178, Leg 190/196, is a good example (Ujiie

et al., 2003a,b). The magnetic fabrics obtained in Site 1178, which

encompass a thickness of around 450 m, reveal features that the

previous transect does not show. A total of 147 oriented samples

show that the Kmin axes are dominantly SE dipping, whereas Kmax

axes yield a slight NE-SW magnetic lineation trend (Figure 8).

Because bedding can be determined using paleomagnetic data,

Site 1178 offers a unique view of the internal fabric in accreted

sediments within the prism. The SE plunging Kmin axes are con-

sistent with a top to the SE shearing, as expected in the subduction

zone. Ujiie et al. (2003a) interpreted the AMS data as S-C fabrics,

related to the initial strain development at the frontal part of the

prism.

FIGURE 8 | AMS from selected ODP and IODP sites along the

Muroto transect (Nankai Trough) (cross section modified from

Moore et al., 2001). Lower-hemisphere, equal-area projection of the

Kmax (red squares) and Kmin (black dots) principal axes of

susceptibility for Sites 1178, 808C, and 1174 (re-drawn from (Ujiie

et al., 2003a,b), and (Owens, 1993), respectively). For sites 808C

and 1174, we have represented the AMS axes from above and

below de décollement.
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A corollary of the AMS studies in accretionary prisms is that

layer parallel shortening is recorded in unlithified mudrocks at

very shallow depths, a question that probably has not been yet

studied in detail.

MECHANISMS OF PREFERRED ORIENTATION

DEVELOPMENT

AMS data from mudrocks open the question of the origin of

tectonic magnetic fabric in such rocks, including whether is

domainal or penetrative, and ultimately the mechanism for grain

preferred orientation. In rocks with discrete cleavage surfaces (by

pressure-solution), Borradaile and Tarling (1981) showed that the

AMS axes orientation results from the interference between such

planes and the original sedimentary fabric. Anisotropy in such

rocks is characterized by ellipsoids with Kmax axes that follow the

cleavage-bedding intersection, essentially Type IIa or IIb mag-

netic ellipsoids (Parés et al., 1999), and so not parallel to the

X-direction (maximum extension) of the strain ellipsoid (Parés

and van der Pluijm, 2002).

Many tectonic microstructures including kink bands, cleav-

age steps, and biotite fish, which would have a profound impact

on the magnetic fabric, are known to form in shales and slates.

Folding and intragranular kinking in mica grains is a rather

common process in very low grade rocks (e.g., Van der Pluijm

and Kaars-Sijpesteijn, 1984). Kanaori et al. (1991) reported mica

kink bands and cleavage steps in granites, and Goswami and

Sarmah (2013) also observed kinking in the sandstones from

the Siwalik belt in the western and Central Himalayas. In both

cases, rocks are found in cataclasites, formed under higher P-T

conditions. In an AMS study of the Sevier fold and thrust belt,

Weil and Yonkee (2009) reported kinked mica grains in Triassic

redbeds, which would explain the magnetic fabric in the redbeds.

However, biotite typically requires temperatures above 250◦C to

behave ductilely and develop microstructures such as kinking

(e.g., Stesky, 1978). Such temperatures are seemingly too high

for the deformation realm that we are discussing in this paper.

It seems, therefore, that the process of kinking cannot account

for the tectonic fabric observed in mudrocks due to the lower

temperatures where deformation takes place.

Studies of mudrocks obtained in DSDP Sites 583 (Lundberg

and Karig, 1986), ODP Site 808 (Maltman et al., 1993), and IODP

Site C0008 (Milliken and Reed, 2010), offer an alternative expla-

nation for the AMS fabric that is widespread in weakly deformed

rocks. Milliken and Reed (2010) studied a number of sam-

ples of semi-consolidated mud from Nankai (IODP Expedition

316) to determine preferred alignment of platy particles. Using

field-emission SEM imaging they observed a number of planar

deformation bands, having parallel alignment of both silt and

clay-size particles, and the loss of intergranular porosity. Most

deformation bands intersect at a high angle to bedding and have

a thickness of few to about 200 microns. Such deformation bands

do not necessarily involve grain comminution, but they certainly

impart a significant small-scale anisotropy that is widespread in

the mudrocks.

The AMS properties widely observed in mudrocks from the

Nankai accretionary prism are certainly compatible with defor-

mation bands. It is very likely that such planar deformation

FIGURE 9 | Summary of possible deformation mechanisms that can

produce tectonic magnetic fabrics in mudrocks.

structures play a crucial role in determining the AMS in weakly

consolidated mud, an aspect that needs to be further explored.

We propose four possible deformation mechanisms that indi-

vidually or in combination can explain AMS patterns observed in

mudrocks from many different tectonic settings (Figure 9). The

study of weakly deformed mudrocks using both magnetic and

imaging techniques can provide critical validation of these models

and advance our understanding of the rock fabric development.

FINAL REMARKS

Over the past 60 years, AMS data have been shown to be a very

sensitive petrofabric tool in mudrocks, with the possibility of

becoming a standard method for the quantification of mudrocks

fabrics. The main achievements can be summarized as follows:

(1) AMS senses the ductile component of deformation in

mudrocks.

(2) Because AMS sense preferred grain orientation (mostly from

phyllosilicate grains), grain slippage and rotation must have

occurred to develop such tectonic fabric. Both mechanisms

sliding and rotation require a reduction in shear strength in

order to facilitate the grains to slide past each other. It is thus

very likely that sediments were overpressured by an increased

fluid pressure. In this regard, because sediments in accre-

tionary prims approach a visco-elastic body, the duration of

the applied force (strain rate) has a profound effect on the

deformation.

(3) AMS tectonic fabric development predates incipient

(“embryonic”) cleavage formation, so thus far is possibly

www.frontiersin.org February 2015 | Volume 3 | Article 4 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Geomagnetism_and_Paleomagnetism/archive


Parés Anisotropy of magnetic susceptibility, rock fabrics

the most sensitive proxy for elucidating extremely weak

deformation.

(4) Whether AMS tectonic fabric is sensing pervasive deforma-

tion, localized deformation (e.g., deformation bands) or a

combination of mechanisms (Figure 9) is an issue that needs

to be further explored.

Overall, there is no doubt that investigations of magnetic fabrics

have largely evolved in sixty years, since the seminal study by J.

Graham. This review illustrates that AMS is not an “unexploited

tool” anymore (Graham, 1954), but certainly an underexploited

discipline that is becoming a standard method for the quantifica-

tion of rock fabrics in deformed mudrocks.
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