Size and depth of monotone neural networks: interpolation and approximation

Dan Mikulincer
Massachusetts Institute of Technology

Daniel Reichman
Worcester Polytechnic Institute

July 13, 2022

Abstract

Monotone functions and data sets arise in a variety of applications. We study the interpolation problem for monotone data sets: The input is a monotone data set with n points, and the goal is to find a size and depth efficient monotone neural network with non negative parameters and threshold units that interpolates the data set. We show that there are monotone data sets that cannot be interpolated by a monotone network of depth 2 . On the other hand, we prove that for every monotone data set with n points in \mathbb{R}^{d}, there exists an interpolating monotone network of depth 4 and size $O(n d)$. Our interpolation result implies that every monotone function over $[0,1]^{d}$ can be approximated arbitrarily well by a depth- 4 monotone network, improving the previous best-known construction of depth $d+1$. Finally, building on results from Boolean circuit complexity, we show that the inductive bias of having positive parameters can lead to a super-polynomial blow-up in the number of neurons when approximating monotone functions.

1 Introduction

The recent successes of neural networks are owed, at least in part, to their great approximation and interpolation capabilities. However, some prediction tasks require their predictors to possess specific properties. This work focuses on monotonicity and studies the effect on overall expressive power when restricting attention to monotone neural networks.

Given $x, y \in \mathbb{R}^{d}$ we consider the partial ordering,

$$
x \geq y \Longleftrightarrow \text { for every } i=1, \ldots d,[x]_{i} \geq[y]_{i} .
$$

Here, and throughout the paper, we use $[x]_{i}$ for the $i^{\text {th }}$ coordinate of x. A function $f:[0,1]^{d} \rightarrow$ \mathbb{R} is monotone ${ }^{1}$ if for every two vectors $x, y \in[0,1]^{d}$,

$$
x \geq y \Longrightarrow f(x) \geq f(y)
$$

Monotone functions arise in several fields such as economics, operations research, statistics, healthcare, and engineering. For example, larger houses typically result in larger prices, and certain features are monotonically related to option pricing [11] and bond rating [8]. As monotonicity constraints abound, there are specialized statistical methods aimed at fitting and

[^0]modeling monotonic relationships, such as Isotonic Regression [1,20, 22]. Neural networks are no exception: Several works are devoted to the study of approximating monotone functions using neural networks [8,32,35].

When using a network to approximate a monotone function, one might try to "force" the network to be monotone. A natural way to achieve this is to consider only networks where every parameter (other than the biases) is non-negative ${ }^{2}$. Towards this aim, we introduce the following class of monotone networks.

Recall that the building blocks of a neural network are the single one-dimensional neurons $\sigma_{w, b}(x)=\sigma(\langle w, x\rangle+b)$ where $x \in \mathbb{R}^{k}$ is an input of the neuron, $w \in \mathbb{R}^{k}$ is a weight parametrizing the neuron, $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function and $b \in \mathbb{R}$ is a bias term. Two popular choices for activation functions, that we shall consider as well, are the ReLU activation function $\sigma(z)=\max (0, z)$ and the threshold activation function $\sigma(z)=1(z \geq 0)$, which equals 1 if $z \geq 0$ and zero otherwise. We slightly abuse the term and say that a network is monotone if every single neuron is a monotone function. Since both ReLU and threshold are monotone, this requirement, of having every neuron a monotone function, translates to w having all positive entries.

Such a restriction on the weights can be seen as an inductive bias reflecting prior knowledge that the functions we wish to approximate are monotone. One advantage of having such a "positivity bias" is that it guarantees the monotonicity of the network. Ensuring that a machine learning model approximating a monotone function is indeed monotone is often desirable [14, $23,24]$. Current learning methods such as stochastic gradient descent and back-propagation for training networks are not guaranteed to return a network computing a monotone function even when the training data set is monotone. Furthermore, while there are methods for certifying that a given neural network implements a monotone function [23, 35], the task of certifying monotonicity remains a non-trivial task.

Restricting the weights to be positive raises several questions on the behavior of monotone neural networks compared to their more general, unconstrained counterparts. For example, can monotone networks approximate arbitrary monotone functions within an arbitrarily small error?

Continuing a line of work on monotone networks, [8,32], we further elucidate the above comparison and uncover some similarities (a universal approximation theorem) and some surprising differences (the interplay of depth and monotonicity) between monotone and arbitrary networks. We will mainly be interested in expressiveness, the ability to approximate monotone functions, and interpolate monotone data sets with monotone neural networks of constant depth.

1.1 Our contributions

On expressive power and interpolation: While it is well-known that neural networks with ReLU activation are universal approximators (can approximate any continuous function on a bounded domain). Perhaps surprisingly, the same is not true for monotone networks and monotone functions. Namely, there are monotone functions that cannot be approximated within an arbitrary small additive error by a monotone network with ReLU gates regardless of the size and depth of the network. This fact was mentioned in [23]: We provide a proof for completeness.

Lemma 1. There exists a monotone function $f:[0,1] \rightarrow \mathbb{R}$ and a constant $c>0$, such that for any monotone network N with ReLU gates, there exists $x \in[0,1]$, such that

$$
|N(x)-f(x)|>c .
$$

[^1]Proof. It is known that a sum of convex functions $f_{i}, \sum \alpha_{i} f_{i}$ is convex provided that for every $i, \alpha_{i} \geq 0$. It is also known that the maximum of convex functions $g_{i}, \max _{i}\left\{g_{i}\right\}$ is a convex function. It follows from the definition of the ReLU gate (in particular, ReLU is a convex function) that a neural network with positive weights at all neurons is convex. As there are monotone functions that are not convex, the result follows.

For a concrete example one may take the function $f(x)=\sqrt{x}$ for which the result holds with $c=\frac{1}{8}$.

In light of the above, we shall hereafter only consider monotone networks with the threshold activation function and discuss, for now, the problem of interpolation. Here a monotone data set is a set of n labeled points $\left(x_{i}, y_{i}\right)_{i \in[n]} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$ with the property

$$
i \neq j \Longrightarrow x_{i} \neq x_{j} \quad \text { and } \quad x_{i} \leq x_{j} \Longrightarrow y_{i} \leq y_{j}
$$

In the monotone interpolation problem we seek to find a monotone network N such that for every $i \in[n], N\left(x_{i}\right)=y_{i}$.

For general networks (no restriction on the weights) with threshold activation, it has been established, in the work of Baum [3], that even with 2 layers, for any labeled data set in \mathbb{R}^{d}, there exists an interpolating network.

In the next lemma we demonstrate another negative result, which shows an inherent loss of expressive power when transitioning to 2-layered monotone threshold networks, provided that the dimension is at least two. We remark that when the input is real-valued (i.e., onedimensional), an interpolating monotone network always exists. This fact is simple, and we omit proof: It follows similar ideas to those in [8].

Lemma 2. Let $d \geq 2$. There exists a monotone data set $\left(x_{i}, y_{i}\right)_{i \in[n]} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$, such that any depth-2 monotone network N, with a threshold activation function must satisfy,

$$
N\left(x_{i}\right) \neq y_{i},
$$

for some $i \in[n]$.
Given the above result, it may seem that, similarly to the case of monotone networks with ReLU activations, the class of monotone networks with threshold activations is too limited, in the sense that it cannot approximate any monotone function with a constant depth (allowing the depth to scale with the dimension was considered in [8], see below). One reason for such a belief is that, for non-monotone networks, depth 2 suffices to ensure universality. Any continuous function over a bounded domain can be approximated by a depth- 2 network $[2,7,16]$ and this universality result holds for networks with threshold or ReLU as activation functions. Our first main result supports the contrary to this belief. We establish a depth separation result for monotone threshold networks and show that monotone networks can interpolate arbitrary monotone data sets by slightly increasing the number of layers. Thereafter, a simple argument shows that monotone networks of bounded depth are universal approximators of monotone functions. As noted, this is in sharp contrast to general neural networks, where adding extra layers can affect the efficiency of the representation [12], but does not change the expressive power.

Theorem 1. Let $\left(x_{i}, y_{i}\right)_{i \in[n]} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$ be a monotone data set. There exists a monotone threshold network N, with 4 layers and $O(n d)$ neurons such that,

$$
N\left(x_{i}\right)=y_{i},
$$

for every $i \in[n]$.
Moreover, if the set $\left(x_{i}\right)_{i \in[n]}$ is totally-ordered, in the sense that, for every $i, j \in[n]$, either $x_{i} \leq x_{j}$ or $x_{j} \geq x_{i}$, then one may take N to have 3 layers and $O(n)$ neurons.

We also complement Theorem 1 with a lower bound that shows that the number of neurons we use is essentially tight, up to the dependence on the dimension.

Lemma 3. There exists a monotone data set $\left(x_{i}, y_{i}\right)_{i \in[n]} \subset\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$ such that, if N is an interpolating monotone threshold network, the first layer of N must contain n units. Moreover, this lower bound holds when the set $\left(x_{i}\right)_{i \in[n]}$ is totally-ordered.

The lower bound of Lemma 3 demonstrates another important distinction between monotone and general neural networks. According to [3], higher dimensions allow general networks, with 2 layers, to be more compact. Since the number of parameters in the networks increases with the dimension, one can interpolate labeled data sets in general position with only $O\left(\frac{n}{d}\right)$ neurons. Moreover, for deeper networks, a recent line of work, initiated in [37], shows that $O(\sqrt{n})$ neurons suffice. Lemma 3 shows that monotone networks cannot enjoy the same speedup, either dimensional or from depth, in efficiency.

Since we are dealing with monotone functions, our interpolation results immediately imply a universal approximation theorem for monotone networks of depth 4.

Theorem 2. Let $f:[0,1]^{d} \rightarrow \mathbb{R}$ be a continuous monotone function and let $\varepsilon>0$. Then, there exists a monotone threshold network N, with 4 layers, such that, for every $x \in[0,1]^{d}$,

$$
|N(x)-f(x)| \leq \varepsilon .
$$

If the function f is L-Lipschitz, for some $L>0$, one can take N to have $O\left(d\left(\frac{L \sqrt{d}}{\varepsilon}\right)^{d}\right)$ neurons.

While it was previously proven, in [8], that monotone networks with a threshold activation function can approximate any monotone function, the depth in the approximating network given by [8] scales linearly with the dimension. Our result is thus a significant improvement that only requires constant depth. When looking at the size of the network, the linear depth construction, in [8] iteratively evaluates Riemann sums and builds a network that is piecewise-constant on a grid. Hence, for L-Lipschitz functions, the size of the network would be comparable to the size guaranteed by Theorem 2. Whether one can achieve similar results to Theorems 1 and 2 with only 3 layers is an interesting question that we leave for future research.

Efficiency when compared to general networks: We have shown that, with 4 layers, monotone networks can serve as universal approximates. However, even if a monotone network can approximate a monotone function arbitrarily well, it might require a much larger size when compared to unconstrained networks. In this case, the cost of having a much larger network might outweigh the benefit of having a network that is guaranteed to be monotone.

Our second main result shows that this can sometimes be the case. We show that using monotone networks to approximate, in the ℓ_{∞}-norm, a monotone function $h:[0,1]^{d} \rightarrow \mathbb{R}$ can lead to a super-polynomial blow-up in the number of neurons. Namely, we give a construction of a smooth monotone function $h:[0,1]^{d} \rightarrow \mathbb{R}$ with a poly (d) Lipschitz constant such that h can be approximated within an additive error of $\varepsilon>0$ by a general neural network with poly (d) neurons. Yet any monotone network approximating h within error smaller than $\frac{1}{2}$ requires superpolynomial size in d.

Theorem 3. There exists a monotone function $h:[0,1]^{d} \rightarrow \mathbb{R}$, such that:

- Any monotone threshold network N which satisfies,

$$
|N(x)-h(x)|<\frac{1}{2}, \text { for every } x \in[0,1]^{d},
$$

must have $e^{\Omega\left(\log ^{2} d\right)}$ neurons.

- For every $\varepsilon>0$, there exists a general threshold network N, which has poly (d) neurons and such that,

$$
|N(x)-h(x)|<\varepsilon, \text { for every } x \in[0,1]^{d} .
$$

2 Related work

We are unaware of previous work studying the interpolation problem for monotone data sets using monotone networks. There is extensive research regarding the size and depth needed for general data sets and networks to achieve interpolation [5, 9, 37, 40] starting with the seminal work of Baum [3]. Known constructions of neural networks achieving interpolations are nonmonotone: they may result in negative parameters even for monotone data sets.

Several works have studied approximating monotone (real) functions over a bounded domain using a monotone network. Sill [32] provides a construction of a monotone network (all parameters are non-negative) with depth 3 where the first layer consists of linear units divided into groups, the second layer consists of max gates where each group of linear units of the first layer is fed to a different gate and a final gate computing the minimum of all outputs from the second layer. It is proven in [32] that this class of networks can approximate every monotone function over $[0,1]^{d}$. We remark that this is very different from the present work's setting. First, using both min and max gates in the same architecture with positive parameters do not fall into the modern paradigm of an activation function. Moreover, we are not aware of works prior to Theorem 2 that show how to implement or approximate min and max gates, with arbitrary fanins, using constant depth monotone networks ${ }^{3}$. Finally, [32] focus on approximating arbitrary monotone functions and does not consider the monotone interpolation problem studied here.

Later, the problem of approximating arbitrary monotone functions with networks having non-negative parameters using more standard activation functions such as thresholds or sigmoids has been studied in [8]. In particular [8] gives a recursive construction showing how to approximate in the ℓ_{∞} norm an arbitrary monotone function using a network of depth $d+1$ (d-hidden layers) with threshold units and non-negative parameters. In addition [8] provides a construction of a monotone function $g:[0,1]^{2} \rightarrow \mathbb{R}$ that cannot be approximated in the ℓ_{∞} norm with an error smaller than $1 / 8$ by a network of depth 2 with sigmoid activation and non-negative parameters, regardless of the number of neurons in the network. Our Lemma 2 concerns networks with threshold gates and applies in arbitrary dimensions larger than 1. It can also be extended to provide monotone functions that monotone networks cannot approximate with thresholds of depth 2 .

Lower bounds for monotone models of computation have been proven for a variety of models [10], including monotone De Morgan ${ }^{4}$ circuits [13, 15, 28, 29], monotone arithmetic circuits

[^2]and computations $[6,18,39]$, which correspond to polynomials with non-negative coefficients, and circuits with monotone real gates $[17,26]$ whose inputs and outputs are Boolean. One difference in our separation result between monotone and non-monotone networks and these works is that we consider real differentiable functions as opposed to Boolean functions. Furthermore, we need functions that can be computed by an unconstrained neural network of polynomial size. In contrast, known lower bounds for circuits with real monotone gates apply to Boolean functions, believed to be intractable (require a super polynomial number of gates) to compute even with non-monotone circuits (e.g., deciding if a graph contains a clique of a given size). Finally, our model of computation of neural networks with threshold gates differs from arithmetic circuits [31] which use gates that compute polynomial functions.

To achieve our separation result, we begin with a Boolean function m, which requires super polynomial-size to compute with Boolean circuits with monotone threshold gates but can be computed efficiently with arbitrary threshold circuits: the existence of m follows from [29]. Thereafter, we show how to smoothly extend m to have domain $[0,1]^{d}$ while preserving monotonicity. Proving lower bounds for neural networks with a continuous domain by extending a Boolean function f for which lower bounds are known to a function f^{\prime} whose domain is $[0,1]^{d}$ has been done before $[36,38]$. However, the extension method in these works does not yield a function that is monotone. Therefore, we use a different method based on the multi-linear extension.

3 Preliminaries and notation

We work on \mathbb{R}^{d}, with the Euclidean inner product $\langle\cdot, \cdot\rangle$. For $k \in \mathbb{N}$, we denote $[k]=\{1,2, \ldots, k\}$ and use $\left\{e_{i}\right\}_{i \in[d]}$ for standard unit vectors in \mathbb{R}^{d}. That is, for $i \in[d]$,

$$
e_{i}=(\underbrace{0, \ldots, 0}_{i-1 \text { times }}, 1, \underbrace{0, \ldots, 0}_{d-i \text { times }}) .
$$

For $x \in \mathbb{R}^{d}$ and $i \in[d]$, we write $[x]_{i}:=\left\langle x, e_{i}\right\rangle$, the $i^{\text {th }}$ coordinate of x.
With a slight abuse of notation, when the dimension of the input changes to, say, \mathbb{R}^{k}, we will also use $\left\{e_{i}\right\}_{i \in[k]}$ to stand for standard unit vectors in \mathbb{R}^{k}. To avoid confusion, we will always make sure to make the dimension explicit.

A neural network of depth L is a function $N: \mathbb{R}^{d} \rightarrow \mathbb{R}$, which can be written as a composition,

$$
N(x)=N_{L}\left(N_{L-1}\left(\ldots N_{2}\left(N_{1}(x)\right) \ldots\right)\right.
$$

where for $\ell \in[L], N_{\ell}: \mathbb{R}^{d_{\ell}} \rightarrow \mathbb{R}^{d_{\ell+1}}$ is a layer. We set $d_{1}=d, d_{L+1}=1$ and term $d_{\ell+1}$ as the width of layer ℓ. Each layer is composed from single neurons in the following way: for $i \in\left[d_{\ell+1}\right],\left[N_{\ell}(x)\right]_{i}=\sigma\left(\left\langle w_{i}^{\ell}, x\right\rangle+b_{i}^{\ell}\right)$ where $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is the activation function, $w_{i}^{\ell} \in \mathbb{R}^{d_{\ell}}$ is the weight vector, and $b_{i}^{\ell} \in \mathbb{R}$ is the bias. The only exception is the last layer which is an affine functional of the previous layers,

$$
N_{L}(x)=\left\langle w^{L}, x\right\rangle+b^{L},
$$

for a weight vector $w^{L} \in \mathbb{R}^{d_{L}}$ and bias $b^{L} \in \mathbb{R}$.
Suppose that the activation function is monotone. We say that a network N is monotone, if, for every $\ell \in[L]$ and $i \in\left[d_{\ell+1}\right]$, the weights vector w_{i}^{ℓ} has all positive coordinates. In other words,

$$
\left[w_{i}^{\ell}\right]_{j} \geq 0, \text { for every } j \in\left[d_{\ell}\right]
$$

4 A counter-example to expressibility

In this section, for every $d \geq 2$, we will construct a monotone data set such that any 2 -layered monotone threshold network cannot interpolate, thus proving Lemma 2. Before proving the Lemma it will be instructive to consider the case $d=2$. Lemma 2 will follow as a generalization of this case ${ }^{5}$.

Recall that $\sigma(x)=\mathbf{1}(x \geq 0)$ is the threshold function and consider the monotone set,

$$
\begin{aligned}
& x_{1}=(2,0), y_{1}=0 \\
& x_{2}=(0,2), y_{2}=0 \\
& x_{3}=(1,1), y_{3}=1 .
\end{aligned}
$$

Assume towards a contradiction that there exists an interpolating monotone network $N(x):=$ $\sum_{m=1}^{r} a_{m} \sigma\left(\left\langle x, w_{m}\right\rangle-b_{m}\right)$. Set,

$$
I=\left\{m \in[r] \mid\left\langle x_{3}, w_{m}\right\rangle \geq b_{m}\right\}=\left\{m \in[r] \mid\left[w_{m}\right]_{1}+\left[w_{m}\right]_{2} \geq b_{\ell}\right\} .
$$

The set I is the set of all neurons which are active on x_{3}, and, since $N\left(x_{3}\right)=1, I$ is non-empty. We also define,

$$
\begin{aligned}
& I_{1}=\left\{m \in I \mid\left[w_{m}\right]_{1} \geq\left[w_{m}\right]_{2}\right\} \\
& I_{2}=\left\{m \in I \mid\left[w_{m}\right]_{2} \geq\left[w_{m}\right]_{1}\right\} .
\end{aligned}
$$

It is clear that $I_{1} \cup I_{2}=I$. Observe that for $m \in I_{1}$, by monotonicity, we have

$$
\left\langle x_{1}, w_{m}\right\rangle=2\left[w_{m}\right]_{1} \geq\left[w_{m}\right]_{1}+\left[w_{m}\right]_{2}=\left\langle x_{3}, w_{m}\right\rangle .
$$

Since the same also holds for $m \in I_{2}$ and x_{2}, we get

$$
\begin{align*}
N\left(x_{1}\right)+N\left(x_{2}\right) & \geq \sum_{m \in I_{1}} a_{m} \sigma\left(\left\langle x_{1}, w_{m}\right\rangle-b_{m}\right)+\sum_{m \in I_{2}} a_{m} \sigma\left(\left\langle x_{2}, w_{m}\right\rangle-b_{m}\right) \\
& \geq \sum_{m \in I_{1}} a_{m} \sigma\left(\left\langle x_{3}, w_{m}\right\rangle-b_{m}\right)+\sum_{m \in I_{2}} a_{m} \sigma\left(\left\langle x_{3}, w_{m}\right\rangle-b_{m}\right) \\
& \geq \sum_{m \in I} a_{m} \sigma\left(\left\langle x_{3}, w_{m}\right\rangle-b_{m}\right)=N\left(x_{1}\right)=1 . \tag{1}
\end{align*}
$$

Hence, either $N\left(x_{1}\right) \geq \frac{1}{2}$ or $N\left(x_{2}\right) \geq \frac{1}{2}$.
With the example of $d=2$ in mind, we now prove Lemma 2.
Proof of Lemma 2. Consider the following monotone set of $d+1$ data points in \mathbb{R}^{d} with $d \geq 2$. For $i \in[d], x_{i}=d \cdot e_{i}$, is a vector whose $i^{\text {th }}$ coordinate is d and all other coordinates are 0 , and set $y_{i}=0$. We further set $x_{d+1}=(1, \ldots, 1)$ (the all 1 's vector) with $y_{d+1}=1$.

Suppose towards a contradiction there is a monotone depth-2 threshold network

$$
N(x)=\sum_{m=1}^{r} a_{m} \sigma\left(\left\langle x, w_{m}\right\rangle-b_{m}\right),
$$

[^3]with $N\left(x_{d+1}\right)=1$ and for every $i \in[d], N\left(x_{i}\right)=0$. We prove the result while assuming that the bias of the output layer is 0 . Since the bias just adds a constant to every output it is straightforward to take it into account.

Denote,

$$
I:=\left\{m \in[r] \mid \sum_{i=1}^{k}\left[w_{m}\right]_{i} \geq b_{m}\right\} .
$$

Since $N\left(x_{d+1}\right)=1$, we have that I is non-empty. For $j \in[d]$, let

$$
I_{j}:=\left\{m \in I \mid\left[w_{m}\right]_{j}=\max \left\{\left[w_{m}\right]_{1}, \ldots,\left[w_{m}\right]_{d}\right\}\right\}
$$

Clearly $I=\bigcup_{j=1}^{d} I_{j}$ and we can assume, with no loss of generality, that this is a disjoint union. Now, by following the exact same logic as in (1),

$$
\begin{aligned}
\sum_{i=1}^{d} N\left(x_{i}\right) & \geq \sum_{m \in I_{1}} a_{m} \sigma\left(\left\langle x_{1}, w_{m}\right\rangle-b_{m}\right)+\ldots+\sum_{m \in I_{d}} a_{m} \sigma\left(\left\langle x_{d}, w_{m}\right\rangle-b_{m}\right) \\
& \geq \sum_{m \in I} a_{m} \sigma\left(\left\langle x_{d+1}, w_{m}\right\rangle-b_{m}\right)=1
\end{aligned}
$$

Therefore there exists $j \in[k]$ with $N\left(x_{j}\right) \geq \frac{1}{d}>0$, which is a contradiction.

5 Four layers suffice with threshold activation

Let $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$ be a monotone data set, and assume, with no loss of generality,

$$
\begin{equation*}
0 \leq y_{1} \leq y_{2} \leq \cdots \leq y_{n} \tag{2}
\end{equation*}
$$

If, for some $i, i^{\prime} \in[n]$ with $i \neq i^{\prime}$ we have $y_{i}=y_{i^{\prime}}$, and $x_{i} \leq x_{i^{\prime}}$, we will assume $i<i^{\prime}$. Other ties are resolved arbitrarily. Note that the assumption that the y_{i} 's are positive is indeed without loss of generality, as one can always add a constant to the output of the network to handle negative labels.

This section is dedicated to the proof of Theorem 1, and we will show that one can interpolate the above set using a monotone network with 3 hidden layers. The first hidden layer is of width $d n$ and the second and third of width n.

Throughout we shall use $\sigma(t)=\mathbf{1}(t \geq 0)$, for the threshold function. For $\ell \in\{1,2,3\}$ we will also write $\left(w_{i}^{\ell}, b_{i}^{\ell}\right)$ for the weights of the $i^{\text {th }}$ neuron in level ℓ. We shall also use the shorthand,

$$
\sigma_{i}^{\ell}(x)=\sigma\left(\left\langle x, w_{i}^{\ell}\right\rangle-b_{i}^{\ell}\right) .
$$

We first describe the first two layers. The second layer serves as a monotone embedding into \mathbb{R}^{n}. We emphasize this fact by denoting the second layer as $E: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$, with $i^{\text {th }}$ coordinate given by,

$$
[E(x)]_{i}=\sigma_{i}^{2}\left(N_{1}(x)\right),
$$

where $\left[N_{1}(x)\right]_{j}=\sigma_{j}^{1}(x)$, for $j=1, \ldots, n d$, are the outputs of the first layer.

First hidden layer: The first hidden layer has $d n$ units. Let e_{i} be the $i^{\text {th }}$ standard basis vector in \mathbb{R}^{d} and, for $j=1, \ldots, d n$ define

$$
\sigma_{j}^{1}(x):=\sigma\left(\left\langle x, e_{(j \bmod d)+1}\right\rangle-\left\langle x_{\left\lceil\frac{j}{d}\right\rceil}, e_{(j \bmod d)+1}\right\rangle\right) .
$$

In other words, $w_{j}^{1}=e_{(j \bmod d)+1}$ and $b_{j}^{1}=\left\langle x_{\left\lceil\frac{j}{d}\right\rceil}, e_{(j \bmod d)+1}\right\rangle$ (the addition of 1 offsets the fact that mod operations can result in 0). To get a feeling of what the layer does, suppose that $j \equiv r$ $\bmod d$, then unit j is activated on input x iff the $(r+1)^{\text {th }}$ entry of x is at least the $(r+1)^{\text {th }}$ entry of $x_{\left\lceil\frac{j}{d}\right\rceil}$.

Second hidden layer: The second layer has n units. For $j=1, \ldots, n d$, with a slight abuse of notation we now use e_{j} for the $j^{\text {th }}$ standard basis vector in $\mathbb{R}^{n d}$ and define unit $i=1, \ldots, n$, $\sigma_{i}^{2}: \mathbb{R}^{\text {nd }} \rightarrow \mathbb{R}$, by

$$
\sigma_{i}^{2}(y)=\sigma\left(\sum_{r=1}^{d}\left\langle y, e_{d(i-1)+r}\right\rangle-d\right) .
$$

Explicitly, $w_{i}^{2}=\sum_{r=1}^{d} e_{d(i-1)+r}$ and $b_{i}^{2}=d$. With this construction in hand, the following is the main property of the first two layers.

Lemma 4. Let $i=1, \ldots, n$. Then, $[E(x)]_{i}=1$ if and only if $x \geq x_{i}$. Otherwise, $[E(x)]_{i}=0$.
Proof. By construction, we have $[E(x)]_{i}=1$ if and only if $\sum_{r=1}^{d} \sigma_{d(i-1)+r}^{1}(x) \geq d$. For each $r \in[d], \sigma_{d(i-1)+r}^{1}(x) \in\{0,1\}$. Thus, $[E(x)]_{i}=1$ if and only if, for every $r \in[d], \sigma_{d(i-1)+r}^{1}(x)=$ 1. But $\sigma_{d(i-1)+r}^{1}(x)=1$ is equivalent to $[x]_{r} \geq\left[x_{i}\right]_{r}$. Since this must hold for every $r \in[d]$, we conclude $x \geq x_{i}$.

The following corollary is now immediate.
Corollary 4. Fix $j \in[n]$ and let $i \in[n]$. If $j<i$, then $\left[E\left(x_{j}\right)\right]_{i}=0$. If $j \geq i$, then there exists $i^{\prime} \geq i$ such that $\left[E\left(x_{j}\right)\right]_{i^{\prime}}=1$.

- If $j<i$, then $\left[E\left(x_{j}\right)\right]_{i}=0$.
- If $j \geq i$, then there exists $i^{\prime} \geq i$ such that $\left[E\left(x_{j}\right)\right]_{i^{\prime}}=1$.

Proof. For the first item, if $j<i$, by the ordering of the labels (2), we know that $x_{j} \nsupseteq x_{i}$. By Lemma 4, $\left[E\left(x_{j}\right)\right]_{i}=0$.

For the second item, by construction, $\left[E\left(x_{j}\right)\right]_{j}=1$. Since $j \geq i$, the claim concludes.

The third hidden layer: The third layer contains n units with weights given by

$$
w_{i}^{3}=\sum_{r=i}^{n} e_{r} \text { and } b_{i}^{3}=1
$$

Thus,

$$
\begin{equation*}
\sigma_{i}^{3}(E(x))=\sigma\left(\sum_{r=i}^{n}[E(x)]_{r}-1\right) \tag{3}
\end{equation*}
$$

Lemma 5. Fix $j \in[n]$ and let $i \in[n] . \sigma_{i}^{3}\left(E\left(x_{j}\right)\right)=1$ if $j \geq i$ and $\sigma_{i}^{3}\left(E\left(x_{j}\right)\right)=0$ otherwise.

Proof. By Corollary 4, $\left[E\left(x_{j}\right)\right]_{r}=0$, for every $r>j$. In particular, if $i>j$, by (3), we get

$$
\sigma_{i}^{3}\left(E\left(x_{j}\right)\right)=\sigma(-1)=0 .
$$

On the other hand, if $j \geq i$, then by Corollary 4 , there exists $i^{\prime} \geq i$ such that $\left[E\left(x_{j}\right)\right]_{i^{\prime}}=1$, and

$$
\sigma_{i}^{3}\left(E\left(x_{j}\right)\right)=\sigma\left(\left[E\left(x_{j}\right)\right]_{i^{\prime}}-1\right)=1
$$

The final layer: The fourth and final layer is a linear functional of the output of the third layer. Formally, for $x \in \mathbb{R}^{d}$, the output of the network is, $N(x)=\sum_{i=1}^{n}\left[w^{4}\right]_{i} \sigma_{i}^{3}(E(x))$, for some weights vector $w^{4} \in \mathbb{R}$. To complete the construction we now define the entries of w^{4}, as $\left[w^{4}\right]_{i}=y_{i}-y_{i-1}$ with $y_{0}=0$. We are now ready to prove Theorem 1 .
Proof of Theorem 1. Consider the function $N(x)=\sum_{i=1}^{n}\left[w^{4}\right]_{i} \sigma_{i}^{3}(E(x))$ described above. Clearly, it is a network with 3 hidden layers. To see that it is monotone, observe that for $\ell \in\{1,2,3\}$ each w_{i}^{ℓ} is a sum of standard basis vectors, and thus has non-negative entries. The weight vector w^{4} also has non-negative entries, since, by assumption, $y_{i} \geq y_{i-1}$.

We now show that N interpolates the data set $\left(x_{j}, y_{j}\right)_{j=1}^{n}$. Indeed, fix $j \in[n]$. By Lemma 5, we have

$$
N\left(x_{j}\right)=\sum_{i=1}^{n}\left[w^{4}\right]_{i} \sigma_{i}^{3}\left(E\left(x_{j}\right)\right)=\sum_{i=1}^{j}\left[w^{4}\right]_{i}=\sum_{i=1}^{j}\left(y_{i}-y_{i-1}\right)=y_{j}-y_{0}=y_{j} .
$$

The proof is complete, for the general case.
To handle the case of totally-ordered $\left(x_{i}\right)_{i \in[n]}$, we slightly alter the construction of the first two layers, and compress them into a single layer satisfying Lemma 4, and hence Lemma 5.

The total-order of $\left(x_{i}\right)_{i \in[n]}$ implies the following: For every $i \in[n]$, there exists $r(i) \in[d]$, such that for any $j \in[n],\left[x_{i}\right]_{r(i)}<\left[x_{j}\right]_{r(i)}$ if and only if $i<j$. In words, for every point in the set, there exists a coordinate which separates it from all the smaller points. We thus define $w_{i}^{1}=e_{r(i)}$ and $b_{i}=1$.

From the above it is clear that

$$
\sigma_{i}^{1}\left(x_{j}\right)=\sigma\left(\left[x_{j}\right]_{r(i)}-1\right)= \begin{cases}1 & \text { if } i \leq j \\ 0 & \text { if } i>j\end{cases}
$$

As in the general case, we define $E(x): \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ by $[E(x)]_{i}=\sigma_{i}^{1}(x)$, and note that Lemma 4 holds for this construction of E as well. The next two layers are constructed exactly like in the general case and the same proof holds.

5.1 Interpolating monotone networks are wide

The network we've constructed in Theorem 8 uses $(d+2) n$ neurons to interpolate a monotone data set of size n. One may wonder whether this can be improved. It turns out, that up to the dependence on d, the size of our network is essentially optimal. We now prove Lemma 3.

Proof of Lemma 3. Let $\left(x_{i}, y_{i}\right)_{i \in[n]} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{n}$ be a monotone data set, such that for every $1 \leq i \leq n-1, x_{i} \leq x_{i+1}$ and $y_{i} \neq y_{i+1}$. Suppose that the first layer of N has k units and denote it by $N_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$. Now, let $1 \leq i<j \leq n$. Since, every unit is monotone, and since $x_{i} \leq x_{j}$, we have for $\ell \in[k]$ the implication

$$
\left[N_{1}\left(x_{i}\right)\right]_{\ell} \neq 0 \Longrightarrow\left[N_{1}\left(x_{i}\right)\right]_{\ell}=\left[N_{1}\left(x_{j}\right)\right]_{\ell} .
$$

Denote $I_{i}=\left\{\ell \in[k] \mid\left[N_{1}\left(x_{i}\right)\right]_{\ell} \neq 0\right\}$. The above shows the following chain condition,

$$
I_{1} \subset I_{2} \subset \cdots \subset I_{n} .
$$

Suppose that $k<n$, then as $\left\{I_{i}\right\}_{i=1}^{n}$ is an ascending chain of subsets in [k], necessarily there exists an $i<n$, such that $I_{i}=I_{i+1}$, which implies $N_{1}\left(x_{i}\right)=N_{1}\left(x_{i+1}\right)$. We conclude that $N\left(x_{i}\right)=N\left(x_{i+1}\right)$, which cannot happen as $y_{i} \neq y_{i+1}$. Hence, necessarily $k>n$.

Remark 5. It is known that general threshold networks (no restriction on the weights) can memorize n points in \mathbb{R}^{d} using $O(\sqrt{n}+f(\delta))$ neurons where f is a function depending on the minimal distance between any two of the data points [27,37]. Hence the lower bound in Lemma 3 shows that there exist monotone data sets such that interpolation with monotone networks entails a quadratic blowup in the number of neurons of the network. In particular, observe that the lower bound in Lemma 3 holds even if the data set is well-separated.

5.2 Universal approximation

We now show that our interpolation scheme can be used to approximate any continuous monotone function, which is Theorem 2.

Proof of Theorem 2. Since f is continuous and $[0,1]^{d}$ is compact, f is uniformly continuous. Hence, there exists $\delta>0$, such that

$$
\|x-y\| \leq \delta \Longrightarrow|f(x)-f(y)| \leq \varepsilon, \text { for all } x, y \in[0,1]^{d}
$$

Set $\delta_{d}=\frac{\delta}{\sqrt{d}}$ and consider the grid,

$$
G_{\delta}=\left(\delta_{d} \mathbb{Z}\right)^{d} \cap[0,1]^{d}
$$

I.e. G_{δ} is a uniform grid of points with spaces of width δ_{d}. Define now a monotone data set $\left(x_{j}, f\left(x_{j}\right)\right)_{x_{j} \in G_{\delta}}$. By Theorem 1 there exists a network N, such that $N\left(x_{j}\right)=f\left(x_{j}\right)$ for every $x_{j} \in G_{\delta}$. We claim that this is the approximating network. Let $x \in[0,1]^{d}$ and let x_{-}(resp. x_{+}) be the closest point to x in G_{δ} such that $x \geq x_{-}$(resp. $x \leq x_{+}$). Observe that, x_{-}and x_{+}are vertices of a sub-cube in $[0,1]^{d}$ of side length δ_{d}. Thus, $\left\|x_{-}-x_{+}\right\| \leq \sqrt{d} \delta_{d}=\delta$. Now, since both N and f are monotone,

$$
|N(x)-f(x)| \leq \max \left(\left|N\left(x_{+}\right)-f\left(x_{-}\right)\right|,\left|f\left(x_{+}\right)-N\left(x_{-}\right)\right|\right)=\left|f\left(x_{+}\right)-f\left(x_{-}\right)\right| \leq \varepsilon .
$$

Assume now that f is L-Lipschitz and Let us now estimate the size of the network. According to Theorem 1, the network has $O\left(d\left|G_{\delta}\right|\right)$ neurons. Since f is L-Lipschitz, one can control the uniform continuity parameter and take $\delta=\frac{\varepsilon}{L}$. Hence,

$$
\left|G_{\delta}\right|=\left(\frac{1}{\delta_{d}}\right)^{d}=\left(\frac{L \sqrt{d}}{\varepsilon}\right)^{d}
$$

6 A super polynomial separation between the size of monotone and arbitrary threshold networks

By the universal approximation result for monotone threshold networks, Theorem 2, we can approximate monotone functions by monotone networks, arbitrarily well. In this section, we focus on the efficiency of the approximation, in terms of number of neurons used. Are there functions such that monotone networks approximating them provably require a much larger size than networks that are allowed to have negative parameters? We show that the answer is positive when seeking an ℓ_{∞}-approximation smaller than ε for any $\varepsilon \in[0,1 / 2)$.

Our proof of this fact builds on findings from the monotone complexity theory of Boolean functions. Given an undirected graph $G=(V, E)$ with $2 n$ vertices a matching M is a set of pairwise disjoint edges. A perfect matching is a matching of size n (which is largest possible). There are efficient algorithms for deciding if a bipartite graph has a perfect matching [21]. Furthermore, by standard results converting Turing machines, deciding an algorithmic problem with inputs of size n in time $t(n)$, to threshold circuits with $O\left(t(n)^{2}\right)$ gates, solving the algorithmic problem on every input of length $n,[30,33]$, it follows that there is a network of size polynomial in n that decides, given the incidence matrix of a graph, whether it has a perfect matching. A seminal result by Rzaborov [29] shows that the monotone complexity of the matching function is not polynomial.

Theorem 6 ([19, Theorem 9.38]). Let g be the Boolean function that receives the adjacency matrix of a $2 n$-vertex graph G and decides if G has a perfect matching. Then, any Boolean circuit with AND and OR gates that computes g has size $n^{\Omega(\log n)}$. Furthermore, the same lower bound applies if the graph is restricted to be a bipartite graph $G(A, B, E)$ where $|A|=|B|=n$ is the bi-partition of the graph.

We now define the following hard function. Theorem 3 will follow by showing that it is hard for monotone networks to approximate the function, but threshold networks can easily compute it, when there is no restrictions on the weights.

Definition 7 (Matching probabilities in non-homogeneous random bipartite graphs). Let $\mathbf{p}=$ $\left(p_{i j}\right)_{i, j=1}^{n} \in[0,1]^{n \times n}$ and define $G(\mathbf{p})$ to be a random bipartite graph on vertex set $[n] \times[n]$, such that each edge (i, j) appears independently with probability $p_{i j}$, for every $1 \leq i, j \leq n$. Define $m:[0,1]^{n \times n} \rightarrow[0,1]$ as 6,

$$
m(\mathbf{p})=\mathbb{P}(G(\mathbf{p}) \text { contains a perfect matching }) .
$$

[^4]When $\mathbf{p} \in\{0,1\}^{n \times n}, m(\mathbf{p})$ reduces to the indicator function of a perfect matching in a given bipartite graph. Thus $m(\mathbf{p})$ should be thought of as the harmonic (or multi-linear) extension of the indicator function to the solid cube $[0,1]^{n \times n}$.

Theorem 3 is an immediate consequence of the following more specific theorem, which is our main result for this section.

Theorem 8. The function m defined above is a smooth monotone function with Lipschitz constant $\leq n$, which satisfies the following:

- If N is a monotone threshold network of size $e^{o\left(\log (n)^{2}\right)}$, there exists $\mathbf{p} \in[0,1]^{n \times n}$, such that

$$
|N(\mathbf{p})-m(\mathbf{p})| \geq \frac{1}{2}
$$

- For every fixed $\varepsilon>0$ there exist a general threshold network N of polynomial size in n, such that for all $\mathbf{p} \in[0,1]^{n \times n}$,

$$
|N(\mathbf{p})-m(\mathbf{p})| \leq \varepsilon .
$$

Our proof of Theorem 8 is divided into three parts:

1. We first establish the relevant properties of m.
2. We then show that m cannot be approximated by a monotone network with polynomial size.
3. Finally, we show that m can be approximated, arbitrarily well, by a general network with polynomial size.

6.1 Part 1: properties of m

We begin the proof of Theorem 8 by collecting several facts about the function m. The first one follows from standard coupling arguments. We omit the proof.

Claim 9. m is monotone.
We now show that m is Lipschitz continuous. This is an immediate consequence of the fact that m is the harmonic extension of a bounded function. For completeness, below, we give a more self-contained argument.

Lemma 6. Let $\mathbf{p}, \mathbf{p}^{\prime} \in[0,1]^{n \times n}$. Then,

$$
\left|m(\mathbf{p})-m\left(\mathbf{p}^{\prime}\right)\right| \leq n\left\|\mathbf{p}-\mathbf{p}^{\prime}\right\| .
$$

In other words, m is n-Lipschitz.
Proof. Let $\mathbf{p}, \mathbf{p}^{\prime \prime} \in[0,1]^{n \times n}$ be such that $\mathbf{p}-\mathbf{p}^{\prime \prime}=\rho e_{i j}$, where, for $i, j \in[n], e_{i j}$ is a standard basis vector in $\mathbb{R}^{n \times n}$ and $\rho>0$. Let $\mathcal{U}:=\left\{U_{i j}\right\}_{i, j=1}^{n}$ be i.i.d. random variables, uniformly distributed on $[0,1]$. We couple the random graphs, $G(\mathbf{p}), G\left(\mathbf{p}^{\prime \prime}\right)$ in the following way,

$$
(i, j) \in G(\mathbf{p}) \Longleftrightarrow U_{i j} \geq \mathbf{p}_{i j} \text { and }(i, j) \in G\left(\mathbf{p}^{\prime \prime}\right) \Longleftrightarrow U_{i j} \geq \mathbf{p}_{i j}^{\prime \prime} .
$$

We slightly abuse notation, and write $m(G(\mathbf{p}))$ for the indicator that $G(\mathbf{p})$ contains a perfect matching (and similarly for $G\left(\mathbf{p}^{\prime \prime}\right)$). It is clear that,

$$
\left.\left|m(\mathbf{p})-m\left(\mathbf{p}^{\prime \prime}\right)\right|=\mid \mathbb{E}\left[m(G(\mathbf{p}))-m\left(G\left(\mathbf{p}^{\prime \prime}\right)\right)\right)\right] \mid
$$

Moreover if $G_{i j}$ is the sigma algebra generated by $\mathcal{U} \backslash\left\{U_{i j}\right\}$, we have.

$$
\left.\left|m(\mathbf{p})-m\left(\mathbf{p}^{\prime \prime}\right)\right|=\mid \mathbb{E}\left[\mathbb{E}\left[m(G(\mathbf{p}))-m\left(G\left(\mathbf{p}^{\prime \prime}\right)\right)\right) \mid G_{i j}\right]\right] \mid
$$

Since $G(\mathbf{p})$ and $G\left(\mathbf{p}^{\prime \prime}\right)$ agree on every edge other than (i, j), it is readily seen that, almost surely, $\left.\mathbb{E}\left[m(G(\mathbf{p}))-m\left(G\left(\mathbf{p}^{\prime \prime}\right)\right)\right) \mid G_{i j}\right] \leq \rho$. Hence,

$$
\left|m(\mathbf{p})-m\left(\mathbf{p}^{\prime \prime}\right)\right| \leq \rho
$$

For general $\mathbf{p}, \mathbf{p}^{\prime} \in[0,1]^{n \times n}$ with Cauchy-Schwartz's inequality, we conclude,

$$
\left|m(\mathbf{p})-m\left(\mathbf{p}^{\prime}\right)\right| \leq \sum_{i, j=1}^{n}\left|p_{i j}-p_{i j}^{\prime}\right| \leq n \sqrt{\sum_{i, j=1}^{n}\left|p_{i j}-p_{i j}^{\prime}\right|^{2}}=n\left\|\mathbf{p}-\mathbf{p}^{\prime}\right\|
$$

The fact that m is smooth can again be seen from the multi-linear extension; it is a polynomial. We provide a sketch of a more elementary proof, based on the inclusion-exclusion principle.

Lemma 7. The function m is a C_{∞} function.
Proof. We sketch the proof. Enumerate all n ! matching of the complete bipartite graph with $A=B=n$ and denote this set by \mathcal{M}. For $M \in \mathcal{M}$ let A_{M} be the event that M occurs in a graph $G(\mathbf{p})$ sampled according to the input vector \mathbf{p}. Then the probability $G(\mathbf{p})$ has a perfect matching is $P=\operatorname{Pr}\left(\bigcup_{M \in \mathcal{M}} A_{M}\right)$. Since each edge occurs independently we have using inclusion-exclusion that P is a sum of polynomials in the coordinates of \mathbf{p}. The claim follows.

6.2 Part 2: the function m cannot be approximated by a monotone network with polynomial size

We now show that monotone networks must be very large to approximate m. The proof uses the following fact established in [4]:

Theorem 10 ([4, Theorem 3.1]). Let f be a Boolean threshold function with r inputs and non negative weights $w_{1}, \ldots w_{r}$ and bias T. Namely $f\left(x_{1}, \ldots x_{r}\right)=\mathbf{1}\left(w_{1} x_{1}+\ldots w_{r} x_{r} \geq T\right)$. Then there is a monotone De Morgan circuit (that is, a circuit with AND as well as OR gates, but without NOT gates) computing f with $O\left(r^{k}\right)$ gates, where k is a fixed constant independent of the number of inputs r.

It follows from Theorem 10 that if there was a monotone network (with threshold gates) of size $e^{o\left((\log n)^{2}\right)}$ approximating $m(\mathbf{p})$, we could replace each gate with a polynomially sized monotone De Morgan circuit entailing a polynomial blowup to the size of the network. This construction, in turn, would imply the existence of a monotone De Morgan circuit of size $e^{o\left((\log n)^{2}\right)}$ computing m over Boolean inputs, which would contradict Theorem 6. We formalize this idea below:

Lemma 8. If N is a monotone threshold network of size $e^{o\left((\log n)^{2}\right)}$, there exists $\mathbf{p} \in[0,1]^{n \times n}$, such that,

$$
|N(\mathbf{p})-m(\mathbf{p})| \geq \frac{1}{2}
$$

Proof. Suppose towards a contradiction that there is a monotone network N of size $s=e^{o\left(\log (n)^{2}\right)}$ that approximates m in $[0,1]^{n \times n}$ within error less than $\frac{1}{2}$. Then, restricting N to Boolean inputs, and applying a threshold gate to the output, based on whether the output is larger than $\frac{1}{2}$ would yield a monotone threshold circuit C_{N} that computes m (exactly) on Boolean inputs and has size $s+1$. With more details, every neuron in N corresponds to one monotone threshold gate in C_{N}, and an additional gate is added for the output.

By Theorem 10 the monotone circuit complexity of a circuit with only AND and OR gates (De Morgan circuit) computing a threshold function with positive coefficients is polynomial. Therefore, we claim that, the existence of C_{N} entails the existence of a monotone circuit C_{N}^{\prime} with AND and OR gates of $\operatorname{size}^{7} O\left(s^{t}\right)$, for some constant $t \geq 1$, that decides if a bipartite graph has a perfect matching.

Indeed, by Theorem 10 we may construct C_{N}^{\prime} by replacing every monotone threshold gate, g, in C_{N} by a monotone De Morgan circuit C_{g} computing g. As the size of C_{g} is polynomial in the number of inputs to g (and hence upper bounded by s^{k} for an appropriate constant k) these replacements result in a polynomial blowup with respect to the size of C_{N} : the size of C_{N}^{\prime} is at $\operatorname{most}(s+1) s^{k}=O\left(s^{k+1}\right)$. Therefore setting t to be $k+1$ we have that the size of C_{n}^{\prime} is at most $O\left(s^{t}\right)=e^{t \cdot o\left(\log ^{2} n\right)}=e^{o\left(\log ^{2} n\right)}$. Since $e^{\log (n)^{2}}=n^{\log (n)}$, this contradicts Theorem 6.

6.3 Part 3: approximating m with a general network

Finally, we show how to approximate m with a general network (without weight restrictions) of polynomial size. To estimate the probability the graph $G(\mathbf{p})$ has a perfect matching we can realize independent (polynomially many) copies of graphs distributed as $G(\mathbf{p})$ and estimate the number of times a perfect matching is detected. To implement this idea, two issues need to be addressed:

- The use of randomness by the algorithm (our neural networks do not use randomness).
- The algorithm dealing with probability vectors in $[0,1]^{n \times n}$ that may need infinitely many bits to be represented in binary expansion.

We first present a randomized polynomial-time algorithm, denoted A, for approximating $m(\mathbf{p})$. We then show how to implement it with a (deterministic) threshold network. Algorithm A works as follows. Let $q(), r()$ be polynomials to be defined later. First, the algorithm (with input \mathbf{p}) only considers the $q(n)$ most significant bits in the binary representation of every coordinate in \mathbf{p}. Next it realizes $r(n)$ independent copies of $G(\mathbf{p})$. It checks ${ }^{8}$ for each one of theses copies whether it contains a perfect matching of size n. Let t be the number of times a perfect matching is detected (t depends on \mathbf{p} : We omit this dependency to lighten up notation). The algorithm outputs $A(\mathbf{p}):=\frac{t}{r(n)}$. Clearly the running time of this algorithm is polynomial.

Let $\widetilde{\mathbf{p}}$ be the vector obtained from \mathbf{p} when considering the $q(n)$ most significant bits in each coordinate, and observe

$$
\begin{equation*}
A(\mathbf{p}) \stackrel{\text { law }}{=} A(\widetilde{\mathbf{p}}) . \tag{4}
\end{equation*}
$$

[^5]Keeping this in mind, we shall first require the following technical result.
Lemma 9. Let $\delta \in(0,1)$ be an accuracy parameter. Then, if $\tilde{\mathbf{p}} \in[0,1]^{n \times n}$ is such that every coordinate $\tilde{\mathrm{p}}_{\mathrm{ij}}$ can be represented by at most $q(n)$ bits,

$$
\begin{equation*}
\mathbb{P}(|m(\tilde{\mathbf{p}})-A(\tilde{\mathbf{p}})|>\delta) \leq 2 e^{-r(n) \delta^{2} / 3} \tag{5}
\end{equation*}
$$

As a consequence, for every $\mathbf{p} \in[0,1]^{n \times n}$,

$$
\mathbb{P}\left(|m(\mathbf{p})-A(\mathbf{p})|>\delta+\frac{n^{2}}{\sqrt{2}^{q(n)}}\right) \leq 2 e^{-r(n) \delta^{2} / 3}
$$

Proof. We first establish the first part. Indeed, since $A(\tilde{\mathbf{p}})$ can be realized as a linear combination of i.i.d. Bernoulli random variables and since $\mathbb{E}[A(\tilde{\mathbf{p}})]=m(\tilde{\mathbf{p}})$, (5) is a consequence of Chernoff's inequality and follows directly from the discussion in [25, Page 73]. Now, $\tilde{\mathbf{p}}$ was obtained from \mathbf{p} by keeping the $q(n)$ most significant bits. Thus, $\|\mathbf{p}-\tilde{\mathbf{p}}\| \leq \sqrt{\frac{n^{2}}{2^{q(n)}}}$, and by Lemma 6,

$$
|m(\mathbf{p})-m(\tilde{\mathbf{p}})| \leq \frac{n^{2}}{\sqrt{2}^{q(n)}}
$$

So, because of (4), and (5),

$$
\begin{aligned}
\mathbb{P}(|m(\mathbf{p})-A(\mathbf{p})|>\delta & \left.+\frac{n^{2}}{\sqrt{2}^{q(n)}}\right)=\mathbb{P}\left(|m(\mathbf{p})-A(\tilde{\mathbf{p}})|>\delta+\frac{n^{2}}{\sqrt{2}^{q(n)}}\right) \\
& \leq \mathbb{P}\left(|m(\mathbf{p})-m(\tilde{\mathbf{p}})|+|m(\tilde{\mathbf{p}})-A(\tilde{\mathbf{p}})|>\delta+\frac{n^{2}}{\sqrt{2}^{q(n)}}\right) \\
& \leq \mathbb{P}(|m(\tilde{\mathbf{p}})-A(\tilde{\mathbf{p}})|>\delta) \leq 2 e^{-r(n) \delta^{2} / 3}
\end{aligned}
$$

We next show how to implement this algorithm by a neural network of polynomial size that does not use randomness.
Lemma 10. Let $\delta \in(0,1)$ be a fixed constant. There exists a neural network of polynomial size N such that for every $\mathbf{p} \in[0,1]^{n \times n}$,

$$
\mid m(\mathbf{p})-N(\mathbf{p})) \left\lvert\, \leq \delta+\frac{n^{2}}{\sqrt{2}^{q(n)}}\right.
$$

Proof. By standard results regarding universality of Boolean circuits (See [30, Theorem 20.3] or [33, Theorem 9.30]) algorithm A can be implemented by a neural network N^{\prime} of polynomial size that get as additional input $n^{2} q(n) r(n)$ random bits. In light of this, our task is to show how to get rid of these random bits. The number of points in $[0,1]^{n \times n}$ represented by at most $q(n)$ bits in each coordinate is at most $2^{n^{2} q(n)}$. On the other hand by the first part of Lemma 9 the probability for a given input $\tilde{\mathbf{p}}$ (with each coordinate in $\tilde{\mathbf{p}}$ represented by at most $q(n)$ bits) that $\left|N^{\prime}(\tilde{\mathbf{p}})-m(\tilde{\mathbf{p}})\right| \geq \delta$ is $2^{-\Omega(r(n))}$. As long as $r(n)$ is a polynomial with a large enough degree, with respect to $q(n)$, we have that $2^{n^{2} q(n)-\Omega(r(n))}<1$. Hence, there must exist a fixed choice of for the $n^{2} q(n) r(n)$ (random) bits used by the algorithm such that for every input \mathbf{p} the additive error of the neural network N^{\prime} on p is no larger than δ. Fixing these bits and hard-wiring them to N^{\prime} results in the desired neural network N. The final result follows from the proof of the second part of Lemma 9.

We can now prove the following Lemma concluding the proof of Theorem 8.
Lemma 11. For every fixed $\varepsilon>0$ there exist a general threshold network N of polynomial size in n, such that for all $\mathbf{p} \in[0,1]^{n \times n}$,

$$
|m(\mathbf{p})-N(\mathbf{p})| \leq \varepsilon .
$$

Proof. Set $\delta=\frac{\varepsilon}{2}$ and let N be the network constructed in Lemma 10 with accuracy parameter δ. Choose $q(n)$ which satisfies $q(n)>\log \left(\frac{4 n^{4}}{\varepsilon^{2}}\right)$. Thus, Lemma 10 implies, for every $\mathbf{p} \in[0,1]^{n \times n}$:

$$
\mid m(\mathbf{p})-N(\mathbf{p})) \left\lvert\, \leq \delta+\frac{n^{2}}{\sqrt{2}^{q(n)}} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\right.
$$

Acknowledgements

We thank Arkadev Chattopadhyay for helpful feedback and Todd Millstein for discussing [35] with us which led us to think about monotone neural networks. We are grateful to David Kim for implementing our construction of a monotone neural network and testing it over several monotone data sets.

References

[1] Richard E. Barlow, Daniel J. Bartholomew, James M. Bremner, and Hugh D. Brunk. Statistical inference under order restrictions: the theory and application of isotonic regression. Wiley, 1972.
[2] Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information theory, 39(3):930-945, 1993.
[3] Eric B. Baum. On the capabilities of multilayer perceptrons. J. Complexity, 4(3):193-215, 1988.
[4] Amos Beimel and Enav Weinreb. Monotone circuits for monotone weighted threshold functions. Inform. Process. Lett., 97(1):12-18, 2006.
[5] Sebastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and size of the weights in memorization with two-layers neural networks. Advances in Neural Information Processing Systems, 33:4977-4986, 2020.
[6] Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay. Lower bounds for monotone arithmetic circuits via communication complexity. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 786-799, 2021.
[7] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303-314, 1989.
[8] Hennie Daniels and Marina Velikova. Monotone and partially monotone neural networks. IEEE Transactions on Neural Networks, 21(6):906-917, 2010.
[9] Amit Daniely. Neural networks learning and memorization with (almost) no overparameterization. Advances in Neural Information Processing Systems, 33:9007-9016, 2020.
[10] SF de Rezende, M Göös, and R Robere. Guest column: Proofs, circuits, and communication. ACM SIGACT News, 53(1):59-82, 2022.
[11] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating second-order functional knowledge for better option pricing. Advances in neural information processing systems, 13, 2000.
[12] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference on learning theory, pages 907-940. PMLR, 2016.
[13] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds from resolution. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 902-911, 2018.
[14] Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander Mangylov, Wojciech Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated interpolated look-up tables. The Journal of Machine Learning Research, 17(1):37903836, 2016.
[15] Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 378-387, 2000.
[16] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359-366, 1989.
[17] Pavel Hrubeš and Pavel Pudlák. A note on monotone real circuits. Inform. Process. Lett., 131:15-19, 2018.
[18] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations over semirings. J. Assoc. Comput. Mach., 29(3):874-897, 1982.
[19] Stasys Jukna. Boolean function complexity, volume 27 of Algorithms and Combinatorics. Springer, Heidelberg, 2012. Advances and frontiers.
[20] Adam Tauman Kalai and Ravi Sastry. The isotron algorithm: High-dimensional isotonic regression. In COLT 2009-The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, 2009.
[21] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.
[22] Rasmus Kyng, Anup Rao, and Sushant Sachdeva. Fast, provable algorithms for isotonic regression in all l_{p}-norms. Advances in neural information processing systems, 28, 2015.
[23] Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks. Advances in Neural Information Processing Systems, 33:15427-15438, 2020.
[24] Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and flexible monotonic functions with ensembles of lattices. Advances in neural information processing systems, 29, 2016.
[25] Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomization and probabilistic techniques in algorithms and data analysis. Cambridge university press, 2017.
[26] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. The Journal of Symbolic Logic, 62(3):981-998, 1997.
[27] Shashank Rajput, Kartik Sreenivasan, Dimitris Papailiopoulos, and Amin Karbasi. An exponential improvement on the memorization capacity of deep threshold networks. Advances in Neural Information Processing Systems, 34, 2021.
[28] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. In Proceedings 38th Annual Symposium on Foundations of Computer Science, pages 234-243. IEEE, 1997.
[29] Alexander A Razborov. Lower bounds on monotone complexity of the logical permanent. Mathematical Notes of the Academy of Sciences of the USSR, 37(6):485-493, 1985.
[30] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.
[31] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Now Publishers Inc, 2010.
[32] Joseph Sill. Monotonic networks. Advances in neural information processing systems, 10, 1997.
[33] Michael Sipser. Introduction to the theory of computation. ACM Sigact News, 27(1):2729, 1996.
[34] Kai-Yeung Siu and Jehoshua Bruck. On the power of threshold circuits with small weights. SIAM Journal on Discrete Mathematics, 4(3):423-435, 1991.
[35] Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck. Counterexample-guided learning of monotonic neural networks. Advances in Neural Information Processing Systems, 33:11936-11948, 2020.
[36] Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. Size and depth separation in approximating benign functions with neural networks. In Conference on Learning Theory, pages 4195-4223. PMLR, 2021.
[37] Roman Vershynin. Memory capacity of neural networks with threshold and rectified linear unit activations. SIAM Journal on Mathematics of Data Science, 2(4):1004-1033, 2020.
[38] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:103-114, 2017.
[39] Amir Yehudayoff. Separating monotone VP and VNP. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 425-429, 2019.
[40] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107-115, 2021.

[^0]: ${ }^{1}$ As we will only be dealing with monotone increasing functions, we shall refer to monotone increasing functions as monotone.

[^1]: ${ }^{2}$ We restrict our attention to non-negative prediction problems: The domain of the function we seek to approximate does not contain vectors with a negative coordinate.

[^2]: ${ }^{3}$ There are constructions of depth-3 threshold circuits with discrete inputs that are given m numbers each represented by n bits and output the (binary representation of the) maximum of these numbers [34]. This setting is different from ours, where the inputs are real numbers.
 ${ }^{4}$ Circuits with AND as well as OR gates without negations.

[^3]: ${ }^{5}$ The 2D example here as well its generalization for higher dimensions can be easily adapted to give an example of a monotone function that cannot be approximated in ℓ_{2} by a depth-two monotone threshold network.

[^4]: ${ }^{6}$ The function m depends also on n but we omit this dependency as it is always clear from the context.

[^5]: ${ }^{7}$ by size we mean the number of gates in the circuit
 ${ }^{8}$ We use the flow-based poly-time algorithm to decide if a bipartite graph has a perfect matching.

