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1. Introduction

The development of nonlinear optical (NLO) materials has been driven by a multitude of
important technological applications that can be realized if suitable materials are available
1–15. Future generations of optoelectronic devices for telecommunications, information
storage, optical switching, and signal processing are predicted to a large degree on the
development of materials with exceptional NLO responses 1–15. A large number of organic
π-conjugated molecules have been investigated in the last thirty years for suitability to
function as components in hypothetical NLO materials 1–19. Several books and reviews
have appeared dealing with theory of nonlinear optics and the structural characteristics and
applications of nonlinear optical molecules and materials 1–19. Truly, all-optical NLO
effects were not discovered until the discovery of lasers. Second-harmonic generation
(SHG) was first observed in a single crystal of quartz by Franken et.al. 20 in 1961.
Parametric amplification was observed in lithium niobate (LiNbO3) by two-wave mixing in
temperature-tuned single crystals 21. Rentzepis and Pao 22 made the first observation of
SHG in an organic material, benzpyrene, in 1964. Heilmeir examined
hexamethylenetetramine single crystal SHG in the same year 24. Two other organic
materials followed rapidly: hippuric acid and benzil 25. Benzil was the first material that
proved relatively easy to grow into large single crystals. Over the last two decades the study
of nonlinear optical process in organic and polymer systems has enjoyed rapid and sustained
growth 1–19, 25–39. One indication of the growth is the increase in the number of articles
published in refereed society journals, as one can find from web of science 25, SCIFINDER
26 and Scopus 27 search. The four years period 1980–1983 saw the publication of 124 such
articles. In the next four years period 1984–1987, the production of articles increased to 736
(nearly six times). From 1988–1992, the number of articles increased to more than 4000 25–

27. In the last decade, academia, industry and government laboratories have been working in
this field to replace electronics by photonics and as a result, the number of publications has
reached more than 70,000 25–27.

The rapid growth of the field is mainly due to the technological promise of these materials
1–19, 28–37. Traditionally, the materials used to measure second-order NLO behavior were
inorganic crystals, such as lithium niobate (LiNbO3) and potassium dihydrogen phosphate
(KDP). The optical nonlinearity in these materials is to a large extent caused by the nuclear
displacement in an applied electric field, and to a smaller extent by the movement of the
electrons 1–10. This limits the bandwidth of the modulator. Organic materials have a
number of advantages over inorganic materials for NLO applications 28–35. The ease of
modification of organic molecular structures makes it possible to synthesize tailor-made
molecules and to fine-tune the properties for the desired application 28–35. Unfortunately,
not all organic materials display second-order NLO properties. At the molecular level, they
need to be non-centrosymmetric. A large number of organic π-conjugated molecules have
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been investigated 1–9, 28–35 in the last twenty years. The outcome of the results has helped
to establish certain guidelines for molecular design to get good second order NLO materials.
However, roughly more than 80% of all π-conjugated organic molecules crystallize in
centro-symmetric space groups 1–19, therefore producing materials with no second order
bulk susceptibility. To overcome this limitation, organic NLO material doped or covalently
attached in polymers, have been introduced by Dalton et. al 5,6,16,38–39. A few of these
chromophores have served as components of functioning polymer-based optoelectronic
devices; the physical properties of all these prototype materials possess one or more critical
deficiencies that render commercialization of these systems impractical 28–39. These facts
suggest that new types of molecular design are necessary if significant advances are to be
realized.

From 1998 onwards, researchers started effort on developing various nanomaterials, with
high second order NLO properties and seeking for their applications in photonics as well as
chemical and biological detection 40–106. The surface-enhanced phenomenon is predicted
to have a particularly important impact in nonlinear optical NLO applications, since the
generally weak nonlinear effects can be significantly increased via strong electromagnetic
fields at the surfaces of metallic nanostructures 60–129. NLO based sensing have provided
great potentials and opportunities for detecting different environmental toxins that exhibit
some specific advantages, compared to other conventional and nanomaterial based
techniques. Aim of this review is mainly to summarize and evaluate the achievements in
development of nanoparticle based second order NLO materials with different sizes and
shapes and it will focus on the following three major issues: (i) design of novel NLO active
materials using nanoparticles (ii) nonlinear optical properties of single nanoparticle,
nanoparticle aggregates and self assembly, and (iii) applications in chemical and biological
sensing.

2. Brief Survey of Nonlinear Optics

Nonlinear optics deals with the interaction of applied electromagnetic fields in various
materials, which generate new electromagnetic fields and altered in frequency, phase, or
other physical properties 1–18. When a material is subjected to an oscillating external
electric field of light, the effect of a light wave is usually described through the induced
electrical polarization P 1–20. In the case of an isolated chromophore, in the presence of
relatively weak electromagnetic field, this polarization is proportional to the strength of the
applied field 1–20.

(1)

Where, αij is the ij component of the polarizability tensor α and Ej is the electric field
component and the j axis. Thus, the plot of the polarization as a function of the applied field
is a straight line, whose slope is the polarizabilty, αij. So when a weak optical field of a
particular frequency interacts with a material, the material exhibits a time varying
polarization response which creates a new field that is of the same frequency. Only the
propagating wave is usually phase-shifted in time with respect to the incident field, which is
proportional to the index of refraction, η, of the material. However, when a molecule is
subjected to a laser light (very high intensity electric field), its polarizability change can be
driven beyond the normal regime. Therefore, on the single molecule level, the polarization,
which is a function of the applied field, leads to nonlinear effect and can be expressed as 1–

19,130–153,

(2)
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where βijk is the ijkth component of molecular hyperpolarizability (second-order effect) and
γijkl is the ijkl component of the second molecular hyperpolarizability (third-order effect).
Using Einstein convention, repeated indices are summed with i, j and k, spanning the three
directions of space. It will be more convenient if we choose a Cartesian framework with axis
x, y and z, adapted to the symmetry of the molecule which helps reveal a reduction of the
number of independent coefficients in the expansion. Typical α’s are in the order of 10−24

esu, values of β’s are in the order of 10−30 esu (esu unit means that the dimensions are in
CGS units and the charge is in electrostatic units, thus “β in esu” means β in the units of cm3

esu3/erg2), γ’s are in the order of 10−36 esu. For non-centrosymmetric molecule without any
permanent dipole (molecule with D2, D3h, C3h, Td symmetry), multipole concept has
recently been introduced by Zyss et. al 2,8 for the design of more isotropic NLO
chromophores. According to the multipole concept 2,8, in the absence of pseudo-tensorial
J=0 and J=2 (monopolar and quadrupolar) terms due to the resonnace, the
hyperpolarizability tensor can be decomposed into two components βJ=1 and βJ=3, resulting
from dipolar and octupolar contributions.

(3)

As a result, though there is no permanent dipole moment for octupolar molecules, due to the
symmetry constraints of octupolar groups, octupolar molecules do present an isotropic β
tensor.

Polarizability and hyperpolarizabilities, α, β and γ are second-rank, third-rank and fourth-
tensors and as result, they have 9, 27, and 81 components 1–18. However, under off-
resonant conditions, Kleinmann symmetry is obeyed and geometrical symmetries may
further reduce the number of independent nonzero components. For example, molecule has
C2v symmetry has only few nonzero elements in the hyperpolarizability tensor and those are
βzzz, βzxx and βxzx = βxxz. Where as for C3 molecule, the only nonvanishing tensor elements
are: βzzz and βzxx = βzyy = βxxz = βyyz = βxzx = βyzy in the molecular frame (x, y, z), where the
z axis is the symmetry axis 1–18. The hyperpolarizability tensor described above is in the
molecular frame. To obtain the hyperpolarizability tensor in the laboratory frame (X, Y, Z),
one needs to use the following expression 1–18

(4)

where T is the transfer matrix corresponding to Euler angles as displayed.

Till 1991, electric-field-induced second-harmonic generation (EFISHG) 142 was the main
method for the measurement of β of organic molecules in solution. EFISHG relies on a
strong electric field to break the centrosymmetry of the solution. As a result, it is only
limited to molecules with dipolar symmetry. Due to the lack of permanent dipole-moment,
first molecular hyperpolarizabilities of nanomaterials described in this review can’t be
measured using EFISHG technique. The hyper-Rayleigh scattering (HRS) technique 144–

150 is as an alternative method for the measurement of molecular hyperpolarizabilities.
Unlike EFISHG, HRS can be used to directly measure β of all molecules, irrespective of
symmetry or charge. As a result, HRS technique has been used for the measurement of β’s
of nanomaterials. The intensity of the light scattered by a single molecule at the harmonic
wavelength 2ω can be calculated by performing an orientational average over β 144–150,
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(5)

The brackets indicate orientational averaging. As is the case for linear Rayleigh scattering,
the intensity of the scattered harmonic is inversely proportional to the fourth power of the
fundamental wavelength λ and to the square of the distance to the scattering molecule r. The
relation between 〈βHRS

2〉 and the components of the molecular hyperpolarizability tensor
depends on several factors and these are the polarization state of the fundamental and
harmonic beams, the experimental geometry, and the molecular symmetry. If the molecules
have no absorption at either fundamental or harmonic wavelength, the components of the
hyperpolarizability tensor are real quantities. If the fundamental and harmonic frequencies
are far from material resonance frequencies, Kleinman's symmetry condition βijk = βkij = βjki

applies. In HRS experiment 144–150 one measures average β2 for any molecule, where,

(6)

The first subscript (X or Z) refers to the polarization direction of the frequency-doubled
light. If both polarizations are detected with equal sensitivity then both terms dominated in
Equation 6. The relation between <βZZZ

2> in laboratory coordinates and <βzzz
2> in the

molecular reference frame has been discussed in detail by Cyvin et al 148, Bershon et. al.
149 and Clays et. al 144–146 and the relation can be expressed as

(7)

(8)

Here, cyc means cyclic permutation of co-ordinate indexes. Now if we impose molecular
symmetry, for the molecules of different symmetry, the following expression should be used
for the measurement of different β components 2,8,144–150.

(9)

(10)

(11)
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(12)

(13)

With increasing field strengths, nonlinear effects become more important due to the higher
powers of the field E. Since α is much greater than β and γ, NLO effects were not commonly
observed before the invention of lasers 1–18. For the electric field of Q-switched YAG laser
light, ~ 104 stat volts/cm, the contribution to P from βE2 is 10−4 (D). These polarizations are
infinitesimal on the scale of chemical thinking. Yet, these small polarizations are responsible
for the exotic effects described throughout this review. For a macroscopic system, total
polarization (P) can be written as 1–18,

(14)

where χijk(2) and χijkl
(3) denote the first and second nonlinear susceptibilities. Here, time-

varying nonlinear polarization effects give rise to new fields of altered frequency with
respect to the incident radiation, and as a result, one can observe SHG in the case of χijk(2)

and third harmonic generation (THG) in the case of χijkl
(3). In addition to frequency

alteration, first nonlinear susceptibility, χijk(2), gives rise to an electric field dependent
effective susceptibility, which is responsible for the linear electro-optic effect. In a bulk
material, an overall non-centrosymmetry imposes the requirement of molecular alignment in
order to achieve a finite macroscopic second-order nonlinear optical activity. In bulk
material, χzzz

(2)(ω) is related to the molecular parameters by 1–18,
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(15)

where N (molecules/cm3) denotes the number density of active molecules that interact with
the incident optical field, βzzz is the hyperpolarizability tensor element coincident with the
molecular symmetry axis, ω is the wavelength of the incident light field, and ε is the
dielectric permittivity of the electro-optic (EO) material, ε. The 〈cos3 θ〉 term is the average
molecular order parameter indicating the extent of chromophore alignment relative to the
laboratory z axis, which is parallel to the applied poling field. The quantity g(ω) is the
Lorentz–Onsager local field factor 1–18. The linear Pockels EO effect tensor, r33, is related
to χzzz

(2)(ω) by 1–18

(16)

where η is the refractive index of the EO material.

Though among all nonlinear optical phenomena, SHG is the simplest, it is also forbidden
within the electric dipole approximation in centrosymmetrical molecule or materials. The
response of centrosymmetric molecules to an external field is given by P (− E) = − P (E).
This relation expresses the requirement that the induced polarization of centrosymmetric
molecules is opposite and of equal magnitude when the field is reversed. In order for the
equation (2) to satisfy this condition, all coefficients of even powers of E (β, δ…) have to be
equal to zero. Hence, only non-centrosymmetric molecules have a non-zero β value, since
then P (− E) ≠ − P (E). The requirement of non-centrosymmetry is not restricted to the
molecular level, but also applies to the macroscopic nonlinear susceptibility, χ (2), which
means that the NLO molecules have to be organized in a non-centrosymmetric alignment.
For nano sized noble metal structures, if these structures also possess centrosymmetrical
shapes (spherical or rod), the surface SHG response will again vanish in the electric dipole
approximation 40–75. Recently, several experimental results on spherical such as gold,
silver and copper, exhibit enormous SHG responses, showing their potential to be excellent
NLO candidates 40–75. For spherical metallic nanoparticles that are small compared to the
wavelength of light, several theories of SHG response have been developed, including work
by Agarwal and Jha 40, Hua and Gersten 41 and Dadap, Shan, Eisenthal, and Heinz (DSEH)
42. Dadap et al., 42,52 reported that in case of second harmonic scattering from a sphere of
centrosymmetric material, though the overall response vanishes in the electric dipole
approximation owing to the presence of inversion symmetry, huge SHG response due to the
leading emission terms is from non-locally excited electric-dipole contribution and a locally
excited electric-quadrupole contribution. Contributions involving quadrupolar surface
plasmon polaritons associated with retardation effects either at the excitation or the radiation
stage are therefore expected to be responsible for nonlocal nonlinear effect. According to the
DSEH 42, 52 theory, SHG arises from an induced electric dipole moment (P) and an
induced vector quadrupole moment, Q(nˆ). Hyper Rayleigh scattering power P2ω radiated
between Ω and Ω + dΩ, where Ω is the solid angle, is given by 42,52,49,

(17)

where P and Q are the effective electric dipole and quadrupole moments, respectively. The
exact angular dependence of the HRS power radiated is thus a function of the competition
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between two contributions, namely the effective electric dipole and quadrupole p and Q.
Several experimental results 48–75 have demonstrated that the total HRS response is of
electric dipole nature for small particles; however, for larger particles, retardation effects in
the electromagnetic fields must be considered, and a non negligible quadrupolar contribution
is observed. Furthermore, it has been shown that there is huge influence of the fundamental
wavelength used in HRS experiments on the weight of the electric-dipolar and quadrupolar
contributions 48–75.

3. Scope of this Review

Since last three decades, there is great scientific and technology-driven interest in
developing high-performance organic electro-optic materials 1–18, 28–39. In the last
twenty-five years, a large series of organic chromophore families have been developed, with
very large hyperpolarizabilities 1–18.28–39. The structural features necessary to produce a
significant second order NLO response at the molecular level are now quite well-known 1–

18.28–39. If these organic chromophores could be incorporated into perfectly ordered non-
centrosymmetric lattices, electro-optic coefficients of many hundreds of picometers per volt
must be anticipated 1–18, 28–39. Organic materials exhibiting such large macroscopic
optical nonlinearity should have a dramatic effect on communication and electromagnetic
field sensing technologies 1–18, 28–39. However, in the process of device development,
materials based on well-designed chromophores having large dipole-moment and excellent
molecular hyperpolarizabilities often failed to provide expected EO response 1–18.28–39.
Efforts to obtain organic materials exhibiting large EO coefficients and which can be used to
fabricate devices have largely been proven unsuccessful 1–18,28–39. To achieve high EO
efficiency, an organic material must be comprised of nonlinear optical NLO chromophores
with a large first hyperpolarizability (β) and must be arranged non-centrosymmetrically.
However, efficient arrangement of NLO chromophores has been proven to be challenging
28–39. Organic NLO chromophores demonstrating high β values typically have very large
dipole moments. Due to strong dipolar forces, they tend to align in an antiparallel fashion,
and as a result, the macroscopic EO effect diminishes. The intermolecular interactions are
sufficiently strong enough to change the optical properties of the aggregates significantly
than the corresponding monomer 1–18.28–39. Many aggregates contain a large number of
randomly or semi-randomly positioned monomers encompassing a wide variety of different
local interaction geometries. As a result, it is challenging to understand the role
intermolecular interaction on linear and NLO properties of the aggregates 1–18.28–39.
Therefore, several factors such as interchromophore electrostatic (dipolar) interactions,
guest–host incompatibility, and chromophore shape have impacted them for real life
application as electro-optic devices 1–18.28–39. Thus, the challenges in molecular EO
materials not only involve developing novel constituent chromophore molecules with large
intrinsic response properties but also in devising strategies to organize them in acentric
microstructures 28–39. Since last couple of years, several groups have been concentrating
on designing multichromophoric molecules or self-assembly, where dipolar interactions can
lead to self-organization in multichromophoric bundles resulting in higher figures of merit
for EO modulation 28–39,130–144. All the experimental results reported show a unique way
to optimally tune the dipole moment that interplay between through-bond intramolecular
charge transfer (ICT) and through-space ICT processes gives rise to large quadratic
hyperpolarizability values. Those result also predicted that there is a failure of simple
tensorial additivity models. As a result, a more sophisticated treatment that incorporates
through-space polarization effects must be developed.

NLO properties of nanostructured materials 40–95, which are drastically influenced by
quantum confinement effect, can be promising for applications in optoelectronics. Noble
metal nanostructures attract much interest because of their unique size or shape dependent
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properties (as shown in Figure 1–3), including large optical field enhancements resulting in
the strong scattering and absorption of light 96–119. In semiconductors, size and shape
dependent properties are due to the confinement of the electronic motion to a length scale
that is comparable to or smaller than the length scale characterizing the electronic motion in
bulk semiconducting material 82–95. In case of noble metals, as the size is reduced to tens
of nanometers scale, a new very strong absorption is observed, resulting from the collective
oscillation of the electrons in the conduction band from one surface of the particle to the
other (as shown in Figure 1–3) 40–80.

This oscillation has a frequency that absorbs the visible light. This is called the surface
plasmon absorption 96–110. This strong absorption, giving rise to vivid characteristic color,
has been observed even at 17th century, throughout Europe in stained glass windows of
cathedrals and by the Chinese in colored vases. Due to the presence of this surface plasmon
(SP) resonances, weak nonlinear effects generally significantly enhances via strong
electromagnetic (plasmon) fields at the surfaces of metallic nanostructures96–120. This,
together with our ability to make nanomaterials of different sizes and shapes (as shown in
Figure 1–3), makes them potentially useful in the field of NLO 43–72. In the past one
decade, scientists have witnessed an exponential growth of activities on NLO properties of
self assembly and nanomaterials 28–95 worldwide, driven by the excitement of
understanding new science and potential hope for applications in daily life as optical
devices, photonic circuits, and environmental sensor as well as in medical diagnostics.
Intense research has been fueled by the need for practical optical device that can address the
deficiencies of conventional technologies 1–19. Over the past decade, about one hundred
research papers on microscopic and macroscopic NLO properties of nanomaterials, and
sensors based on NLO behavior of nanomaterials have been published 28–95. Several
publications have shown that SHG can be greatly enhanced (~104) for molecules on a
roughened versus an unroughened metal surface, which is comparable with very large
enhancements (~106) similar to enhancements observed in surface enhanced Raman
scattering (SERS) from organic dyes on colloidal solution 43–72. The resulting materials
could have very high bulk second order NLO values well beyond those available today,
which in turn would enable optical switches and modulators of smaller dimensions than
what is currently available 120–150, while at the same time substantially reducing the cost
of fabrication of EO devices. This review is mainly focused on recent advances in size and
shape dependent second order NLO properties of nanomaterials and understanding new
science behind the extraordinary NLO values of nanomaterials. It also discusses about the
development of nanomaterial based optical technology.

The ability to integrate metal nanoparticles into biological systems has had greatest impact
in biology and biomedicine 95–119. Development of nanobased biosensors has increased
tremendously over the past few years as demonstrated by the large number of scientific
publications in this area. The emerging ability to control the patterns of matter on the
nanometer length scale can be expected to lead to entirely new types of biological sensors
90–129. These new systems will be capable of sensing at the single-molecule level in living
cells, and capable of parallel integration for the detection of multiple signals, enabling a
diversity of simultaneous experiments, as well as better crosschecks and controls. Since last
three years, publications from several groups demonstrated that size and shape dependent
nonlinear optical NLO properties of nanomaterials can be used for biological and chemical
sensing with excellent detection limit and selectivity 46,58–63, 67–68, 75, 81. In this
review, we will discuss recent efforts on the development of a nanomaterials based second
order NLO assay for understanding chemical processes and sensing of biomolecules and
toxic metals, which can improve the analytical figures of merit, such as detection limits,
sensitivity, selectivity, and dynamic range, relative to the commercial systems. Finally, we
will discuss problems and challenges in this assay for chemical and biological sensing.
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4. NLO Properties of Nanomaterials

Low dimensional structures such as nanoparticles and nanostructured materials have
attracted great interest in recent years because their properties such as quantum confinement
of electrons and holes, surface effects, and geometrical confinement of phonons, are
markedly different from those of bulk materials 40–129. As a result, one can use materials
with already desirable bulk properties and improve or tailor these properties by a judicious
control of size and surface 40–129. Nanoparticle has a rather large number of atoms, but its
size is comparable with characteristic dimensions describing the behavior of electrons and
holes, thus creating an intermediate regime between molecules and bulk crystals 40–129. A
great deal of the recent interest in the optical responses of metal nanoparticles,
nanoapertures in metal films, and metamaterials are focuses on enhancing local
electromagnetic fields to facilitate light–matter interactions 40–70. Random and fractal
metal clusters have been predicted to lead to giant enhancements of the local electric field.
Enormous enhancement factors of 103–106 compared to the fundamental electric field at a
flat metal surface have been predicted 40–70 and these strong local fields are particularly
important for nonlinear optical processes, such as SHG. Since last decade, scientists are
exploring size and shape dependent nonlinear optical properties of nanomaterials 40–95
driven by the excitement of understanding new science and potential hope for applications in
daily life devices. In this section of current review, we will give an overview of size and
shape dependent NLO properties of nanomaterials and understanding the origin of the size
dependent NLO properties of nanomaterials 40–95.

4.1 Size and Shape Dependent NLO Properties of Gold and Silver Nanoparticles

Since last two decades, the interest in gold and silver metallic particles has dramatically
increased, mostly because of their unique optical and electronic properties. These unique
properties are mainly due to the collective excitation of the conduction band electrons
known as the surface plasmon resonance (SPR) 45–70. These properties are often
investigated by linear optical methods. Since last decade, nonlinear optical methods have
been successfully used. This is due to the large enhancements expected for the
electromagnetic fields through the SPR. Due to the lack of good dipole-moment, for the
measurement of first hyperpolarizabilities of nanoparticles dispersed in a liquid solution, a
method of choice is HRS 145–152. The intensity of the single photon light scattering or
Rayleigh scattering is linearly dependent on the number density and the impinging laser
intensity, and quadratically on the linear polarizability α 1–10. Linear Rayleigh scattering
can be observed due to fluctuations in number density, caused by translational fluctuations.
On the other hand, the two-photon light scattering or hyper–Rayleigh scattering can be
observed from fluctuations in symmetry, caused by rotational fluctuations 145–152.
Second–order nonlinear light scattering 147–149 or the HRS technique was discovered only
after the advent of reliable, electro-optically Q-switched Nd3+-YAG laser. Clays et. al. 145
reinvented this technique to measure the hyperpolarizabilities of molecules in solution. The
technique is both experimentally and theoretically much simpler and more widely
applicable, and quickly became the technique of choice for the determination of the first
hyperpolarizabilities of a wealth of newly designed and synthesized chromophores
46,59,63,67,71,75,151–153. As we discussed in section 2, the relation between 〈βHRS

2〉 and
the components of the molecular hyperpolarizability tensor highly depends on the molecular
symmetry. Since the actual symmetry of different nanoparticles whose first
hyperpolarizabilities are reported are not known, in this review all the reported β values are
<β>. For nanoparticle based SHG measurement, SPR enhancement can be obtained at the
fundamental or the harmonic frequency yielding more versatility, although SPR
enhancement at the fundamental frequency is usually avoided in order to preserve the
sample solution from degradation. Due to the SPR properties, large magnitudes for the
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hyperpolarizability tensor of silver and gold nanoparticles have been reported 40–73.
However, according to the electric dipole approximation, for perfectly spherical metallic
nanoparticles that are small compared to the wavelength of light, no HRS signal intensity
should be collected owing to the centrosymmetry of both the material crystal structure and
the shape of the particle 40–73. This paradox has been solved for metallic gold particles.
Indeed, it has been demonstrated that the frequency conversion process finds its origin at the
surface of the particles when the shape of the particles are not perfectly spherical. As a
consequence, the total HRS response is of electric dipole nature for small particles; however,
for larger particles, retardation effects in the electromagnetic fields must be considered, and
a non negligible quadrupolar contribution is observed 49–60. It has been demonstrated that a
similar origin for the HRS process occurs for silver particles. In this section of this current
review, we will give an overview of recent major advances in the design of NLO activity
from noble metal nanoparticles. An understanding of the origin of NLO response will be
discussed, which is of fundamental scientific interest as well as a crucial component in the
development of state-of-the-art NLO materials.

One of the first predictions on surface contributions to SHG came from Agarwaal and Jha
40. Using a simplified Mie theory, they predicted that for metal spheres of radius, d, surface
contributions to SHG will be very important, if d < λ/2, where λ is the excitation
wavelength. Later, Hua and Gersten 41 used Green function formalism to calculate the
cross-section for SHG. Their theoretical prediction reported that for Al and Ag spheres,
quadrupolar contribution becomes significant, when their diameter is larger than 30 nm.
Their calculation predicted that a small metal sphere interacting with an incident
electromagnetic wave would produce second harmonic radiation in a quadrupolar mode.
Experimentally, first demonstration came from Vance et, al 43, who reported large second-
order nonlinearity in medium-sized Au nanoparticles using 800 nm incident light. Their
experimental results have shown that nanoscale particles are remarkably efficient scatterers
(as shown in Figure 4). When they evaluated first hyperpolarizability for gold nanoparticles,
it was much higher than the first hyperpolarizability of best available molecular
chromophores. Moreover, their experiments indicate that <β> is highly sensitive to colloid
aggregation and imply that HRS is an effective tool for the characterization of symmetry-
reducing perturbations of nanoscale interfaces.

As a comparison, their results demonstrated that the frequency-doubling efficiency per atom
of colloidal gold is 106–107 higher than best organic NLO chromophore. With the
theoretical background 40–42, 52 as we discussed before, they explained the large
hyperpolarizabilities of the noble metal nanoparticles as due to the resonance enhancement
via their SP absorption bands. In a subsequent paper 49, they performed some very
interesting “slit” experiments with 32 nm Ag nanoparticles and demonstrated that the HRS
intensities measured with 800 nm excitation are aided by the electric dipole as well as by
electric quadrupole plasmon resonances.

They modeled their results using a classical electromagnetic theory of SH Rayleigh
scattering developed by Dadap et al. 42, 52 since known as the DSEH theory, which
assumes a surface-induced nonlinear polarization from the surface of a small sphere of
centrosymmetric and isotropic materials such as noble metal nanoparticles. In addition, they
have shown that (as shown in Figure 5), simple angular distribution measurements may be
used to determine the relative sizes of the dipole and quadrupole contributions. DSEH 42, 52
theory explains that the electric dipole at 2ω arises from two excitation mechanisms
associated with the incident radiation E1 + E2 and E1 + M1 where E1 is the electric dipole
excitation, M1 is the magnetic dipole excitation and E2 is the electric quadrupole excitation.
The first electric dipole excitation mechanism is non-localized and large, while the second
localized mechanism disappears as a consequence of the axial symmetry of the problem,
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which was assumed in their formulation. The electric quadrupole at the SH frequency arises
from a local E1 + E1 excitation mechanism. Nappa et. al and Antonie et. al. 53–55 reported
the value of the hyperpolarizability for aqueous suspensions of silver metallic particles, with
diameter ranges from 20 up to 80 nm, using 780 nm incident light. They have demonstrated
that although the origin of the SHG arises from the surface of the particles, the size
dependence of the SH intensity exhibits a scaling with the volume of the particles. Their
results clearly show that 55 (as shown in Figure 6), absolute magnitude of the first
hyperpolarizability tensor obtained for gold metallic particles at the fundamental wavelength
of 800 nm is smaller than that of silver particles. Now in their experiment, SPR
enhancement for the silver particles is indeed rather strong owing to the harmonic
wavelength used in these experiments, which is in close vicinity with the SPR wavelength.
Recently Griffin et. al. 75 reported that <β> value increases by two orders of magnitude as
the size changes from 5 nm to 110 nm gold nanoparticle, as shown in Figure 7. They have
shown that the very high <β> value is due to high multipolar contribution. In their HRS
experiment, they have used 860 nm incident light.

The optical responses of particles that are small compared to the wavelength can be
described usually in the framework of electric-dipole approximation. However, when the
particle size approaches the wavelength, the dipolar picture may no longer provide a
complete description, and higher multipolar interactions should be considered. When light is
incident on a metal particle that has a diameter much less than the wavelength of light (d ≪
λ/10), the electromagnetic (EM) field across the entire particle is essentially uniform. This
classical effect was theoretically described by Mie 154 in 1908 by solving Maxwell's
equations for a plane wave incident on a metal sphere surrounded by a dielectric medium,
given the dielectric function of the metal. For nanospheres whose diameters are less than
about one tenth the incident radiation wavelength, only the dipole term in the expansion is
significant. The collective oscillation of the electrons is known as the dipole plasmon
resonance of the particle. For larger particles, when d ~ λ/10, contribution of higher-
multipoles becomes very important to the scattering spectra. Multipoles can arise by two
different ways and these are 1) from the light matter interaction Hamiltonian, corresponding
to microscopic multipole moments, and 2) according to Mie’s scattering theory 154.
Standard Mie’s theory is based on dipolar interaction, and multipoles arise from the size and
retardation effects. As a result, the total nonlinear polarization consists of different
contributions such as multipolar radiation of the harmonic energy of the excited dipole and
possibly of higher-multipoles 48–62. The HRS intensity therefore also consists of several
contributions. The first one is the electric dipole approximation, which may arise due to the
imperfect triangular structure in nanoparticle. This contribution is actually identical to the
one observed for any non-centrosymmetrical point-like objects such as efficient rod-like
push-pull molecules.

The second contribution is multipolar contribution like electric-quadrupole contribution.
This contribution is very important when the size of the particle is no longer negligible in
comparison to the wavelength. To probe the multipolar contribution, Nappa et. al. 57
performed angle resolved HRS measurement using 800 nm incident light. For this purpose,
the fundamental input beam was linearly polarized, and the input angle of polarization was
selected with a rotating half-wave plate. The configuration of the experimental setup was
such that the fundamental beam was propagating in the Z direction with the electric field
polarized in the {X,Y} plane with the polarization angle and the harmonic light was collected
along the Y direction, at right angle from the fundamental beam propagation direction.

Their experimental results (as shown in Figure 8) clearly show that for the particles with a
diameter smaller than 50 nm, the response is dominated by the dipolar contribution arising
from the deviation of the particle shape from that of a perfect sphere. For larger diameter
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particles, retardation effects in the interaction of the electromagnetic fields with the particles
cannot be neglected any longer and the response deviates from the pure dipolar response,
exhibiting a strong quadrupolar contribution. Their experimental plot for 50 nm diameter
nanoparticle shows two lobes, which are similar to the one for pure electric dipole response
from noncentrosymmetric organic molecules, reported before by several groups 1–18. The
polarization-resolved SH intensity can be fitted nicely with Equation 18 (as shown in Figure
8) that accounts for the input polarization dependence of SH intensities of polar molecules in
isotropic media in the absence of any retardation effects 40–72,

(18)

where, A, B and C are the coefficients which depend on the polarization state of the detected
SH light, frequency of the incident light and the non-vanishing components of the β tensor
in the laboratory frame. By fitting the experimental data with equation 18, they 57 find A =
0.62, C = 0.31, B =1, which satisfies B = A + C, setting B to unity since the HRS intensity is
reported in arbitrary units. These parameters clearly verify the condition B = A + C, for
dipolar molecules, within the experimental error of 8% condition. Same figure shows the
polar plots of the vertically polarized HRS signal as a function of the angle of polarization φ
of the incoming incident light for colloidal solution of 100 nm and 150 nm silver triangular
nanoprism. Here, the nature of the plot changes significantly. This contribution pattern
shows four lobes oriented on the 45°, 135°, 225°, and 315° axes. The asymmetric four-lobe
pattern is no longer predominantly dipolar in origin, and Equation 18 could not fit the data.
Instead, the data can be fitted with a modified expression 40–72 for the polarization-
resolved SH light intensity as shown in Equation 19.

(19)

In Equation 19, the new two terms D and E represent the retardation effects as discussed
before 29, 35–37, 45. By fitting the experimental data (shown in Figure 8) with equation 19,
they 57 find A = 0.08, C = 0.03, B =1, D = −0.10, E = 0.06, which does not satisfy B = A +
C, condition for dipolar molecules, as we discussed before. The presence of these two new
parameters D and E only arise for the larger particle diameters and therefore should be
related to retardation effects. They are required in order to adjust for the experimental
observation of the size inequality of the lobes. Their origin is not clear yet, but their
magnitude nevertheless remains weak in front of the other parameters. Same group has
reported the HRS intensity as a function of the angle of polarization of the incident
fundamental wave for silver nanoparticle from 20 to 80 nm 55 (as shown in Figure 9). Their
result shows that for the particles with a diameter of 20 nm, the harmonic response is
dominated by the dipolar contribution and for larger diameter particles, retardation effects in
the interaction of the electromagnetic fields with the particles cannot be neglected, and the
response deviates from the pure dipolar response, as we discussed for gold nanoparticles of
bigger size.

Now it is interesting to note that for smaller silver metallic nanoparticles (40 & 60 nm size)
both the electric-dipole and the electric-quadrupole surface plasmon resonance contributions
are clear (as shown in Figure 9), whereas for 50 nm gold nanoparticle, local electric-dipole
contribution to the HRS signal intensity dominates (shown in Figure 8). Previous studies on
linear spectra of silver nanoparticles 111 show that when the size of a silver metal
nanoparticle increases, higher-order plasmonic wave modes such as electric quadrupole or
magnetic dipole modes can be excited at the metal nanoparticle, and a series of SPR peaks
can appear in the optical spectrum. But these multipolar peaks from spherical gold

Ray Page 12

Chem Rev. Author manuscript; available in PMC 2011 September 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



nanoparticle in optical extinction spectrum have not been reported. As a result, it appears
that electric-multipolar contribution can be prominent for silver nanoparticle in one or multi-
photon spectra.

Kujala et. al. 50 provided experimental evidence for higher multipole (magnetic dipole and
electric quadrupole) radiation in second-harmonic (SH) generation from arrays of metal
nanoparticles. They have shown clearly that the fundamental differences in the radiative
properties of electric dipoles and higher multipoles yield opposite interference effects as
they observed during the SH intensities measured in the reflected and transmitted directions,
shown in Figure 10.

Their studies clearly demonstrated that interference effects depend on the polarization of the
fundamental field, which directly indicates the importance of multipole effects in the
nonlinear response. They have shown that strong polarization dependence of the response
can modify the relative strengths of the interfering terms, thereby allowing electric-dipole
and higher-multipole contributions to the overall SHG response. Their analysis of the
measured polarization dependencies provides knowledge of the mechanisms underlying the
nanoscale SHG process in gold nanoparticles.

Darbha et. al. 81 reported, <βnano> = 3.8 × 10−24 esu in water solvent for 80 nm gold
nanorod (aspect ratio, 2.4) using 860 nm incident light, which is about 3–4 orders of
magnitude higher than the β values reported for the best available molecular chromophores
and a couple of times higher than the β value reported for gold nanoparticles. As they have
discussed, higher β values for nanorod compared to nanosphere can be due to several facts
and these are 1) the presence of {110} facets, which is not present in nanospheres, is known
to have strong absorption energies; 2) the surface electromagnetic field of rods is the highest
compared to other shapes due to the rod's high curvatures (called "the lightning rod" effect
155), and 3) possibility of single photon resonance enhancement. They have also studied the
aspect ratio dependent SHG properties for silver nanorod 81. Since nanorods with different
aspect ratios have roughly the same diameter, the length of the nanorods mainly varies with
the variation of aspect ratio. Their data indicate that <β> value increases 3 times when the
aspect ratio increases 6 times and it is due to the red shift of absorption maxima as well as
higher single photon resonance enhancement.

Hubert et. a. 156 studied the role of surface plasmon in SHG from arrays of gold nanorods
using 800 nm incident light. Their experimental data clearly exhibit the influence of the
irradiation wavelength on SHG process and confirms the role of the plasmon resonance.
Excitation spectroscopy of SHG from 150, 170, and 190 nm long axis gold nanorods are
shown in Fig. 11. Their results clearly show that a small variation in the plasmon resonance
intensity, leads to strong variations in SH intensity. They have argued that, since the SHG is
theoretically forbidden in centrosymmetrical systems, the nonlinear generation process may
arise from the a) deviation of the shape of the nanoparticles from that of a perfect
symmetrical nanorod as well as from the broken symmetry at the air-metal and metal-
substrate interfaces; b) defects in the crystalline structure of gold nanoparticles also have to
be considered and c) due to the large range of wave vectors produced by confined plasmon
excitation, depolarization effects can be induced; i.e., vertical component of the near-field
appears, making asymmetry discussion nontrivial.

Singh et. al. 157 have demonstrated how controlling the size of a tetrahedral nanostructure
can improve the NLO properties using 1064 nm incident light. They have shown
experimentally that β value is highly dependent on the size of triangular silver nanomaterial.
Their experimental results indicate that <β> value in water solvent varies by about two
orders of magnitude with the variation of size from 30 nm to 120 nm. This can be due to
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several factors and these are as follows: 1) Since the absorption maximum shows red shift
with increase in particle size, β should be higher for bigger particle according to two-level
model 142 and 2) the most important factor is multipolar contribution. This contribution is
very important when the size of the particle is no longer negligible in comparison to the
wavelength, as we discussed before. Their experimental results (as shown in Figure 12)
indicate that multipolar contribution is very prominent for nanoprism and higher multipolar
contribution becomes higher as we increase the size. For bigger triangular nanoprism, when
the size of the particle is no longer negligible in comparison to the excitation wavelength,
the most important factor is multipolar contribution.

4.2 Size and Shape Dependent NLO Properties of Copper Nanoparticles

Copper is the most abundantly used metal in electronics applications due to its high
conductivity and low cost. Chandra et. al. 51,56,69,70 reported the size dependency of SHG
from copper nanoparticles (shown in Figure 13). Their results show that <βper particle> value
changes by more than two orders of magnitudes as the size changes from 5 to 100 nm. Their
first hyperpolarizability measurements under both on- and off resonance conditions show
that β values are two-photon resonantly enhanced by an order of magnitude on going from
off resonant (1907 nm excitation) to on-resonant condition (1064 nm excitation).

Same group has reported 70 the origin of SHG in copper nanoparticles by polarization-
resolved HRS. To understand where the origin of SHG in these particles is purely dipolar in
nature as long as the size (d) of the particles remains smaller compared to the wavelength (λ)
of light, they have performed HRS experiments with various sizes of copper nanoparticles at
three different wavelengths covering the wavelength range 738–1907 nm (as shown in
Figure 14–16).

For 738 nm excitation (as shown in Figure 15), polar plots show that the HRS response
remains predominantly dipolar up to a particle size of 25 nm, whereas retardation effects and
quadrupolar contribution become visible for particle size of 55 nm as well as 100 nm
particles. On the other hand, the results at 1064 nm indicate that the HRS response remains
predominantly dipolar up to a particle size of 55 nm and onset of retardation effect in the SH
light scattering from copper nanoparticles appears somewhere in between the d/λ ratios of
55/1064 (~1/20) and 100/1064 (~1/11). Further more, at 1907 nm excitation (as shown in
Figure 16), their results clearly show that the origin of HRS from copper nanoparticles is
found to be dipolar for all the particle sizes investigated.

The d/λ ratio at 1907 nm for the largest-sized copper nanoparticle (100 nm) is ~1/19, which
is smaller than that at the onset of the retardation effect that has been observed at other
excitation wavelengths. Form all the experimental evidences, they concluded that the critical
value of d/λ at which retardation effects just appear at this wavelength as <1/13.

4.3 Size and Shape Dependent NLO Properties of Quantum Dots and Metal Oxide
Nanoparticles

Semiconductor nanostructures are considered as promising materials for multicolor single
excitation biological labeling and dynamic three-dimensional nanoscale optical imaging.
Large nonlinear optical coefficients in these materials may lead to photonics applications,
such as ultrafast optoelectronic switches 72–96. Moreover, nonlinear optical processes may
provide valuable information for proper understanding of quantum confinement and surface
effects in low-dimensional structures. For this reason, the NLO properties of semiconductor
nanocrystals have been investigated in the past decade 72–96.

Jacobson et. al. 76 reported the size dependence SHG in CdSe nanocrystal quantum dots
using 820 nm incident light, as shown in Figure 17. Their experimental result shows that
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<β> per nanocrystal in ethylene glycol dimethyl ether (DME) solvent decreases with size
down to approximately 13 Å in radius and the <β> value increases with further size
reduction. They have explained the observed size dependence of the SHG, assuming two
contributions. The first is a bulk like contribution, from the non-centrosymmetric
nanocrystal core, and the second, a contribution from the nanocrystal surface. According to
their result, the latter contribution is most significant in small nanocrystals with a substantial
proportion of surface atoms. They have also suggested that the SHG technique can be used
as a probe of nanocrystal surfaces.

Zhang et. al 83 reported second-order NLO properties of the CdS colloid using 1064 nm
incident light. Their experimental result shows that ‘per particle’ first hyperpolarizability
<β> value is in the range of 10−26 esu. Using water as an internal standard (β=0.56×10−30

esu) the ‘per particle’ first hyperpolarizability <β> values are estimated to be 2.76×10−26,
2.07×10−26, 1.45×10−26, 1.14×10−26 esu for the samples aged for 5 h, one day, two days,
and three months, respectively. From the experimental evidence, it is thus clear that the β
values of the CdS nanoparticles decrease with increasing aging time, which may be due to
the change in the surface chemical structure of nanoparticles in solution as a result of their
high surface activity. In addition, their results show strong two-photon fluorescence (2PF) of
CdS nanoparticles, which implies that two-photon absorption (TPA)-induced resonance
enhancement may contribute to the HRS signal of CdS nanoparticles. Now it is well known
that molecules that absorb light at the SH wavelength, two-photon or multiphoton
fluorescence may hamper an accurate determination of β 132,134,138. Flipse et al. 132 have
shown that HRS is not suitable for the measurement of <β>, if NLO chromophore exhibits
fluorescence in second harmonic region. Song et. al. 134 has shown that direct S2 → S0 two-
photon fluorescence band of crystal violet (CV) and the HRS peak overlap. As a result,
measuring <β> values using HRS measurement can have error. Several groups
135,138,144,153 have argued that SH signal can be separated from two- or multiphoton
fluorescence signal in a variety of ways including spectrally resolving the scattered light,
using a femtosecond laser to separate the fluorescence in the time domain, or using a high
repetition rate femtosecond laser to suppress the fluorescence. Depending on the molecule
whose β is being measured, it is always better to choose excitation wavelength in such a way
that the wavelength of excitation and SH wavelength, is far from the absorption band of the
molecule. Other wise it is very much necessary that a careful analysis of the HRS signal
should carried out to correct for TPF if present.

Zhang et al. 169 have also demonstrated that with 1064 nm incident light, the first order
hyperpolarizability values of CdS nanoparticles depend on the surface coating material.
Their HRS experiment indicated that <β> value per particle of CdS nanoparticles capped
with 2,2'-bipyridine is 4.27 × 10−27 esu in chloroform solvent, whereas β value is 1.30 ×
10−26 esu in chloroform solvent for bare CdS nanoparticles whose surface is not modified
by organic groups. The difference is interpreted in terms of a two-level model
approximations derived from molecular chromophores, when considering the contribution of
molecule-like scatterers at the particle surfaces. Petorv et. al. 170 reported the 1st
hyperpolarizability of polyphosphate stabilized four aqueous suspensions of CdxZn1-xS
nanocrystals using 1064 nm incident light. In their study, they have used the same diameter
(9 nm) nanocrystals, with different values of x, (x = 0, 0.25, 0.75, 1), so that they are able to
vary band gap energies.

As shown in Figure 18, their results clearly demonstrate that the first hyperpolarizability β of
9 nm CdxZn1−xS nanocrystals in water solvent is observed to increase with x. This is mainly
due to the increase in resonance enhancement because of the decrease in the band-gap
energy. Their experimental results also show that the values of <β> of CdS nanocrystals
increase with the particle size, varying from 1.4 × 10−27 to 72.4 × 10−27 esu as the particles
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grow from 2 to 9 nm in diameter. Their observation has been explained by the enhancement
of both bulk and surface contributions. Bulk contribution is due to the quantum confinement
effects on the volume normalized oscillator strengths. Due to the enhanced spatial overlap
between the electron and hole wave functions, oscillator strength increases with decreasing
particle size. The surface contribution is also expected to become more significant as the
size decreases, because of the larger surface/bulk ratio. Their experimental results also
indicate that bulk contribution seems to be the dominating for nanocrystal of smaller sizes ≈
2 nm. Zhang et. al. 84 reported the second-order NLO properties of ZnS nanocrystal
quantum dots in aqueous medium using 1064 nm incident light. Their experiments show that
ZnS nanocrystals with cubic zinc blend structure enhanced <β>/particle value by at least
two orders of magnitude compared to that of bulk cubic ZnS crystal. They have discussed
about five possible contributions and these are 1) nanoparticle aggregates, 2) surface static
electric field, 3) solvent field, 4) bulk-like contribution, and 5) surface contribution. In
addition, their results clearly show that the <β>/particle values of ZnS nanocrystals and CdS
nanocrystals reported previously are of the same orders of magnitude under similar
conditions involving preparation method, size, and measurement conditions. Rodriguez et.
al. 93 reported the first hyperpolarizabilities of ferroelectric BaTiO3 and PbTiO3
nanoparticles (NPs) with average diameter of ≈50 nm, using 1064 nm incident light. Their
result shows that the per nanoparticle <β> value is 10−24 esu and they have also shown that
β value per unit volume of NPs is two orders of magnitude larger than that of
antiferroelectric NaNbO3 nanoparticles. Zhang et. al. 96 reported the electro-optic properties
of CdSe quantum dots. They prepared CdSe quantum dot-polymer composites formed by an
electrostatic self-assembly (ESA) technique. Their result shows that the internal field of the
ESA film to be as high as 2.6 × 108 V/m, which is much higher in comparison to the results
obtained from bulk crystal. They have used Mach-Zenhder interferometric technique for
linear electrooptic (Pockels) measurement and ellipsometric technique for quadratic
electrooptic (Kerr) effect measurements. Figures 19 and 20 show their experimental values
for r113 and r333, respectively. It is interesting to note that the maximum r333 at a
modulating frequency of 30 Hz is 560 pm/V and both EO coefficients r113 and r333 undergo
a rapid decrease at frequencies less than around 100 Hz. At frequencies higher than 100 Hz,
they continue to decrease slowly until reaching a diminished stable value. Their result will
be helpful in evaluating candidate polymeric and hybrid organic–inorganic materials for
electro–optic device applications.

Cole et. al. 171 reported nucleation and growth process for the production of ZnO
nanostructures with well-defined dimensions (<1%). They have also demonstrated that
applications are n-ZnO/p-GaN heterojunction LEDs (as shown in Figure 21). Their growth
process involves an oxygen plasma treatment in combination with a photoresist pattern on
magnesium doped GaN substrates to define a narrow sub-100 nm width nucleation region.
They have followed the nucleation by lateral epitaxial overgrowth producing single crystal
disks of ZnO with desired size over 2 in. wafers. The quality of the reported patterns was
high and a single near-band-edge UV peak was observed. Figures 21 show PL and EL
spectra, recorded using a scanning monochromator and photomultiplier tube attached to the
upright microscope. For PL excitation, they have used a hand-held ultraviolet mercury vapor
lamp and 254 nm filter with a sub-350 nm cutoff, UVP, model UVGL-58. In their
experimental results, as shown in Figure 21, the absence of deep-level radiative defects in
electroluminescence indicates that the p-GaN/n-ZnO interface generated using plasma-
defined nucleation is a high quality photonic junction.

Zhang et. al. 172 reported the observation of SH whispering-gallery modes (WGMs) in the
hexagonal cross-sections of the tapered ZnO nanotetrapod legs. Their result demonstrated
that (as shown in Figure 22), due to the continuously changing diameter in the leg, several
orders of the WGMs at different SH wavelengths could be on resonance simultaneously at
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different locations along the leg. The strongest SH WGMs occur when the polarization of
the fundamental excitation beam is parallel to the c-axis of the crystal along the leg.
Observed SH WGMs in ZnO nanostructure can be very useful for nanophotonic devices,
such as UV-blue light emitters, nanosensors, and wavelength conversion for nanoscale
optical circuitry.

4.4. NLO Properties of Single Nanoparticle

SH response from colloidal solutions obscures deeper insights due to the inevitable
inhomogeneity of particle shape and size. These ensemble measurements provide
information averaged over the nanoparticle size and morphology distributions, and thus, the
precise structure-property relationship of individual nanoparticles is obscured. As a result,
measurements on a single-particle level are necessary to gain a more complete
understanding of the optical properties of nanocrystal and it will permits correlation of SH
activity with nanoparticle morphology.

Recently, Duboisset et. al. 62 reported HRS experiment with single metallic nanoparticle
detection limit. They have demonstrated that HRS is sensitive enough to be used at the
single particle level. In their experiment, a detection limit corresponding to a concentration
of 29 fM for 80 nm diameter silver nanoparticles was achieved, corresponding to the
detection of a single particle at most present in the volume sampled (as shown in Figure 23).
Using an adjustment procedure between the experimental data and the model, the quadratic
hyperpolarizability of an 80 nm diameter silver nanoparticle was determined and found to be
<β> = (206 ± 20) × 10−25 esu at 800 nm. The value was slightly higher than the ensemble
measurements which shows that <β> = (170 ± 20) × 10−25 esu found with the internal
reference method.

Jin et. al. 87 reported SH activity from single Ag nanoparticles. SH single-particle
measurements was achieved by creating position markers on an optical and electron
transparent substrate (Si3N4 thin film, ~100 nm), which allows both optical measurements
and TEM imaging of the identical nanoparticle. They compared the SH activity of single Ag
nanospheres versus single Ag nanorods and how SH activities vary with cluster structures,
for dimers and trimers. The direct correlation of single-particle structures and SH activity,
spectral and power dependence, strongly suggests one-photon resonant driven nonlinear
oscillator response mechanism.

Their results show that Ag nanoparticle clusters and nanorods yield a signal at the SH
wavelength (415 nm) when excited with femtosecond pulses (830 nm) (as shown in Figure
24). The trimer structures are most SH responsive, and as a result, SHG signal could be
observed at the least optical power, where the SH activity from dimers was less. Their
results point out that if the shape of a particle within dimers deviates from spherical, then the
dimers can show activity comparable to that of trimers. They are not able to detect SH signal
from single spherical Ag particles at 40 GW/cm2 peak power but their experimental results
show that it can be detected using higher excitation power (>400 GW/cm2). Interestingly,
their results demonstrated that with respect to single spherical Ag particles, nanorods show
much greater SH activity (as shown in Figure 25) and it is striking to have to observe how
the largest intensities (2, 9, 10, 12) come from the most symmetrical particles, while the
clearly non-centrosymmetrical 5, 7, 8 show quite weak signal.

Rossi et. al. 158 have demonstrated SHG from single gold nanoparticles, using a nonlinear
aperture scanning near-field optical microscopy and polarized high-peak-intensity
femtosecond light pulses. The polarization state of the SH light emitted by the gold
nanoparticles was analyzed by a polarizer on detection. Figure 26 shows two typical SH
maps of a 150 nm particle.
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As shown in Figure 26, their results clearly show that near-field SHG is very sensitive to
LSP resonances as well as to the morphology of the nanostructures. Finally, analysis of the
polarization state of the emitted SH gives a clear signature of SH emission modes peculiar to
near-field excitation.

5. Nonlinear Optical Properties of Nanoparticle Aggregates and Self

Assembly

Assembling metal nanoparticles into spatially well-defined architectures is important
because new properties often emerge from the aggregates that are distinctly different from
the corresponding isolated nanoparticles 43–48. For example, collective nanoparticle
behaviors are responsible for large SERS from hot spot and the red–blue color change for
gold nanoparticle due to the aggregation 90–129, which are currently being exploited in a
number of colorimetric assays and will be discussed in detail in later section of this review.
The performance of many emerging nanoscale electronics technologies highly depends on
the ability to organize nanoparticles and optimize capacitive or dipole coupling in the
resulting assembly.

Collective nanocluster behaviors can be assessed using (i) salt-induced aggregation, (ii)
Langmuir techniques and (iii) surface assembly. Vance et. al. 43 have reported for the first
time that β increased more than 10-fold upon the addition of salt (as shown in Figure 27),
likely due to the formation of non-centrosymmetric particle aggregates. Their experimental
observation using 800 nm incident light clearly shows that after certain amount of salt
addition, the color of the gold nanoparticle changes from red to blue colloid color. The
change is mainly due to large aggregate formation. As shown in Figure 27, the expected
increase in Rayleigh scattering is almost unobservable when only small amounts of
electrolytes (≤30 mM) are added.

In contrast, their results clearly demonstrate that the intensity of HRS increases by at least an
order of magnitude in response to the same solution compositional changes, which indicated
that two-photon Rayleigh scattering is more sensitive for finding nanoparticle aggregation
than the single photon Rayleigh scattering.

Wang et. al. 72 showed how SH response varies for silver colloids with the addition of
KNO3 and pyridine (as shown in Figure 28) using 1064 nm incident light. Their results
show strongly enhanced HRS signals by 15× and 6× times, upon the addition of KNO3 and
pyridine, respectively. TEM measurements demonstrated that the morphology of aggregated
silver nanoparticles is like a chain. The dramatically enhanced second-order nonlinearity
was explained by the enhanced EM field near the surface of the silver nanoparticles. The
different enhancement between aggregates formed by KNO3 and pyridine was explained due
to the diversity of separated distance between silver nanoparticles. Their experimental
results also show that there is an optimum size for the aggregates to yield the maximum
HRS signal.

Novak et.al. 45 reported exceptionally large collective SH responses from gold nanoparticle
arrays connected by molecular bridges. The extraordinary values are mainly due to the two-
photon resonance interactions with the colloids' intense plasmon band. Their experimental
values no doubt would be smaller under conditions of pre-resonance with the plasmon
absorption band. Addison et. al. 159 demonstrated that NLO enhancement factor can be
tailored by varying the Au NP layers deposited on glass. The SH signal was measured for
substrates with different numbers of Au NP deposition (as shown in Figure 29 and 30).
Their experimental observation point out that maximum enhancement can be observed for
13 nanoparticle layers. When a substrate with 3 Au NP depositions was tested, SH signal
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near 10000 cps was obtained. However, their result shows that 5–11 Au NPs deposition
steps decrease the SH signal to the 1500–3000 cps range. Upon further deposition steps, the
SH signal increases again to a maximum of 19000 cps obtained for 13 Au NP depositions.
Substrates prepared with 15 and 17 Au NP layers yield SH signals of 6500 and 3500 cps,
respectively. The increase in the efficiency of the nonlinear effect was attributed to an
increase in the local field due to SP excitations at frequencies that match at least one of the
fields involved in the nonlinear phenomenon. Their result clearly shows that one can tune
the nanostructure substrates to yield maximum NLO response based on the number of
nanoparticle depositions that are performed.

Lesuffleur et. al 160 reported SHG from chains of gold nanoparticles interconnected with
metallic bridges. Their experimental results indicate that there was 30 times SHG
enhancement when a surface plasmon resonance was excited in the chains of nanoparticles,
which was influenced by coupling due to the electrical connectivity of the bridges. This
enhancement was also confirmed theoretically by rigorous coupled wave method
calculations and came from high localization of the electric field at the bridge.

Figure 31 shows the spectral variation in the ratio between the optical signal from the arrays
with and without defects for both SHG and the linear measurements with the polarization of
the electric field along the chains. Their report clearly shows that while the linear signal
varies slightly around a factor of 100%, SHG ratio reaches a maximum value of 190% for
the fundamental beam at 830 nm to be compared with the sample with defects. It is also
interesting to note that the ratio depends on the fundamental wavelength, suggesting that it is
related to a specific resonance of the chain. Moran et. al. 68 reported NLO properties of
silver nanoparticle arrays fabricated by nanosphere lithography, as shown in Figure 32. In
their report, the extinction spectra and SHG were measured for various orientations and
polarizations using a tunable femtosecond laser.

A Single-layer nanoparticle arrays were prepared with the nanosphere lithography
technique. Particle height (25–50 nm) was achieved during the first deposition. After that,
the height of the Ag film was increased to 50 nm. The nanoparticle portion of the cover slip
was masked with Al foil during the second deposition. During optical measurements, the
nanosphere masks were removed by sonication in absolute ethanol for approximately 5 min.

Figure 33 shows the SHG excitation profile, measured for p:p polarization conditions at
incidence angles of 10 and 45° for four different particle arrays. The enhancement factor is
the ratio of the SH signal from the array divided by SH from the silver film. Their
polarization and orientation dependent measurement results show that SHG is enhanced by a
LSPR mode polarized out-of-plane, which was not observed in the linear spectrum because
of its weak extinction. Their finding also indicates that absolute signals for 10° were 7–15
times weaker than those at 45°. The absolute integrated SH count for p:p polarization at 45°
was 2000 counts/s.

6. Nonlinear optical properties of Nanocomposites

Polymer composites have been extensively studied due to their large optical nonlinearities,
low dielectric constants, ease of preparation, and low cost. With the advent of nanocrystal
(NC) technology, several efforts are undergoing for establishing a novel class of inorganic–
organic hybrid photoconductive materials 30,162–168. Hybrid nanomaterials made of
organic and inorganic nanomaterials are expected to produce noble and innovative functions
that might not be achieved from either component alone. Construction of hybrid
nanoassemblies requires well-ordered and uniform accumulation of hybrid nanomaterials at
the nanointerface. Ishifuji et. al. reported 30 that the hybrid polymer nanoassemblies of NLO
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polymer nanosheets with Au NPs provide enormous SH light enhancement derived from a
coupled LSPR.

They have fabricated hybrid polymer nanoassemblies consisting of NLO polymer
nanosheets and gold nanoparticles (Au NPs) using, LB technique and immersion method: a
single-layer structure and a sandwich structure (as shown in Figure 34). Their results clearly
show that localized surface plasmon (LSP) coupling from adjacent Au NPs enhanced the SH
light intensity efficiently. They have investigated the distance-dependence of SH signal by
inserting a pDDA spacer between NLO polymer nanosheets. As shown in Figure 35, they
have shown that the SH light intensity decreased exponentially. From fitting with a single
exponential function, they have shown that effective LSP coupling for SH light
enhancement occurred within a distance of 8.4 nm from the Au NP monolayer. Their
distance dependent results demonstrate that dipole-like LSP coupling at the fundamental
frequency dominates SHG enhancement from hybrid polymer nanoassemblies. Their results
show the tremendous possibilities of hybrid polymer nanoassemblies for opening up new
scientific fields related to nano-optics and nanophotonics based on bottom-up approaches.

Kulyk et. al. 162 reported SHG properties of the ZnO/PMMA nanocomposite films. They
have measured the SHG properties by rotational Maker fringe technique for the s-polarized
fundamental beam. Figure 36 shows the dependences of SH intensity from ZnO/PMMA
nanocomposite films of both types on its ZnO NCs concentrations and ZnO equivalent
thickness. The nanoparticles of ZnO embedded into PMMA show quite high second order
nonlinearity at low ZnO NCs concentration and their results show that SHG signal increases
with ZnO NCs concentration. Films with higher concentration of ZnO nanocrystals show
stronger second harmonic signal for the identical input intensities and it is mainly due to the
larger interaction thickness of the nonlinear medium. Their results also indicate that even for
input intensities in the range of 23 GW/cm2, no structural change or damage of the samples
occurred.

Ding et. al. 161 reported NLO properties from a novel multifunctional inorganic–organic
photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl-CdS nanocomposites
with different molar ratios of CdS to poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl
(PVNPAK). Their results show that PVNPAK matrix possesses a highest-occupied
molecular orbital value of about −5.36 eV determined from cyclic voltammetry. SHG was
observed in PVNPAK film without any poling procedure and 4.7 pm/V of effective second-
order nonlinear optical susceptibility was obtained. The CdS particles as photosensitizers
had a nanoscale size in PVNPAK obtained using transmission electron microscopy, as
shown in Figure 37.

The estimated average size of CdS nanoparticles was ~5 nm in PVNPAK-5-CdS
nanocomposite as shown in Figure 37. The significant enhancement of photoconductivity in
chemically hybridized PVNPAK-CdS nanocomposites was obtained due to the charge
carrier transport through the interface between PVNPAK and CdS nanoparticles. Their
results show that the NLO chromophore possesses strong mobility and orientation, which
allowed them to perform the photorefractive experiments without applying an external
electric field if the Tg of materials is sufficiently low. Lambert et. al.165 developed LiIO3/
laponite nanocomposite thin films to form waveguides with quadratic nonlinear optical
properties. Films were dip-coated and annealed to induce LiIO3 crystallization. Their result
indicates that SHG signal depends on the nanocrystal orientation distribution and structure.
Jeremie et. al. 166 synthesized transparent SiO2-based nanocomposites (50–200 nm size)
with LiIO3 nanocrystals using the sol–gel method. It has been shown that since LiIO3
crystallizes in the matrix with α hexagonal structure, it exhibits NLO properties. Their result
shows that second harmonic signal can be observed in both bulk samples and thin layers and
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SHG intensity depends clearly on LiIO3 concentration. Their experiments confirm the
feasibility of a composite material based on LiIO3 exhibiting non-linear optical properties.

7. Application in Chemical and Biological Monitoring

Metal nanoparticles have attracted great scientific and technological interest in biomolecular
detection and clinical diagnostic application due to their specific physical and chemical
characteristics. Several recently reported experimental results illustrated that nanomaterial
based NLO assay can be used for monitoring chemical processes, biological and chemical
toxins with excellent sensitivity and selectivity 46, 58–63, 67–68, 75, 81. Several articles
demonstrated that NLO based assay is rapid and it can be three orders of magnitude more
sensitive than the usual colorimetric technique. Assay equipment consists of three main
parts, a laser source, a light path, and a detector (photomultiplier tube), so it is easy to set up
and is simple to use.

7.1. Application in Chemical Process Monitoring

The observation of significant hyperpolarizability associated with nanoparticles suggested
that SHG could be used to monitor the formation and growth of these particles. Using the
size-dependent hyperpolarizabilities, Segets et. al. 58 demonstrated quantitative
determination of nucleation, growth, and ripening rates via in situ HRS measurements
during synthesis of sub-10 nm ZnO nanoparticles. Using millisecond time-resolved
investigation of the ripening process, they found an increase in the particle
hyperpolarizability, βZnO, due to the increase particle size during growth process. Figure 38
shows the temporal evolution of the HRS signal for three different time resolutions of 20,
50, and 100 ms, respectively. In region I, solvent and zinc acetate signals were observed.

Region III is related to particle growth in the supersaturated solution, leading to a signal
increase with increasing particle diameter. Region IV is due to the fact that the super
saturation is continuously reduced and as a result, particle growth slows down. Due to this,
HRS signal remains almost unchanged. So their results clearly demonstrated the capability
of nanoparticle based NLO technique to study chemical growth processes. Sahyun et. al. 73
have shown that size dependent hyperpolarizability associated with TiO2 nanoparticles can
be used to monitor the formation and growth of TiO2 nanoparticles‥ Figure 39, shows how
the HRS intensity change during the growth of TiO2 nanoparticles. By fitting the data with
pseudo-first order kinetics, a formation constant of 0.025 min−1 was estimated. This rate of
formation of the nanoparticles measured by them is consistent with a standard reaction time
of ca. 2 h, as reported in the literature.

Yagi et. al. 173 demonstrated that the SHG method can be used to monitor surface
phenomena even when the bulk SHG signal is significant. They have shown that in situ
optical SHG technique can be employed to investigate the shape and density of Cu
nanoclusters, formed on p-GaAs(001) electrode surfaces electrochemically. Both in situ
SHG and ex situ AFM methods were used to characterize Cu nanoclusters electrochemically
deposited on n-GaAs(001) electrodes in the initial stages of Cu film formation. Their result
shows that, while bulk SHG signals from p-GaAs(001) monotonically decreased with the
amount of electrodeposited Cu on the surface, increase in surface SHG was observed only
when discontinuous flattened Cu nanoclusters with relatively large volume (diameter>30
nm, height >5 nm) were formed on the GaAs(001) surface. Figure 40, shows the time-
dependent p-in/p-out SH intensities at the azimuthal angle of 90° during Cu deposition at
various deposition potentials. In their experimental arrangement, only the surface SHG can
be monitored. Their results demonstrated that the SHG signal is very sensitive to the number
of oblate or flattened Cu nanoclusters with lateral diameter larger than 30 nm and they have
shown that the SHG enhancement occurred because of resonant coupling between the
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surface plasmon induced in the flattened Cu nanoclusters and the near-infrared fundamental
light.

7.2 Application in Biological Sensing

In the last two decades, the field of biosensors using nanomaterial has witnessed an
explosion of interest in the use of nanomaterials in assays for DNA/RNA, protein and cell
markers for many diseases as well as the detection of virus and bacteria from environmental
samples 96–110. Intense research has been fueled by the need for practical, robust, and
highly sensitive and selective detection agents that can address the deficiencies of
conventional technologies. In the coming decade, the ability to sense and detect the state of
biological systems and living organisms optically, electrically and magnetically will be
radically transformed by developments in material physics and chemistry 96–110. The
emerging ability to control the patterns of matter on the nanometer length scale can be
expected to lead to entirely new types of biological sensors. These new systems will be
capable of sensing at the single-molecule level in living cells, and capable of parallel
integration for the detection of multiple signals, enabling a diversity of simultaneous
experiments, as well as better crosschecks and controls. Due to the lack of toxicity, scientists
have shown great interest to use gold nanosystems for sensing and imaging 97–110. Most
ultra sensitive assays identify specific analyte after the target has been modified with a
covalently linked label such as a fluorescent or Raman dye 97–107. Problem of
photobleaching of fluorescent and Raman dyes as biological labels and has been common
over the last few decades. Recently, several groups have demonstrated that gold
nanomaterial NLO properties based assay could achieve the ultra-sensitive detection of
biological and chemical toxins using HRS technique 46, 58–63, 67–68, 75,81. Unlike dyes,
metal nanoparticles are photostable and do not undergo photobleaching, allowing higher
light excitation energies and longer probing times. Also HRS technique can be easily
applied to study a very wide range of materials, because electrostatic fields and phase
matching are not required. Several articles 46,58–63,67–68,75,81 have also demonstrated
that HRS technique is 1–2 orders of magnitude more sensitive than the usual colorimetric
technique and the onset of HRS enhancement can be observed much before any visible color
change occurs.

Ray 67 has demonstrated a gold nanoparticle based nonlinear optical assay for ss-DNA/
RNA sequence recognition in sub nanomolar to picomolar level based on the difference in
electrostatic properties between ss-DNA/RNA and ds-DNA/RNA. Their detection is based
on the fact that double and single-stranded oligonucleotides have different electrostatic
properties as shown in Figure 41. When ss-DNA/RNA is adsorbed onto the nanoparticle,
due to conformationally flexible backbone of a single-stranded DNA/RNA, a favorable
conformation for the adsorbed oligos is an arch-like structure, in which both the 3'- and 5'-
ends are attached to the particle.

Upon target binding, due to the duplex structure, the double-strand (ds) RNA does not
adsorb onto gold and as a result, gold nanoparticle undergoes aggregation (as shown in
Figure 42).

Figure 42 shows how the HRS intensity varies after the addition of target RNA into probe
HCV-RNA. A very distinct HRS intensity change has been observed after hybridization
even at the concentration of 100 pico-molar probe ss-RNA. The HRS intensity changes only
7% when they added the target RNA with one base-pair mismatch with respect to probe
DNA (as shown in Figure 42).

Since the ds-RNA cannot uncoil sufficiently like ss-RNA to expose its bases toward the gold
nanoparticles, repulsion between the charged phosphate backbone of ds-RNA and negatively
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charged ions from the gold nanoparticles surface dominates the electrostatic interaction,
which does not allow ds-RNA to adsorb onto gold nanoparticles. As soon as the ds-RNA
separated from gold nanoparticle, a second effect, aggregation of gold nanoparticle has been
observed as evidenced by TEM image (Figure 43), which has been further confirmed by
colorimetric studies (Figure 43). This is due to the screening effect of the salt, which
minimizes electrostatic repulsion between the oligonucleotide-modified particles, allowing
more hybridization events to take place, leading to more linked particles and hence larger
damping of the surface plasmon absorption of Au nanoparticle surfaces.

After hybridization, the HRS intensity change can be due to several factors and these are as
follows. (1) Since after hybridization, aggregation takes place, nanoparticles lose the center
of symmetry and as a result, one can expect significant amount of electric-dipole
contribution to the HRS intensity. (2) The second contribution is multipolar contribution like
electric-quadrupole contribution. This contribution is very important when aggregation
occurs due to the addition of complementary DNA/RNA. Since after aggregation, the size of
the particle is no longer negligible compared to the wavelength, one cannot neglect
multipolar contribution, as we and others reported before 67,75. As a result, after
aggregation one can expect very high multipolar contribution. 3) When target RNA with
complementary sequence is added to the probe RNA, a clear colorimetric change is
observed due to the aggregation. As a result, absorption spectrum shifted 150 nm far, as
shown in Figure 43 C. Now this new absorption band can influence the HRS intensity very
highly due to single photon resonance. According to the two-state model, 142

(20)

where ω is the fundamental energy of the incident light, μeg is the transition dipole moment
and ωeg is the transition energy between the ground state |g> and the charge-excited state |
e>, Δμeg is the difference in dipole moment between |e> and |g> states. Since ωeg ∝ 1/λmax,
β should change tremendously upon the addition of complementary DNA/RNA and as a
result, the two-photon scattering intensity should change tremendously with the addition of
complementary RNA/DNA. (4) Since size increases tremendously with aggregation, the
HRS intensity should increase with the increase in particle size. Several authors have shown
47,59,75,174–175 that this nonlinear optical assay will have several advantages and these
are: a) one can detect RNA sequence with only metal nanoparticle labeling.; b) it can be two
orders of magnitude more sensitive than the usual colorimetric technique; c) single base-pair
mismatches are easily detected.

Zhang et. al. 174 reported nonlinear optical scattering based a potential immunoassay
technique for antigen detection using antibody-modified gold nanoparticles (as shown in
Figure 44).

Their experimental results show that the HRS signals from the IgG-coated gold
nanoparticles greatly increased when the antigen was added due to gold nanoparticle
aggregation. When they added human IgG into the goat-anti-human IgG–gold nanoparticles
solution, HRS intensity increases tremendously (as shown in Figure 45). It is due to the fact
that in the presence of human IgG, IgG–gold nanoparticles undergo aggregations due to
antigen-antibody interaction. Their experimental results clearly show that when the
concentration of the antigen is 10 µg/ml, the HRS intensity shows a measurable variation,
while in the colorimetric assay, the extinction scale changed little until the antigen
concentration is 100 µg/ml (as shown in Figure 45). Their result also demonstrated that the
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HRS signal of the nonlinear optical effect would be more sensitive than the colorimetric
signal of the linear optical phenomenon in detecting the aggregation states of the nanogold
particles. Therefore, the HRS system could be a potentially sensitive method to determine
the antigen in aqueous samples on the basis of the aggregation interaction between antigen–
gold bioconjugate and antigen.

Singh et. al. 63 demonstrated a fast and highly sensitive assay for Escherichia coli bacteria
detection using antibody-conjugated gold nanorod based two-photon scattering technique.
They have shown that when anti E. coli antibody-conjugated nanorods were mixed with
various concentrations of Escherichia coli O157:H7 bacterium, two-photon scattering
intensity increases by about 40 times. This detection is based on the fact that 1) anti E. coli

antibody-conjugated nanorods can readily and specifically identify Escherichia coli

O157:H7 bacterium, through antibody–antigen recognition (as shown in Figure 46) and 2)
when anti E. coli antibody-conjugated nanorods (as shown in Figure 46) were mixed with
various concentrations of Escherichia coli O157:H7 bacterium, two-photon scattering
intensity increases by about 40 times.

This increment is due to the fact that since E. coli bacteria is more than an order of
magnitude larger in size (1–3 micro meter (µm)) than the anti E. coli antibody-conjugated
gold nanorods, in the presence of E. coli bacteria, several gold nanorods conjugate with one
E. coli bacteria. As a result, anti E. coli antibody-conjugated gold nanorods undergo
aggregation (as shown in Figure 46D). Due to the aggregation, a new broad band appears
around 200 nm far from their longitudinal plasmon absorption band and color change takes
place (as shown in Figure 46C). This bioassay is rapid, takes less than 15 min from
bacterium binding to detection and analysis, convenient, and highly selective. Their
experimental results clearly show that E. coli bacteria can be detected quickly and accurately
without any amplification or enrichment in 50 cfu/mL level with excellent discrimination
against any other bacteria. Their results point out that our antibody-conjugated gold nanorod
based two-photon scattering assay can provide a quantitative measurement of E. coli

bacteria concentration.

Antoine et. al. 175 demonstrated that HRS technique is capable to probe the interaction
between bovine serum albumin coated gold nanoparticles and StreptAvidin. In their
experiments, the aggregation of the biotinylated BSA coated gold particles was induced by
introduction of small amounts of StreptAvidin. This increase in intensity is attributed to the
aggregation of the gold nanoparticles through the binding of biotin and StreptAvidin. The
HRS intensity was corrected to remove photoluminescence contribution and the absorbance
by biotinylated BSA coated gold nanoparticles. Figure 47 shows how the HRS intensity
varies as a function of the StreptAvidin concentration. Their experimental evidence indicates
that like absorbance, the HRS intensity is able to detect the aggregation of the gold
nanoparticles. They have demonstrated that HRS intensity increases, even at the
concentration of 2 ng/µl of StreptAvidin.

Neely et. al. 59 have demonstrated fast and highly sensitive monoclonal anti-tau antibody
(tau-mab) coated gold nanoparticle based two-photon scattering assay for the selective
detection of Alzheimer's tau protein in 1 pg/mL level. This two-photon scattering approach
for the detection of selective AD biomarker is based on the fact that, the monoclonal anti-tau
antibody conjugated gold nanoparticles can readily and specifically identify Tau protein,
through antibody–antigen interaction and recognition (as shown in Figure 48). For a Tau
protein, there are many surface antigens available for specific recognition with monoclonal
anti-tau antibody-conjugated nanoparticles. Therefore, in the presence of Tau protein,
several nanoparticles can bind to each protein, thereby producing nanoparticle aggregates
(as shown in Figure 48).
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As a result, a colorimetric change has been observed from red to bluish color (as shown in
Figure 49) and a new broad band appears around 150 nm far from their plasmon absorption
band, as shown in Figure 49B. They have demonstrated that the detection limit of this assay
is about two orders of magnitude lower than cut-off values (195 pg/mL) for tau protein in
cerebrospinal fluid (CSF). Their experimental results points out that when anti-tau antibody
coated gold nanoparticle were mixed with 20 pg/ml concentrations of tau protein, two-
photon scattering intensity increases by about 16 times. Interestingly, their experimental data
with serum albumin (BSA) protein as well as IgG protein with anti-tau-antibody conjugated
gold nanoparticles clearly demonstrated that our TPRS assay is highly sensitive to Tau
protein and it can distinguish from BSA, which is one of the most abundant protein
components in CSF.

7.3 Application in Chemical Sensing

Kim et. al. 46 reported that appropriately functionalized gold nanoparticles based HRS
studies can be used for sensing of ion contaminants in water via an ion-chelation-induced
aggregation process. The ion-driven aggregation elicits enhanced HRS response from the
nanoparticles.

Their results show (Figure 50) the colorimetric response to Pb2+ of a 2.4 nM suspension of
functionalized Au particles in water containing 1.0% poly(vinyl alcohol) (PVA) as a
stabilizer. As shown in Figure 50, the red-to-blue color change can be reversed by the
addition of EDTA, a good Pb2+ extracting agent. Similar responses were obtained with
Hg2+- and Cd2+-containing solutions, but not from Zn2+, and it is due to the much lower
affinity of simple carboxylic acids for aqueous zinc. They attributed the response in Figure
51 to reversible aggregation induced by MUA coordination of Pb2+. Their interpretation was
also supported by TEM measurements indicating aggregate formation of Au-MUA colloid
containing lead.

They have also examined the ability of HRS to report on heavy-metal ion contamination and
their result clearly shows that the HRS detection limit is much higher than that of linear
spectroscopy. Figure 51 demonstrated the response of a 2.4 nM Au–MUA particle
suspension to the sequential addition of Pb2+ followed by EDTA. Notably, an increase in
HRS intensity was readily evident with the addition of as little as 25 µM Pb2+, a
concentration too low to yield a visible color change. Darbha et. al. 71 demonstrated that
NLO properties of MPA-HCys-PDCA modified gold nanoparticles can be used for rapid,
easy and reliable screening of Hg(II) ions in aqueous solution, with high detection limit (5
ppb) and selectivity over competing analytes. To detect Hg(II) ion selectively, they modified
the surface of the gold nanoparticle with mercaptopropionic acid (MPA) and homocystine
(bound to the gold nanoparticle surface through Au-S bond) and added a chelating ligand
2,6-pyridinedicarboxylic acid (PDCA), to the solution.

To understand how the HRS intensity changes with the addition of different concentrations
of Hg ions, they have also performed absorption and TEM studies before and after the
addition of mercury ions of different concentrations. Their experimental results clearly show
the shift in the plasmon band energy to longer wavelength (about 150–200 nm, as shown in
Figure 52) after the addition of Hg (II) ions to MPA-gold-nanoparticle-PDCA solution,
which indicated strong aggregation of gold nanoparticles (as shown in Figure 53).

Their experimental result clearly shows excellent selectivity over alkali, alkaline earth (Li+,
Na+, K+, Mg2+, Ca2+) and transition heavy metal ions (Pb2+, Pb+, Mn2+, Fe2+, Cu2+, Ni2+,
Zn2+, Cd2+). Figure 54A shows the colorimetric response and Figure 54B shows the HRS

Ray Page 25

Chem Rev. Author manuscript; available in PMC 2011 September 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



response in the presence of various environmentally relevant metal ions. Their concentration
dependent studies clearly demonstrated that, the HRS intensity is highly sensitive to the
concentration of Hg(II) ions and after the concentration of 40 ppm Hg(II) ions, the HRS
intensity remains unchanged. Linear correlation was shown between the HRS intensity and
concentration of Hg(II) ions over the range of 5 ppb–100 ppb. The environmental protection
agency (EPA) standard for the maximum allowable level of Hg(II) in drinking water is 2
ppb., which is same orders of magnitude as their HRS assay detection limit.

7.4 Prospect of TPS Based Sensor

In this review, we have summarized how the combination of non-linear photonics discipline
with biology is very promising for future biomolecular manipulations and applications such
as labeling and detection. Although still in its early stages with only a handful of
successfully demonstrated cases, the continued development of such nanomaterial based
TPS probes is increasingly important for advancing this exciting and rapidly changing
research field. We believe that the performance of TPS biosensor assay will continue to
evolve and that advanced TPS sensor platforms combined with novel biospecific surfaces
will benefit numerous important sectors such as medical diagnostics, environmental
monitoring, food safety and security. We envision, in the 5–10 year time frame, that
increased collaboration between practitioners in the fields of biology, medicine,
nanoscience, and nanotechnology will yield new fundamental insights into biological
systems.

Though, in this review, we have discussed mainly the merits of nanostructure based TPS
assay for biological and chemical diagnosis, in this section, we will compare the merits of
nanostructure-based TPS assays with that of other nano and conventional assays that have
been developed. As shown in Table 1, the detection limit of real-time polymerase chain
reaction (RT-PCR) is better than most of the nanostructured based assays for DNA/RNA
sensing. But PCR has significant drawbacks including complexity, sensitivity to
contamination and major challenges with respect to multiplexing. Many researchers believe
that these limitations as some of the biggest challenges for moving nucleic-acid-based
detection to point-of-care settings in doctor's office as well as bioterrorism defense. Metal
nanoparticles can be conjugated with biomolecular targeting or chemical toxin recognition
ligands very easily for achieving molecular specificity. Nanomaterials are attractive probe
candidates because of their small size and correspondingly large surface-to-volume ratio.
Since nanoparticles can be of the same size as the biomolecules attached to them, it may
provide minimum disturbance to chemical and biological processes and benefit from
decreased diffusion. The sizes, shapes and compositions of metal nanoparticles can be
systematically varied to produce materials with specific absorption and light-scattering
properties, which makes these materials ideal for multiplexed analyte detection.
Additionally, techniques for surface modification and patterning have advanced and as a
result, generation of nanoscale arrays of biomacromolecules and small molecules on
surfaces are highly visible. PCR also relies on fluorophore labeling. Problem of
photobleaching of fluorescent dyes as biological labels and stains has been common over the
last few decades. On the other hand, nanostructure based TPS assays uses metal nanoparticle
labeling. Unlike dyes, metal nanoparticles are photostable and do not undergo
photobleaching, allowing higher light excitation energies and longer probing times. For
nanomaterials based TPS assays to compete in the area of nucleic-acid detection, they may
have to increase detection limit to make a compelling case with PCR.

Now enzyme-linked immunosorbent assay (ELISA) for bacteria and protein detection offers
significantly less detection limit than the nanostructure based TPS and other assays, as
shown in Table 1. So, the current protein detection methods only allow detection after
protein levels reach critical threshold concentrations. At these concentrations, the cancer or
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Alzheimer disease is often significantly advanced. As a result, more sensitive methods that
allow for early detection of protein markers could be highly useful for physician treatment
of various cancers and other diseases. This will increase patient survival rates, where we
believe that nanostructure based TPS assay can play an important role.

On the other hand, in case of chemical toxin detection, nanostructural based TPS assay
promises better detection limit than the conventional inductively coupled plasma (ICP)
technqiue as well as conventional fluorescence based technique (shown in Table 1). Due to
surface plasmon enhancement, optical cross-sections of metal nanoparticles (10–100 nm) are
at least 5–7 orders of magnitude larger than those of dye molecules. As a result, each metal
nanoparticle can be considered as an optical probe equivalent to up to a million dye
molecules, which provides a huge margin for enhancing the probing detection limit. Also
metal nanoparticles can be conjugated with small molecule or biomolecular targeting or
recognition ligands very easily for achieving molecular specificity. TPS assay using HRS
technique is fairly simple, and in fact, this technique is more accurate when the molecules do
not absorb or emit near the fundamental or the second harmonic wavelengths. The choice of
the wavelength of measurement in HRS experiments is flexible. Any light source with
sufficient power available in the laboratory can be used. Assay equipment consists of three
main parts, a laser source, a light path, and a detector (photomultiplier tube), so it is easy to
set up and is simple to use.

Due to the surface plasmon band, nanoparticles provide outstanding optical properties that
can be used with a variety of techniques for labeling, imaging, sensing and diagnostics.
Plasmonic-based biological and chemical sensing technologies are being successfully
applied and commercialized. In this section, now different nanostructure based optical and
electrochemical techniques including colorimetric, surface plasmon resonance (SPR),
surface enhanced Resonance Raman (SRES), nanoparticle based fluorescence energy
transfer (NSET) and nanoparticle based electrochemical assay have been compared in the
context of chemical and biological toxins detection. As we have shown in Table 1, detection
limits of nanoparticle label techniques such as SPR, HRS, electrochemical enhancement are
almost similar orders of magnitude and also they are several orders of magnitude more
sensitive than nanoparticle based colorimetric assays. There as several advantages of using
nanoparterial based TPS assays over nanomaterial based colorimetric assays and these are as
follows.

1. The relative contribution of scattering increases rapidly with increase in the
nanostructure volume. 80-nm gold nanoparticle offers scattering several orders of
magnitude larger than the typical absorption. Such highly enhanced cross-sections
offer sensitive and highly contrasted imaging. As we discussed before, several
articles demonstrated that NLO based assay can be three orders of magnitude more
sensitive than the usual colorimetric technique.

2. HRS signal change is quite high even from monomer to the aggregates containing
as few as three nanoparticles. In contrast, substantive changes in the linear
spectroscopic response appear to require aggregation of as many as a few hundred
to a few thousand nanoparticles. As a result, the onset of HRS enhancement can be
observed much before any visible color change occurs.

On the other hand, though SERS and NSET are highly promising technologies to detect
biological and chemical analytes at very low concentrations, problem of photobleaching of
Raman and fluorescent dyes as biological labels and stains has been common over the last
few decades. Nanoparticle labeling, which is necessary for TPS assay, is more universal and
robust. Unlike dyes, metal nanoparticles are photostable and do not undergo photobleaching,
allowing higher light excitation energies and longer probing times. Also, a big challenge in
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SERS technique is that huge signals can be obtained only in ideal conditions, which can be
difficult to obtain reproducibly and quantitatively in media such as biological fluids.

Though there are several advantages of using TPS based assays instead of conventional
assays, there still remains a number of challenges related to the biological and chemical
sensing which have been discussed here. It is quite hard to precisely control the number of
functional molecules on the surface of nanoparticles. As a result, we need to develop better
strategies for uniform surface modification as well as reproducible functionalization. Other
important problem is that the properties of nanomaterials synthesized by different research
groups often vary because of the lack of commonly accepted synthetic protocols. Minor
variations of the reaction parameters have led to the situation in which samples prepared by
different research groups are different from one another. We need to have a list of
experimental conditions and characterization techniques, sufficient for quantitative
reproducibility of properties for every important type of nanomaterials. Also, TPS technique
requires sophisticated and expensive lasers, optical components, and detectors. As a result,
miniaturized systems that completely integrate various processes for specific biomolecular
and chemical detection are needed to be highly achievable. Then only TPS will be qualified
for point-of-care or in-field testing. Similarly, advancement in theoretical studies of
interfaces would be of great value and will probably need to grow rapidly as new and
challenging experimental results are reported. Technology advances in laser and detection
apparatus will improve the detection limit of these nonlinear measurements and it may be
possible to investigate phenomena and systems that are presently beyond our reach. As a
result, development of new programs will be invaluable in improved modeling of the data
from interfacial experiments.

Continued optimization of different parameters is necessary to determine the applicability of
these assays in point-of-care settings. The ability of an assay for chemical and biological
sensing in complex environments with high background and competing targets requires
exquisite selectivity and sensitivity, which often adds complexity and affects ultimate assay
performance. In parallel, and for each study, toxicity and side effects need to be thoroughly
examined as a function of nanoparticle size, shape, and surface coating. Toxicity concerns
need to be addressed in a serious and systematic way. Therefore an understanding of
biological response, and environmental remediation is necessary. Future advances will
require continued innovations by chemists in close collaboration with experts in medical and
biological fields. Further challenges in this emerging field include mimicking other aspects
of biology in making biomaterials. For example, materials made in biology have highly
ordered hierarchy structures. In addition, biological systems respond to the chemical stimuli
not only passively but also progressively in such a way to change the environment. For
example, an enzyme expression is turned on in response to the presence of a substrate to
digest the substrate. It would be desirable to have nanomaterials made to possess similar
properties such that the materials can be used not only for sensing but also for autonomous
repair and renewal. No matter what the methods are to meet these challenges, biology will
always remain the biggest inspiration.

8. Summary and Outlook

In conclusion, in this review, an overview of the emergence of second order NLO
nanomaterials for the development of nanomaterial based optical technology and how the
NLO properties of nanomaterials vary with different sizes, symmetry as well as shape, are
highlighted. Advances have been made during the last 10 years in the design of
nanomaterials of different sizes and shapes for NLO, which provide useful examples to
illustrate the new features of the NLO response in comparison to the more thoroughly
investigated donor-acceptor based one dimensional compounds. Several studies
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demonstrated that SHG from metal nanoparticles is typically attributed to electric dipole
excitations at their surfaces, but nonlinearities involving higher multipole effects, such as
magnetic dipole interactions, electric quadrupoles, etc., may also be significant due to strong
nanoscale gradients in the local material properties and fields. Strong polarization
dependence of the response can modify the relative strengths of the interfering terms,
thereby allowing electric-dipole and higher-multipole contributions to the overall SHG
response. With the advent of nanocrystal (NC) technology, several efforts are undergoing
for establishing a novel class of hybrid NLO materials. This review also summarizes recent
progress on the development of nanomaterials based NLO assay for monitoring chemical
processes and sensing biomolecules and toxic metals. Several publications demonstrated that
the NLO assay could be more sensitive than the colorimetric signal of the linear optical
phenomenon in detecting the biological and chemical species. Therefore, NLO assay has
capability to improve the analytical figures of merit, such as detection limits, sensitivity,
selectivity, and dynamic range, relative to the commercial systems. Hopefully, the current
review has demonstrated the power of nanomaterial based HRS assay to investigate the
chemical processes and for biological and chemical sensing with several advantages. It is
really impressive to see the development of a new research area within the time span of
about 10 years and their possible applications. The chemistry, physics and engineering of
these small particle interfaces, are likely to offer an abundance of surprises. An increase in
theoretical studies of interfaces would be of great value and will probably grow rapidly as
new and challenging experimental results are reported. Advances in computer technology
and the development and availability of new software and programs will be invaluable in
improved modeling of the data from interfacial experiments. I believe that technology
advances will improve the sensitivity of these nonlinear assay measurements and make it
possible to investigate phenomena and systems that are presently beyond our imagination.
May be, if we look back 10 years, we might ask what were the unexpected developments. I
leave this to the future reader to speculate.

Abbreviations

AD Alzheimer's disease

AFM atomic force microscopy

AuNP gold nanoparticle

BSA Bovine serum albumin

CL chemiluminescence

CSF cerebrospinal spinal fluid

CTAB cetyltrimethylammonium bromide

CT charge transfer

CV crystal violet

Cys cysteine

DNA deoxyribonucleic acid

c DNA complementary DNA

ds DNA double-stranded DNA

ss DNA single-stranded DNA

DSEH Dadap, Shan, Eisenthal, and Heinz

ECL electrochemiluminescence
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EDTA ethylene-diamine-tetra-acetic acid

EPA environmental protection agency

EFISHG electric field induced second-harmonic generation

ELISA enzyme-linked immunosorbent assay

EM electromagnetic

EO electro optic

ESA electrostatic self-assembly

FRET fluorescence resonance energy transfer

FTIR Fourier transform infrared

GW giga watt

HCV hepatitis C virus

HCys homocysteine

HIV human immunodeficiency virus

HRS hyper-Rayleigh scattering

HRTEM high-resolution transmission electron microscopy

ICP Inductively coupled plasma

ICT intermolecular charge transfer

IgG Immunoglobulin

KDP potassium dihydrogen phosphate

LB Langmuir–Blodgett

LED light-emitting diode

LOD limit of detection

LSPR localized surface plasmon resonance

MALDI-TOF matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry

MPA 3-mercaptopropanoic acid

MUA 11-mercaptoundecanoic acid

NC nanocrystal

NLO nonlinear optics

NP nanoparticle

NPP N-(4-nitrophenyl)–(s)-prolinol

NSET nanoparticle based surface energy transfer

PCR polymerase chain reaction

PDCA 2,6-pyridinedicarboxylic acid

PR photorefractive

PSS poly(styrenesulfonate)
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PVC poly(vinyl chloride)

PVK poly N-vinylcarbazole

PVNPAK poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl

QCM quartz crystal microbalance

QD quantum dot

RNA ribonucleic acid

dsRNA double-stranded RNA

ssRNA single-stranded RNA

RT-PCR real-time polymerase chain reaction

SERS surface-enhanced Raman scattering

SH second harmonic

SHG second-harmonic generation

SNP single-nucleotide polymorphism

SP surface plasmon

SPR surface plasmon resonance

SWNT single-walled carbon nanotube

TCP tritolyl phosphate

TEM transmission electron microscopy

THG third harmonic generation

TPA two-photon absorption

TPRS two-photon Rayleigh scattering

TPA two-photon scattering

UV ultraviolet

YAG Yttrium aluminium garnet

WGM whispering-gallery modes

WDM wavelength division multiplexing
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Figure 1.

Photograph showing gold nanoparticles of different sizes (reprinted with permission from

Ref. 75, Copyright 2009, Willey- VCH)
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Figure 2.

A) TEM image of gold nanorods of average aspect ratios (σ) ≈ 2.0, 2.8, 4.0 and 5.2, and B)
Extinction profile of Au nanorods with aspect ratios varying from 2.0 to 5.7. The strong long
wavelength band in the near-infrared region (λLPR = 600–950 nm) is due to the longitudinal
oscillation of the conduction band electrons. The short wavelength peak (λ ≈ 520 nm) is
from the nanorods' transverse plasmon mode (reprinted with permission from Ref. 81,

Copyright 2008, Willey- VCH).
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Figure 3.

A) Photographic images, B1–B3) TEM pictures of silver nanoprisms of different sizes (30
nm, 60 nm and 120 nm edge length) (reprinted with permission from Ref. 157, Copyright

2009, Elsivier).
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Figure 4.

Power dependence of hyper-Rayleigh scattering, I(2ω), vs. incident intensity squared, I2(ω),
for various concentrations of Au: (·) 2.1 × 1017cm−3; (○) 8.4 × 1016cm−3; (▼) 4.2 ×
1016cm−3; (▼) 2.1 × 1016cm−3; (▪) 8.4 × 1015cm−3; (□) 4.2 × 1015cm−3; (♦) water. Inset
shows results of rotating a polarizer in front of the detector (reprinted with permission

from Ref. 43, Copyright 1998, American Chemical Society).
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Figure 5.

DSEH angular distribution for three choices of the induced moments at 2ω. (a) Pure dipole
emission, (b) pure quadrupole emission, and (c) equal contributions of dipole and
quadrupole emission (reprinted with permission from Ref. 49, Copyright 2002,

American Institute of Physics).
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Figure 6.

Log–log plot of the hyperpolarizability magnitude against the particle diameter for silver (■)
and gold (●) particles at the harmonic wavelength of 390 and 400 nm, respectively
(reprinted with permission from Ref. 55, Copyright 2007, American Chemical Society).
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Figure 7.

Variation of <β> with particle size in water solvent (reprinted with permission from Ref.

75, Copyright 2009, Willey- VCH)
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Figure 8.

Polar plot of the HRS intensity as a function of the incoming fundamental beam polarization
angle: (filled circles) experimental points and (solid) fit to the experimental data points using
theoretical modeling for an aqueous suspension of (a) 50 nm diameter and (b) 100 nm
diameter and c) 150 nm diameter gold particles (reprinted with permission from Ref. 57,

Copyright 2006, American Institute of Physics).
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Figure 9.

Polar plot of the HRS intensity as a function of the incoming fundamental beam polarization
angle: (filled circles) experimental points and (solid) theoretical fit to the experimental data
for aqueous suspensions of (a) 40 nm, (b) 60 nm, and (c) 80 nm diameter silver particles for
a harmonic wavelength of 390 nm vertically polarized (reprinted with permission from

Ref. 55, Copyright 2007, American Chemical Society).
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Figure 10.

Simple schematic of the radiative properties of an electric dipole (p), magnetic dipole (m)
and quadrupole (Q) (reprinted with permission from Ref. 50, Copyright 2007, American

Physical Society).
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Figure 11.

Second-harmonic generation enhancement (circles) from arrays of gold nanorods with (a)
150 nm, (b) 170 nm, and (c) 190 nm long axis (the dashed line serves as a guide for the
eyes). The extinction spectrum (solid line) is shown for comparison. The irradiation time
and power used to record the second harmonic signal were equal to 5 s and 50 mW,
respectively. The incident polarization was set parallel to the nanoparticle long axis
(reprinted with permission from Ref. 156, Copyright 2007, American Institute of

Physics).
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Figure 12.

A) Polar plot of the HRS intensity as a function of the incoming fundamental beam
polarization angle (φ) from aqueous suspensions of 30 nm silver nanoparticle. Solid points
are the HRS experimental data and solid lines are the theoretical fit of the experimental data
point using Equation (18). B) Polar plot of the HRS intensity as a function of the incoming
fundamental beam polarization angle from aqueous suspensions of 80 nm silver nanoprism.
Solid points are the HRS experimental data and solid lines are the theoretical fit of the
experimental data point using Equation (19) (reprinted with permission from Ref. 157,

Copyright 2009, Elsevier).
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Figure 13.

A: log–log plot of β/partcile (at 1064 nm excitation wavelength) vs. particle size, r for
copper nanoparticles. The straight line is a linear fit to the data points. 13B) Size dependence
of the first hyperpolarizability of copper nanoparticles at 1907 nm (reprinted with

permission from Ref. 69, Copyright 2009, Elsevier).
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Figure 14.

Polar plots of the HRS intensities as a function of the incident light (1064 nm) polarization
angle ψ for the copper nanoparticles of diameters (a) 25 nm, (b) 55 nm and (c) 100 nm.
Open circles are the HRS intensities and the solid lines are fit to the data points (reprinted

with permission from Ref. 70, Copyright 2009, Elsevier).
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Figure 15.

Polar plots of the HRS intensities as a function of the incident light (738 nm) polarization
angle ψ for the Cu nanoparticles of diameters (a) 9 nm, (b) 25 nm (c) 55 nm and (d) 100 nm.
Open circles are the HRS intensities and the solid lines are fit to the data points (reprinted

with permission from Ref. 70, Copyright 2009, Elsevier).
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Figure 16.

Polar plots of the HRS intensities as a function of the incident light (1907 nm) polarization
angle ψ for the copper nanoparticles of diameters (a) 25 nm, (b) 55 nm and (c) 100 nm.
Solid circles are the HRS intensities and the solid lines are fit to the data points using
(reprinted with permission from Ref. 70, Copyright 2009, Elsevier).
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Figure 17.

Size dependence of the SHG response from CdSe nanocrystals. Frame A shows on a log
scale, the size dependence of βn, the value of the hyperpolarizibility per nanocrystal which
decreases as size is decreased to radii of 13.5 Å. For the smallest radii, this trend is reversed
and βn increases. Frame B depicts the size dependence of the normalized value of the
hyperpolarizibility per unit cell, which shows significant systematic enhancement for small
sizes. The primary contribution to the error bars is the uncertainty in the determination of
nanocrystal concentrations from the measured extinction coefficients as discussed in the
Experimental Section. A ±20% error in ε propagates to ±10% error in the values of βn
(reprinted with permission from Ref. 76, Copyright 2000, American Chemical Society).
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Figure 18.

First hyperpolarizability 〈β2〉1/2 as a function of the band-gap energy for the investigated
samples of colloidal suspensions of CdxZn1−xS nanocrystals. The points are experimental
data, whereas the solid line is the best-fitting curve (reprinted with permission from Ref.

170, Copyright 2002, American Chemical Society).
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Figure 19.

r113 as a function of modulating frequency measured using the Mach–Zehnder setup.
Symbols and solid line indicate the measured and fitted results, respectively (reprinted with

permission from Ref. 96, Copyright 2002, American Institute of Physics).
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Figure 20.

r333 as a function of modulating frequency measured using the Mach–Zehnder setup.
Symbols and solid line indicate the measured and fitted results, respectively (reprinted with

permission from Ref. 96, Copyright 2002, American Institute of Physics).
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Figure 21.

Fabrication and characterization of ZnO microcrystal heterojunction n-ZnO/p-GaN
ultraviolet LED. (A) Processing steps. (B) Forward bias emission revealing a six-pointed
star which is attributed to facet-to-facet (B inset, C inset) hexagonal propagation with
reduced coupling along the 0° and 60° directions. (D) Photoluminescence spectrum of the
ZnO, forward bias LED electroluminescence spectrum, and LED IV curve show near-band-
edge emission at 3.19 eV and absence of defect peaks in the wavelength range 450–650 nm.
1 µm scale bar in C; 10 µm scale bar in C inset (reprinted with permission from Ref. 171,

Copyright 2008, American Chemical Society).
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Figure 22.

SH images of the tetrapod with different orientations relative to the polarization of the
fundamental excitation. The polarization of the fundamental wave is kept vertical. The
tetrapod is rotated 30° clockwise per step from (a) to (d). The orientation of leg 1 starts to be
perpendicular to the fundamental wave’s polarization and ends parallel to that (reprinted

with permission from Ref. 172, Copyright 2009, American Chemical Society).
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Figure 23.

(a) (left) HRS counts for 0.5 s periods as a function of time recorded for a bare water cell.
(right) Histogram of the counts. (b) (left) HRS counts for 0.5 s periods as a function of time
recorded for a 31 fM concentration of 80 nm diameter silver nanoparticles. (right)
Histogram of the photon counts (reprinted with permission from Ref. 62, Copyright

2009, American Chemical Society).
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Figure 24.

(A) TEM image of Ag nanoparticles. (B) SHG map (false color image, with white showing
the most intense 415-nm signal) of the same area (λex = 830 nm, 3 mW average power, 40
GW/cm2 peak power). The bottom panel shows the zoomed-in images of the labeled
particles (reprinted with permission from Ref. 87, Copyright 2005, American Chemical

Society).
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Figure 25.

SH emission spectrum; (B) the excitation power dependence and fit (λex = 830 nm); (C)
excitation spectra of a Ag dimer (TEM image: D) and a nanorod (TEM image: E)
(reprinted with permission from Ref. 87, Copyright 2005, American Chemical Society).
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Figure 26.

(Color online) Polarization of the SH generated by nanoparticles with 150 nm major axis:
(a) experimental geometry (the FW light is polarized parallel to the particle major axis), (b)
topography, [(c) and (d)] SH emission map with a polarizer on detection parallel (c), and
perpendicular (d) to the particle major axis. Image size: 0.45×0.45 µm2 (reprinted with

permission from Ref. 158, Copyright 2008, American Institute of Physics).

Ray Page 64

Chem Rev. Author manuscript; available in PMC 2011 September 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 27.

Effect of NaCl addition upon Rayleigh and hyper-Rayleigh scattering signal intensities. The
scattering scales are arbitrary (reprinted with permission from Ref. 43, Copyright 1998,

American Chemical Society).
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Figure 28.

HRS intensity as a function of KNO3 concentration. (b) HRS intensity as a function of
pyridine concentration (reprinted with permission from Ref. 72, Copyright 2005,

American Chemical Society).
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Figure 29.

Schematic showing the construction of the nanoparticle substrates using the alternate
immersion of solutions of gold nanoparticles and a dithiol linker molecule (reprinted with

permission from Ref. 159, Copyright 2009, American Chemical Society).
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Figure 30.

SHG signal of NP-containing substrates obtained using 820 nm fundamental radiation with
200 fs pulse duration and 10 nJ pulse energy at a 5 MHz repetition rate. Data was collected
at a 45° incidence angle. p-Polarized radiation was used exclusively for the fundamental and
the second harmonic. The maximum SHG signal is observed for 13 NP depositions
(reprinted with permission from Ref. 159, Copyright 2009, American Chemical

Society).
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Figure 31.

(a): SEM image of the array with 10% random defects. (b) Ratio of the SHG and linear
optical reflectivity between the array without and with defects (reprinted with permission

from Ref. 160, Copyright 2008, American Institute of Physics).
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Figure 32.

AFM image of a sample prepared with a nanosphere diameter of 390 nm. The perpendicular
bisector, a, of the triangular base is 100 nm, and the interparticle distance is 294 nm. The
box depicts the centrosymmetry of particle pairs present in the sample. (B) A line scan of the
sample in (A) verifies the theoretical calculations with a = 104 nm and a height = 52 nm
(reprinted with permission from Ref. 68, Copyright 2005, American Chemical Society).
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Figure 33.

SHG enhancement for nanoparticle arrays (NP) divided by SHG from the Ag film (Film)
(connected points) measured for (a and b) p-in/p-out at 45° incidence and (c and d) p-in/p-
out at 10° incidence. The extinction spectrum (continuous curve) is shown for comparison.
All profiles are on different samples (reprinted with permission from Ref. 68, Copyright

2005, American Chemical Society).
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Figure 34.

Schematic illustration of hybrid polymer nanoassembly fabrication (reprinted with

permission from Ref. 30, Copyright 2009, American Chemical Society).
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Figure 35.

SH light intensity from a single-layer structure as a function of the separation distance
between Au NPs (30 nm) and a p(DDA/DR28) nanosheet (inset) (reprinted with

permission from Ref. 30, Copyright 2009, American Chemical Society).
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Figure 36.

SH intensity per square of input laser intensity in ZnO/PMMA nanocomposite films on its
ZnO NCs weight concentrations and ZnO equivalent thickness (reprinted with permission

from Ref. 30, Copyright 2009, American Chemical Society).
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Figure 37.

TEM images of PVNPAK-5-CdS (a) and PVNPAK-15-CdS (b) nanocomposites. The
chemically hybridized CdS-PVNPAK nanocomposite samples were prepared by the
sulfonation of PVNPAK, the preparation of the precursor PVNPAK(SO3)2Cd, and the in
situ formation of CdS-PVNPAK nanocomposite (reprinted with permission from Ref.

161, Copyright 2008, American Chemical Society).
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Figure 38.

HRS signals during the early stages of precipitation monitored for three different time
resolutions (circles, 100 ms; squares, 50 ms; crosses, 20 ms). Four different regions can be
discerned: (I) only one reactant, (II) nucleation, (III) growth, (IV) ripening. Note that the
absence of data points (100 ms resolution) between 11 and 13 s was due to drop-out of the
laser (reprinted with permission from Ref. 58, Copyright 2009, American Chemical

Society).
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Figure 39.

Kinetics of formation of TiO2 nanoparticles as monitored by HRS of 800 nm radiation
(reprinted with permission from Ref. 73, Copyright 2002, Elsevier).
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Figure 40.

Three-dimensional plot of time-dependent p-in/p-out SHG intensity transients at p-
GaAs(001) electrode in 0.1 M H2SO4 solution containing 1 mM of CuSO4. Azimuthal angle
was fixed at 90°. The electrode potential was stepped from +100 mV to each deposition
potential at t = 0 s (reprinted with permission from Ref. 173, Copyright 2005, American

Chemical Society).
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Figure 41.

Schematic representation of the DNA/RNA hybridization process. The circle represents
colloidal gold nanoparticles. Dots in SS-DNA/RNA represent one base pair mismatch
(reprinted with permission from Ref. 67, Copyright 2006, Willey -VCH).
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Figure 42.

Plot of HRS intensity change vs. target RNA {exact complementary of 75 base pair HCV
genome RNA and one base pair mismatch} concentration in pico molar level (reprinted

with permission from Ref. 75, Copyright 2009, Willey -VCH).
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Figure 43.

A) Photograph showing colorimetric change upon addition of 1) 40 nM complimentary
RNA, 2) 10 nM complementary RNA, 3) 3 nM complementary RNA, 4) 1 nM
complementary RNA, 5) 40 nM complementary RNA with one base pair mismatch and 6)
only gold nanoparticle. 43B) TEM image of gold nanoparticles after hybridization. 43C)
Absorption profile of RNA coated Au nanoparticles before and after hybridization with 10
nM concentration of probe RNA (reprinted with permission from Ref. 75, Copyright

2009, Willey -VCH).
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Figure 44.

Graphical scheme of gold–IgG conjugation and gold–IgG aggregation induced by antigen.
Gold nanoparticles were combined with IgG to form the conjugates; then the conjugates
were aggregated through antigen (reprinted with permission from Ref. 174, Copyright

2003, Elsevier).
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Figure 45.

HRS signals and extinction of gold–IgG conjugates vs. antigen concentration (reprinted

with permission from Ref. 174, Copyright 2003, Elsevier).
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Figure 46.

A) Plot demonstrating two-photon scattering intensity change (by 40 times) due to the
addition of E. coli bacteria to anti E. coli antibody conjugated gold nanorods. Two-photon
scattering intensity changes very little upon addition of salmonella bacteria. 46B)
Absorption profile variation of anti E. coli antibody conjugated Au nanorods due to the
addition of different concentrations of E. coli bacteria (102 to 107 colony forming units
(cfu) /ml). The strong long wavelength band in the near-infrared region (λLPR = 680 nm) is
due to the longitudinal oscillation of the conduction band electrons. The short wavelength
peak (λ ≈ 520 nm) is from the nanorods' transverse plasmon mode. New band appearing
around 950 nm, due to the addition of E. coli bacteria, demonstrates the aggregation of gold
nanorods. 46C) TEM image of E. coli bacteria before addition of nanorod. 46D) TEM image
after addition of 102 cfu/mL E. coli bacteria. 46E) TEM image demonstrating aggregation of
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gold nanorods after the addition of 8 × 104 cfu/mL E. coli bacteria. 46F) TEM image
demonstrating aggregation of gold nanorods after the addition of 107 cfu/mL E. coli bacteria
(reprinted with permission from Ref. 63, Copyright 2009, American Chemical Society).

Ray Page 85

Chem Rev. Author manuscript; available in PMC 2011 September 8.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 47.

HRS intensity and absorbance (at 395 nm) of BSA-biotin-Au40 nm conjugates as a function
of StreptAvidin concentration (reprinted with permission from Ref. 175, Copyright 2008,

Elsevier).
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Figure 48.

First two steps show schematic representation of the synthesis of monoclonal anti-tau
antibody-conjugated gold nanoparticles. Third step shows schematic representation of
monoclonal anti-tau antibody-conjugated gold nanoparticle based sensing of tau protein
(reprinted with permission from Ref. 59, Copyright 2009, American Chemical Society).
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Figure 49.

A) Photograph showing colorimetric change upon addition of 1) 200 ng/ml Tau, 2) 2.8 ng/
ml of Tau, 3) 3000 ng /ml BSA protein, 4) 800 mg/ml heme protein. 49B) Absorption
profile variation of monoclonal anti-tau antibody conjugated gold nanoparticle due to the
addition Tau protein (200 ng / ml Tau). The strong long wavelength band in the visible
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region (λPR = 520 nm) is due to the oscillation of the conduction band electrons. New band
appearing around 670 nm, due to the addition of Tau protein, demonstrates the aggregation
of gold nanoparticles. 49C) Plot demonstrating two-photon scattering intensity changes (by
16 times) due to the addition of Tau protein to anti-tau antibody conjugated gold
nanoparticle. Two-photon scattering intensity changes very little upon addition of BSA and
heme protein. 49D) TEM image after addition of 800 ng/ml BSA protein. 49E) TEM image
demonstrating aggregation of anti-tau antibody conjugated gold nanoparticle after the
addition of 350 pg/ml Tau (reprinted with permission from Ref. 59, Copyright 2009,

American Chemical Society).
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Figure 50.

Colorimetric responses (top panel) and corresponding spectral traces (bottom panel) from:
(a) Au–MUA, (b) Au–MUA/Pb2+, and (c) – (g) Au–MUA/Pb2+ and increasing amounts of
EDTA. Pb2+ concentration in sample (b) is 0.67 mM; EDTA concentrations in samples (c) –
(g) are 0.191, 0.284, 0.376, 0.467, and 0.556 mM (reprinted with permission from Ref.

46, Copyright 2001, American Chemical Society).
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Figure 51.

Effect of successive Pb2+ and EDTA additions upon HRS signal intensities. The scattering
scales are arbitary (reprinted with permission from Ref. 46, Copyright 2001, American

Chemical Society).
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Figure 52.

A) Absorption profile of modified gold nanoparticles before and after the addition of
different concentrations of Hg (II) ions, b) Photographic images of color of MPA-PDCA
modified gold nanoparticles (13 nM) in the presence of different concentrations of Hg (II)
ion, 1) 3 ppm, 2) 6 ppm, 3) 10 ppm, 4) 50 ppm (reprinted with permission from Ref. 71,

Copyright 2008, American Chemical Society).
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Figure 53.

TEM images of MPA-PDCA modified gold nanoparticle solution a) in the presence and
absence of Hg (II) ions (reprinted with permission from Ref. 71, Copyright 2008,

American Chemical Society).
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Figure 54.

A) Photographic images of color of MPA-HCys-PDCA modified gold nanoparticles in the
presence of different metal ions of 40 ppm concentration. 54B) HRS intensity change upon
the addition of 40 ppm of different metal ions to gold nanoparticle-MPA-HCys-PDCA
solution (5 nM) (reprinted with permission from Ref. 71, Copyright 2008, American

Chemical Society).
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Table 1

Comparison of detection limits of NLO based assays with that of different nanostructure based sensing assays
for biological and chemical toxins

Analyte Detection Technique Detection Limit References

Escherichia Coli SPR 105 CFU/ml 176

Fluorescence Probe
With Magnetic
Nanomaterial

101 CFU/ml 177

HRS 50 CFU/ml 63

SERS 103 CFU/ml 178

Electrochemical
Amplification

5×103 CFU/ml 179

Gold Nanoparticle
Based Piezoelectric

Sensor

2.67×102 CFU/ml 180

RT-PCR 103 CFU/ml 181

ELISA 104 CFU/ml 182

Tau Protein LSPR 10 pg/ml 183

HRS 1pg/ml 59

Silver Staining 650pg/ml 184

ELISA 15ng/ml 185

DNA/RNA Colorimetric 10nM 186

Electrochemical 15pM 187

SPR 10pM 188

HRS 60pM 75

SERS 1fM 189

RT-PCR 0.01 fM 190

Molecular Beacons 1.1 nM 191

Mercury Colorimetric 500nM 192

SPR 10nM 193

NSET 10pM 112

HRS 20nM 71

Electrochemical 75pM 194

SERS 1nM 195

ICPMS 10nM 196

Rhodamine Based
Fluorescence

2nM 197
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