
Nanotoxicology, February 2012; 6(1): 36–46

Size and surface charge of gold nanoparticles determine absorption
across intestinal barriers and accumulation in secondary target organs
after oral administration
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Abstract
It is of urgent need to identify the exact physico-chemical characteristics which allow maximum uptake and accumulation in
secondary target organs of nanoparticulate drug delivery systems after oral ingestion. We administered radiolabelled gold
nanoparticles in different sizes (1.4–200 nm) with negative surface charge and 2.8 nm nanoparticles with opposite surface
charges by intra-oesophageal instillation into healthy adult female rats. The quantitative amount of the particles in organs,
tissues and excrements was measured after 24 h by gamma-spectroscopy. The highest accumulation in secondary organs was
mostly found for 1.4 nm particles; the negatively charged particles were accumulated mostly more than positively charged
particles. Importantly, 18 nm particles show a higher accumulation in brain and heart compared to other sized particles. No
general rule accumulation can be made so far. Therefore, specialized drug delivery systems via the oral route have to be
individually designed, depending on the respective target organ.
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Introduction

Nanoparticulate drug delivery systems are very prom-
ising. An ideal nanodelivery system would allow high
drug load, maximum absorption and specific target-
ing of the drug combined with minimal side-effects.
Besides biodegradable nanoparticles (NPs) like solid
lipid NPs (Nassimi et al. 2009, 2010) or polymer-
based NPs (Bhardwaj et al. 2009), gold (Au) NPs are
also discussed. They can be easily and precisely syn-
thesized and exactly detected by transmission electron
microscopy (TEM) due to their high electron density.
In addition, several target molecules can get attached
to them (Sperling et al. 2008). Importantly, gold NPs
seem to exhibit a low cytotoxicity (Connor et al.
2005). However, it is important to note that cytotox-
icity is strongly dependent on the exact nature of the
gold NPs. Very small Au-cluster, e.g., fit into the

grooves of DNA-molecules (Schmid 2008), induce
oxidative stress (Pan et al. 2009), and thereby
cause cytotoxic effects. Nowadays, several gold
NP-based drugs are investigated and clinical trials
are under development.
Drugs can be administered via several pathways.

Thereby the intravenous injection, the inhalation as
well as the ingestion are the most prominent. From
these, the oral route is the most convenient route since
it is non-invasive and widely accepted by most of the
patients.
However, little is known about the uptake of NPs

across the gastro-intestinal membranes and the fol-
lowing accumulation in secondary target organs. In
particular it is known that general uptake of particles
into single cells may be dependent on size (Geiser
et al. 2005) and surface charge (He et al. 2010) of the
particles. It is generally believed that absorption
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across the intestinal membrane to the circulation is
somehow dependent on size (Florence et al. 1995;
Powell et al. 2010; Ruenraroengsak et al. 2010).
Although several studies exist describing the uptake
of NPs in in vitro systems, only a small number of
papers focus on the guidance of nanosystems to
biological targets which is an urgent need in pharma-
ceutical research (Florence 2007). As far as we know,
no 100% quantitative biodistribution study compar-
ing NPs with different sizes and surface charge after
oral ingestion exists.
Thereby, the aim of the present study was to

consider the physico-chemical characteristics which
determine the absorption across intestinal mem-
branes as well as the accumulation in secondary target
organs. Therefore, gold NPs as model particles for
drug delivery, in five different sizes (1.4, 5, 15, 80 and
200 nm) as well as opposite surface charges (positive
and negative) at equal size (2.8 nm) were applied by
intra-oesophageal instillation in healthy adult female
rats. A 100% biodistribution of the applied NPs was
investigated after 24 h. As far as we know, this is the
first study describing the precise quantitative absorp-
tion and accumulation of NPs in secondary target
organs after oral ingestion.

Materials and methods

Animal housing

Healthy, female Wistar-Kyoto rats (WKY/Kyo@Rj
rats, Janvier, Le Genest Saint Isle, France), 8–10
weeks of age (approx. 250 g body weight) were
housed in pairs in humidity and temperature-
controlled ventilated cages (VentiRack Bioscreen
TM, Biozone, Margate, UK) on a 12-h day/night
cycle. Rodent diet and water were provided ad libi-
tum. All experiments were conducted under German
federal guidelines for the use and care of laboratory
animals and were approved by the Regierung
von Oberbayern (Government of District of Upper
Bavaria, Approval No. 211-2531-94/04) and by the
Institutional Animal Care and Use Committee of
Helmholtz Center Munich.

NP preparation and characterization

Mono-sulfonated triphenylphosphine (TPPMS) sta-
bilized Gold NP (Table I) (1.4 and 18 nm) were
synthesized following known procedures (Pan et al.
2007). Citrate stabilized gold NPs (5, 80 and 200 nm)
were provided from Plano (Wetzlar, Germany).
Ligand exchange (citrate to TPPMS) was accom-
plished as described previously (Pan et al. 2007). T
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The fabrication of the 2.8 nm gold particles fol-
lowed the same procedure as described in Pan et al.
(2007) by performing ligand exchange of initially
1.4 nm Au particles stabilized with triphenylpho-
sphine (TPP). Via phase transfer from a dichloro-
methane phase to an aqueous phase TPP is replaced
by thioglycolic acid (TGA) for negatively charged
particles and by cysteamine (CA) for positively
charged particles, respectively. The driving force for
this exchange reaction is the higher binding affinity of
thiol groups to gold compared to phosphine groups
accompanied with the change in polarity, since the
particles pass from the dichloromethane phase into
the aqueous phase, when TPP is replaced by TGA or
CA, respectively. Hence, the solubility of the particles
in water gives immediate evidence that the ligand
exchange was successful.
As already been observed by others, the replace-

ment of TPP by thiol ligands is associated with a
growth of the gold core (Balasubramanian et al. 2005;
Kuo et al. 2010). This holds for our ligand exchange
procedure as well, where the introduction of thiol
ligands TGA and CA resulted in an increase of the
mean core particle size, which was determined by
TEM analyses to be 2.8 ± 0.4 nm for both ligands.
All Au NP were activated by neutron irradiation

(197Au (n, ) 198Au). For this, the NPs were activated
at a neutron flux of 1014 cm-2 s-1 at the research
reactor of the Helmholtz Center Berlin (formerly
Hahn-Meitner Institute), Berlin, Germany. Gold
amounts and irradiation times were adjusted to pro-
vide sufficient 198Au radioactivity for the subsequent
in vivo studies.
After neutron irradiation immediately prior to rat

application, the 1.4 nm and the 2.8 nm 198Au-NP
solution was filtered through a 10 cm column of
Celite to remove agglomerates; losses determined
by 198Au radioactivity accounted for about 10%.
All other 198Au-NP suspensions from 5–200 nm

were visually controlled for precipitates and their
correct pink translucent color of the colloidal suspen-
sion immediately prior to the application in rats; no
changes were found compared to the suspension prior
to irradiation.
Zeta-potential measurements were performed in

triplicate using appropriate working dilutions in a
Zetapalssystem (Brookhaven Instruments Corpora-
tion, Holtsville). Hydrodynamic diameters were mea-
sured in triplicate using appropriate working dilutions
in a Malvern HPPS5001 or a Malvern Zetasizer
(Malvern, Herrenberg, Germany).

NP administration and animal maintenance in
metabolic cages

NP suspensions were applied to non-fasted animals
by intra-oesophageal instillation. We applied low
concentrations of NP (1–27 mg) to avoid toxic reac-
tions in the gastro-intestinal tract (GIT) in order to
maintain a healthy intestinal barrier capacity. For
this purpose rats were anesthetized by inhalation of
5% isoflurane until muscular tonus relaxed. The
anesthetized rat was fixed with its incisors to a
rubber band on a board at an angle of 60� to
the lab bench. A flexible cannula (2.7 � 50 mm,
B. Braun, Melsungen, Germany) was placed into the
upper third of the oesophagus and the suspension
(50 ml) which contained NP (Table II) was gently
instilled. After administration of the NP suspen-
sions, rats were kept individually in metabolism
cages (Tecniplast, Hohenpreissenberg, Germany)
for separate collection of urine and feces.

Sample preparation

Twenty-four hours after administration, rats
were anesthetized (5% isoflurane inhalation) and

Table II. Characteristics of the applied gold NPs.

Core diameter [nm] Hydrodynamic diameter [nm]
Polydispersity
Index (PdI) Ligand (Charged surface group) z-potential [mV]

1.4 2.9* ND TPPMS (SO3
-) �20.6 ± 0.5

5 12.1# 0.19 TPPMS (SO3
-) �21.1 ± 1.4

18 21§ 0.10 TPPMS (SO3
-) �22.8 ± 3.1

80 85# 0.12 TPPMS (SO3
-) �22.3 ± 1.6

200 205# 0.05 TPPMS (SO3
-) �41.3 ± 4.5

2.8 ND ND TGA (COO-) Negative

2.8 ND ND CA (NH3
+) Positive

*As determined earlier (Tominaga et al. 1996); #DLS measurement using Malvern HPPS5001, Herrenberg, Germany; §DLS measurement
using Malvern Zetasizer, Herrenberg, Germany. TPPMS, triphenylphosphine m-monosulfonate; TGA, thioglycolic acid (mercaptoacetic
acid); CA, cysteamine (2-aminoethanethiol); ND, Not determined.
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euthanized by exsanguination via the abdominal
aorta. Approximately 70% of the total blood volume
was withdrawn. For radioanalysis, organs and tissues
listed below as well as total excretion and the entire
remaining carcass were collected.

. Organs: Lungs, liver, spleen, kidneys, brain, heart,
exsanguinated blood; gastro-intestinal tract:
oesophagus, stomach, small and large intestine;
Remainder: total remaining carcass beyond the
listed organs;

. Excretion: Total urine and feces, collected
separately.

. While dissecting, no organs were cut and all fluids
were cannulated where necessary in order to avoid
any cross contamination.

Radioanalysis

The 198Au radioactivity of all samples were mea-
sured by g-spectroscopy without any further
physico-chemical preparation in either a lead-
shielded 10 ml or a lead-shielded 1 l well type
NaI (Tl) scintillation detector. The count rates
were corrected for physical decay and background
radiation. Additionally, count rates were calibrated
to a 198Au reference source in order to correlate
198Au radioactivities to the numbers and masses of
the Au NPs. Samples yielding net counts (i.e., back-
ground-corrected counts) less than three standard
deviations of the totally measured counts in the
photo-peak region-of-interest of the 198Au gamma
spectrum were defined as below the detection limit.
For a complete balance of the administered 198Au
radioactivity within each rat 198Au radioactivities of
all samples were summed up for each rat and used as
a denominator for the calculation of the 198Au
percentage of each sample.

Blood correction

Blood contents of organs and tissues were calculated
according to the findings of Oeff and Konig (1955).
The NP content of the remaining blood volume of
each sample was estimated and subtracted from the
measured 198Au radioactivity to maintain the absolute
198Au activity of the tissue or organ. In the case of the
carcass, the difference between the estimated total
blood volume of the animal and the sum of all organ
blood contents and the collected blood sample was
calculated to be the blood volume of the carcass.

Calculations and statistical analysis

Four animals per group were used. Calculated values
are given as a percentage of the relevant integral 198Au
radioactivity (calculated for a reference date) of all
samples in each animal with the standard error of the
mean (SEM). All radioactivities were correlated with
the corresponding mass of gold NPs in each animal.
All calculated significances are based on a one-
way ANOVA test and a post hoc Tukey test. In the
case of an individual two group comparison, the
unpaired t-test was used; p £ 0.05 was accounted
for significance.

Results

Effect of surface charge of 2.8 nm gold NP

Absorption to the circulation. After 24 h, most of the
applied 2.8 nm gold NPs were found in the GIT as
well as in feces (Table III), indicating that intestinal
passage and excretion was not complete within 24 h.
For most of the particles, no absorption to the
circulation took place. However, surface charge is

Table III. NP content in the gastro-intestinal tract (GIT).

Particle retention [%]

Particle type GIT with internal feces Excreted feces GIT+feces

1.4 nm 17.2 ± 4.0 82.4 ± 4.0 99.63 ± 0.10

5 nm 74.1 ± 14.0 25.9 ± 14.0 99.95 ± 0.01

18 nm 29.7 ± 6.7 70.3 ± 6.7 99.88 ± 0.02

80 nm 22.3 ± 7.3 77.7 ± 7.3 99.97 ± 0.01

200 nm 34.9 ± 7.1 65.1 ± 7.1 99.99 ± 0.00

2.8 nm COO- 54.2 ± 4.5 45.4 ± 4.5 99.63 ± 0.02

2.8 nm NH3
+ 64.8 ± 11.8 35.0 ± 11.8 99.86 ± 0.02

NP content in the gastro-intestinal tract (including internal feces) and excreted feces after intra-oesophageal application in % of administered
particle-amount.
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important for the absorption across intestinal mem-
branes (Figure 1). Significantly more negatively
charged 2.8 nm (TGA ligand with carboxyl-groups)
NPs absorbed compared to positive 2.8 nm particles
(CA ligands with amine-groups). Therefore values of
0.37 ± 0.02% and 0.14 ± 0.02%, respectively, were
detected.

Distribution in the body and accumulation in secondary
target organs. 2.8 nm gold NPs were found in nearly
all organs, tissues, blood and urine. Most importantly,
in the liver, the urine, as well as the remainder, the
negatively charged particles accumulated to a higher
amount compared to the positively charged particles
(p < 0.05). The highest accumulation of particles was
found in the remaining carcass, where 0.21 ± 0.01%
of the applied negative particles and 0.06 ± 0.02%
of the applied positive particles were detected
(Figure 2A). Interestingly, no negative charged
2.8 nm particles could be found in the brain (detec-
tion limit 10-5 of administered dose). In contrast, a
low but detectable amount of 2.0 ± 0.7� 10-4 % of the
applied positively charged particles were detected in
the brain (Figure 2B).

Effect of particle size between 1.4 and 200 nm of
TPPMS-coated gold NP

Absorption to the circulation. The highest absorption
across intestinal membranes was found for the
smallest particles (Figure 3). Thereby after 24 h,
0.37 ± 0.10% of the applied 1.4 nm particles reached
the circulation. Importantly, a larger size of the
particles led to a lower amount of absorbed particles.
Therefore, 0.05 ± 0.01% of the 5 nm particles,
0.03 ± 0.01% of the 80 nm particles, as well as
0.01 ± 0.00% of the 200 nm particles reached the

circulation after 24 h. To our surprise, 0.12 ±
0.02% of the 18 nm particles reached the
circulation and hence more than the lower sized
5 nm particles.

Distribution in the body and accumulation in secondary
target organs. As for the absorption across the intes-
tinal membranes, the accumulation in blood, kid-
neys, parts of the reticulo-endothelial-system (liver
and spleen; RES), as well as the urine was mostly
dependent on the size of the particles. In blood
0.07 ± 0.02% of the applied 1.4 nm particles were
found 24 h after application (Figure 4A) which is a
significantly higher amount than for all larger sized
particles. Again, the 18 nm particles showed the
second highest retention with 0.02 ± 0.01% of the
applied NPs. The highest amount of accumulated
particles in the RES, the kidneys, as well as the urine
was detected for the 1.4 nm particles, too
(Figure 4B, C, D); i.e., 0.02 ± 0.01%, 0.05 ±
0.01%, as well as 0.06 ± 0.02% of the applied
particles, respectivelyly. Again, significantly lower
amounts of the larger sized particles were detected.
Surprisingly, the highest amount of accumulated
particles in the heart and the brain was measured
for the 18 nm particles – even more than for the
1.4 nm particles. In detail, 1.5 ± 0.4 � 10-3 % and
1.6 ± 0.4 � 10-3 % of the applied 18 nm particles
were detected in these organs (Figure 5). In the
brain, only 3.1 ± 1.9 � 10-4 % of the 1.4 nm
particles, 8.3 ± 8.3 � 10-5 % of the 5 nm particles,
and 1.3 ± 0.7 � 10-4 % of the 80 nm particles
accumulated (Figure 4B). These are significantly
lower amounts compared to the amount of accumu-
lated 18 nm particles. No 200 nm particles were
detected. The highest amount of the applied parti-
cles was detected in the remaining carcass, which
incorporates adipose tissue, bones, muscles and skin
(Figure 6). 0.17 ± 0.04% of the 1.4 nm particles,
0.02 ± 0.00% of the 5 nm particles, 0.08 ± 0.01% of
the 18 nm particles, 0.02 ± 0.01% of the 80 nm
particles, and 0.01 ± 0.00% of the 200 nm particles
were detected.

Effect of different NP-doses. To clarify, whether differ-
ent doses of administered NPs have any effect on
the absorption as well as accumulation in secondary
target organs, we administered in an additional
experiment beside the 1.0 mg of the 1.4 nm NPs
also 22.3 mg of the 1.4 nm NPs. Importantly, there
was no statistically significant difference in absorp-
tion or accumulation in single organs after compar-
ing the two different doses with t-test (data not
shown).
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Figure 1. NP content which reached the circulation after
intra-oesophageal application in % of administered particle-
amount. Given is the mean ± standard error of the mean of four
animals.
***p < 0.001.
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Discussion

In the present manuscript we investigated the absorp-
tion of NP across intestinal barriers as well as the
subsequent accumulation in secondary target organs.
Importantly, by using gamma-spectroscopy we were
able to measure all NPs in the entire organism and
total excretion of each rat as well as in each syringe
and cannula we used for the application. We detected
little but variable losses during the procedure of
application of the preparedNP suspensions and hence
we were able to accurately determine the adminis-
tered NP dose which really reached the animal. Fur-
thermore, we quantitatively determined the entire NP
dose in the entire animal by analyzing each organ and
tissue and total excretion in a 100% balance of the
biodistribution of the applied NP. Importantly, the
198Au sum of all samples after 24 h (corrected for
radioactive decay) was counterchecked to be the same
as the 198Au value of the initially prepared NP suspen-
sions minus the losses during application.

We showed that absorption of NPs across intestinal
membranes and the consequent accumulation in sec-
ondary organs is to a large part dependent on the size
and surface charge of the particles. Thereby, a smaller
size and a negative charge generally led to a higher
absorption and further accumulation. Importantly,
18 nm particles were absorbed across intestinal bar-
riers and accumulated in specific secondary organs to
a higher amount than smaller particles.

Absorption to the circulation

Several pathways are possible for absorption of par-
ticles across intestinal barriers and the most relevant
are the paracellular transport and the transcellular
transport. Paracellular transport is mainly limited
by tight junctions, which seal the cell-cell contacts.
However, it is known that small molecules can pass
the tight junctions and the pore-diameter which
allows penetration is variously quoted around
0.6–5 nm (Ruenraroengsak et al. 2010). In addition,
dendritic cells are able to open tight junctions and to
send processes to the lumen where they may take up
NPs (Rimoldi and Rescigno 2005). Transcytosis may
appear across enterocytes or M-cells. However, since
the endocytic activity of enterocytes is limited com-
pared to M-cells (des Rieux et al. 2006) we conclude,
that enterocytes probably do not play a big role in
absorption of NPs in particular, since it is also known
that NP diffusion across enterocytes only happens to a
small extent, too (Cartiera et al. 2009). Therefore, the
most prominent cells, which exhibit a high transcy-
totic activity, are the M-cells located in the Peyer’s
patches (Sass et al. 1990; Seifert and Sass 1990;
Gebert et al. 1996; Seifert et al. 1996). A third addi-
tional mechanism, which is between paracellular and
transcellular transport, is the transport of the particles
across degrading enterocytes. Hillyer and Albrecht
(2001) investigated a high occurence of gold NPs
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in degrading enterocytes – the lower the size of the
particles was, the higher was the occurrence of par-
ticles inside the cells. Since it is known, that approx-
imately 2 � 108 (mice) – 1011 (men) enterocytes are
shed per day in the small intestine (Potten and
Loeffler 1990), this is a reasonable pathway for our
gold NPs. However, since the aim of this study was
the investigation of the 100% quantitative biodistri-
bution in all secondary target organs and not the

detailed identification of potential uptake mechan-
isms, we have not proven this by electron microscopy.
We speculate that the 1.4 nm particles enter the
circulation by both mechanisms, transcelluar as well
as paracellular across tight junctions. Furthermore,
we hypothesize that the bigger sized particles (5–
200 nm) are too large for paracelluar mechanisms,
which may explain that the amount of transcloated
1.4 nm particles is at least three-fold higher than for
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the other sizes. The larger sized particles are probably
absorbed exclusively by transcytosis across M-cells.
Consistently, since it is generally believed that smaller
particles are absorbed to a higher degree than larger
particles (Jani et al. 1990; Hillyer and Albrecht 2001;
Sonavane et al. 2008; Ruenraroengsak et al. 2010),
this agrees with a large part of our results.
It is important to note that the different applied

mass doses are most probably not responsible for any
absorption or accumulation effect as described in this
manuscript. In addition to the 1.0 mg mass dose for
the 1.4 nm NPs, we administered an approximately
20 times higher dose of these particles. Thereby we
wanted to prove if this difference in mass has any
effect regarding the absorption and biodistribution of
the NPs. There was no statistically significant differ-
ence in absorption or accumulation in single organs
after comparing the two different doses with t-test.
Thereby we conclude that the different doses used in
this study are not responsible for any of the significant
differences as described in the present manuscript.
It is important to note that we used a short 2 min

isoflurane anesthesia during the gavage and it is known
that this may lead to a little decrease in gastrointestinal
function (Torjman et al. 2005). However, this report
described that after an approximately 6-min isoflurane
anesthesia, a significant impact is given after 120 min.
Since we used just a very short 2 min anesthesia and
since we investigated the biodistribution after a much
longer timepoint than120min,wedonot think that this
very short anesthesia has any big input on our results. In
addition, we used the same isoflurane anesthesia for
each group which would lead to a little intestinal
disturbance in each of the groups which thereby leads
to a comparability among the different NP-sizes and
charges.

To try to explain the higher absorption and accu-
mulation of the 18 nm gold particles compared to
even smaller particles, one has to consider possible
protein coatings. In the stomach, the acidic environ-
ment as well as the gastrointestinal enzymes are likely
to degrade the surface coatings of the NPs. In par-
ticular it is known that the triphenylphosphine layer
on the surface of the gold NPs used is easily degraded
in biological systems, a process, which is less likely
for the stronger binding thiols, such as TGA or GA
(Pan et al. 2009). Thereby, protein coating of the
blank surface of the NPs may occur (Lundqvist et al.
2008; Aggarwal et al. 2009; Dobrovolskaia et al.
2009; Lacerda et al. 2010), which would most prob-
ably happen in the less acidic small bowel lumen.
This so-called protein corona would hide the particle
inside and is thereby mostly responsible for interac-
tion with the intestinal barriers (Walczyk et al. 2010).
Transport of the protein across the intestinal epithe-
lium could thereby lead to incidental absorption of
the NPs inside, sufficient circulation time in blood
and accumulation in secondary organs resulting for
instance, in the enhanced accumulation of 18 nm
NPs in the brain (Trojan horse effect). Importantly,
protein adsorption on NPs is able to change the
structure and function of the protein or may prefer-
entially select some proteins over others, which is in
detail dependent on the curvature of the particle
surface (Lundqvist et al. 2004; Vertegel et al.
2004; Asuri et al. 2006; Shang et al. 2009). There-
fore we hypothesize that the specific curvature and
surface structure of the 18 nm particles alters the
stucture and function of single adsorbed proteins
or selects proteins with an increased epithelial
penetration probability compared to the other NPs
used. Thereby, a specific increased absorption
across intestinal membranes occurs. Importantly, a
study from our laboratory with exactly the same NPs,
injected into the tail vein of rats (Hirn et al. 2010),
showed no special modulation of organ accumula-
tions of the 18 nm NPs as seen in the present
manuscript. This supports our interpretation that
special intestinal incidents are responsible for these
results. This has to be further investigated in the
future.
Importantly, after protein binding, the physico-

chemical characteristics of the NP surface may
change. Therefore, due to the adsorbed proteins,
a positively-charged particle could obtain a negative
surface charge and vice versa. We hypothesize that
in our experiments the surface charge was altered
due to adsorbed proteins. Since it is known that
positively-charged particles exhibit a higher absorp-
tion in the gastro-intestinal-tract (GIT) (Jani et al.
1989; des Rieux et al. 2005; Hariharan et al. 2006),
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Figure 6. NP content which accumulated in the remaining carcass
after intra-oesophageal application in % of administered particle-
amount. Given is the mean ± standard error of the mean of four
animals.
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this would explain why initially negative-charged
particles absorb to a higher amount across the intes-
tinal membranes than initially positive-charged
particles.
A comparison of our investigated amount of

translocated NPs to the circulation with the litera-
ture is difficult. Several studies focused on the
uptake of particles in specific cells or regions of
the GIT (Hillery et al. 1994; Doyle-McCullough
et al. 2007; Smyth et al. 2008). However, only few
studies investigated the absorption beyond the intes-
tinal barriers in vivo and a comparable quantitative
100% biodistribution study of absorbed NPs is
missing at all. Hussain and Florence (1998) have
shown, for instance, that more than 10% of admin-
istered 500 nm latex particles could be found in the
circulaton of rats 24 h later. Even though no 100%
biodistribution analysis was conducted in a study
of Florence et al. (2000), less than 1% absorption
after 24 h can be estimated for 1.8 nm dendrimers,
since most of the important organs were investi-
gated. It is important to note that in our study the
amount of NPs taken up across the intestinal barriers
after 24 h could be even higher than investigated.
It is known that NPs may leave the circulation by
biliary clearance (Jani et al. 1996; Cho et al. 2009).
These particles would therefore re-enter the GIT
and thereby add to the amount of particles in
the GIT which did not translocate – although they
already entered the circulation. However, since the
biliary clearance of NPs is rather low (Semmler-
Behnke et al. 2008; Hirn et al. 2010), this should
not significantly alter the results of the present study.
In the present study, we found that the total absorp-

tion of NPs to the circulation is rather low during
24 h. Thereby, the application of these gold NPs as
carriers for drug delivery appears not immediately
promising as a significant amount of drugs would
hardly reach the circulation or special secondary
organs. However, besides designing the optimal par-
ticles with regard to size and surface charge, the
uptake of the drug-loaded particles can be further
modulated. One example is the co-administration of
other molecules or substances. These substances
could enhance absorption of the NPs. For example,
it is known that bile salts are able to enhance the oral
delivery of PLGA NPs (Samstein et al. 2008). How-
ever, it has to be tested if co-administration of sub-
stances influences the accumulation in secondary
organs, too.
In summary, we have shown that the highest

absorption across intestinal barriers were found for
1.4 nm gold particles, whereas for the 2.8 nm particles
the negative charge is favoured over positive charge.
However, size and surface charge are not responsible

alone, since 18 nm particles are absorbed more than
5 nm particles and they have the highest accumulation
in the brain which is probably due to selected protein
binding. Thereby we conclude that particulate drug
delivery systems have to be designed individually –

depending on the respective target organ.
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