
Research Article

Size and Topology Optimization for Trusses with Discrete
Design Variables by Improved Firefly Algorithm

Yue Wu,1 Qingpeng Li,1,2 Qingjie Hu,3,4 and Andrew Borgart2

1Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology,
Harbin 150090, China
2Faculty of Architecture and Built Environment, Del� University of Technology, Julianalaan 134, 2628 BL Del�, Netherlands
3Hangzhou Xiaoshan Urban Planning Institute, Hangzhou 311200, China
4Hangzhou Xiaoshan District Housing & Construction Bureau, Hangzhou 311200, China

Correspondence should be addressed to Qingpeng Li; hitssrclqp@gmail.com

Received 2 January 2017; Revised 14 March 2017; Accepted 23 April 2017; Published 4 June 2017

Academic Editor: Nantiwat Pholdee

Copyright © 2017 Yue Wu et al. �is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fire	y Algorithm (FA, for short) is inspired by the social behavior of 
re	ies and their phenomenon of bioluminescent
communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization
for trusses with discrete design variables. Firstly, development of structural topology optimization method and the basic principle
of standard FA are introduced in detail. �en, in order to apply the algorithm to optimization problems with discrete variables, the
initial positions of 
re	ies and the position updating formula are discretized. By embedding the random-weight and enhancing
the attractiveness, the performance of this algorithm is improved, and thus an Improved Fire	y Algorithm (IFA, for short) is
proposed. Furthermore, using size variables which are capable of including topology variables and size and topology optimization
for trusses with discrete variables is formulated based on the Ground Structure Approach. �e essential techniques of variable
elastic modulus technology and geometric construction analysis are applied in the structural analysis process. Subsequently, an
optimization method for the size and topological design of trusses based on the IFA is introduced. Finally, two numerical examples
are shown to verify the feasibility and e�ciency of the proposed method by comparing with di�erent deterministic methods.

1. Introduction

Topology optimization is a rapidly expanding 
eld of struc-
tural mechanics, which can result in greater savings than
mere cross-section or shape optimization. Owing to its
complexity, it is an intellectually challenging 
eld (Rozvany
and Olho� 2001 [1]). Generally, the objective of topology
optimization is to reduce the structural weight by adjusting
the design variables under a set of prede
ned constraints
imposed according to a selected code of design practice.
As for topology optimization problems, the cross-sectional
areas of structural members, shape parameters, and topology
parameters can be treated as design variables.�ese variables
can be divided into two categories as continuous variables
and discrete variables. Actually, in practical engineering
applications, discrete variables are used commonly as design

or optimization variables, cross-sectional areas of the struc-
tural members, for instance. �erefore, size and topology
optimization for trusses with discrete design variables is
discussed in this study.

�e 
rst paper on topology optimization was published
over a century ago by the versatileAustralian inventorMichell
(1904 [2]), who determined the 
rst truss solutions of least
weight and developed a general theory, which is a milestone
in the theoretical research of structural topology optimiza-
tion, for deriving them based on the work of Maxwell (1872
[3]). Several decades a�er that, many scholars joined in the

eld of optimization and a large number of papers were
published. However, during that time, the research mainly
focused on the development of optimization algorithms for
continuous topology optimization. Typically, Dorn (1964 [4])
proposed the Ground Structure Approach, in which 
rstly
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they formed the ground structure containing all (or almost
all) possible member connections among all nodes of the
structure for a bridge truss, and then they applied the
linear programming technique to optimize the structure
subject to stress constraints and single loading case. Based
on the Ground Structure Approach, Dobbs and Felton (1969
[5]) used a steepest descent-alternate mode algorithm to
minimize the weight of the ground structure of truss subject
to stress constraints and multiple loading cases. Kirsch and
Topping (1992 [6]) applied a very attractive two-stage design
approach, which evaluates an approximate solution at the 
rst
stage and modi
es it at the second stage to achieve the 
nal
optimum, to optimize topologically the trusses subject to the
constraints of stress and displacement.

Compared with topology optimization with continuous
variables, the researches on topology optimization of trusses
with discrete variables are much less. It is not easy to use
the mathematical optimization methods to solve topology
optimization problems with discrete variables. Lipson and
Gwin (1977 [7]) adopted member areas and joint coordinates
as design variables to minimize the cost of three-dimensional
indeterminate truss structures subject to multiple loading
conditions and design constraints, in which the constraints
include Euler buckling and speci
ed limits on member
stresses, member sizes, and joint displacements. In their
work, the design process was separated into two parts as
geometry modi
cations and suboptimization. �e complex
method is applied in the geometry modi
cations part, and
an analogous scaling procedure for displacement which
constrains with the stress ratio method is applied in the
suboptimization part. For each geometry change, discrete
member sizes were selected from a table of allowable values.
However, this method has the drawback of readily becoming
trapped at a local optimum (Sun et al. 1995 [8]).

Over the last decade, the emergence of a new class of
optimization methods, called metaheuristics, has marked
a great revolution in the optimization 
eld (Jarraya and
Bouri 2012 [9]). �ese methods, which include the simu-
lated annealing method, genetic algorithms, taboo search
method, the Ant Colony Algorithms, and particle swarm
optimization (PSO), are applicable to almost all types of
combinatorial optimization problems. �ey also have been
devised to topology optimization problems with discrete
variables and to overcome the drawbacks of mathematical
optimization methods. For example, Genetic Algorithm was
researched by Wang and Tai (2005 [10]), Zhou (2010 [11]),
Balamurugan et al. (2008 [12], 2011 [13]), Jain and Saxena
(2010 [14]), and Madeira et al. (2010 [15]). Besides, Arti
cial
Immune Algorithm was researched by Luh and Chueh (2004
[16]). Taboo Search method was researched by Bennage and
Dhingra (2005 [17]). Ant Colonies Algorithmwas researched
by Kaveh et al. (2008 [18]) and Luh and Lin (2009 [19])
and Particle Swarm Optimization (PSO) was researched by
Luh et al. (2011 [20]). Simulated Annealing method was
researched by Shim and Manoochehri (1997 [21]), while
Harmony Search was researched by Lee and Geem (2004
[22]). Di�erential Evolution schemes were researched by Wu
and Tseng (2010 [23]). Some of these metaheuristics like Ant
Colonies Algorithms and Particle Swarm Optimization may

actually converge to reasonable designs within an acceptable
number of iterations if combined with some kind of 
ltering
algorithms (Sigmund 2011 [24]).

�e Fire	y Algorithm (FA, for short) developed recently
by Yang (2009 [25]) is one of the newest nature-inspired
metaheuristic algorithms (2013 [26]). It has been veri
ed that
FA ismore accurate and e�cient thanGenetic Algorithm and
Particle Swarm Optimization algorithm when solving con-
tinuous optimization problems, combinatorial optimization
problems, constrained optimization problems,multiobjective
optimization problems, and dynamic and noisy optimization
problems. �e FA has been applied in almost all areas of
optimization, as well as in structural engineering practice
(Fister et al. 2013 [26]). Size and topology optimization of
trusses with discrete variables can be regarded as a kind
of combinatorial optimization problem, because its solution
space is disjoint and nonconvex, and feasible solution set is
discrete. �erefore, it can be solved by FA as well (Miguel et
al. 2013 [27]). However, the standard FA shows a slow rate of
convergence towards the optimum and needs a high number
of structural analyses.

�e aim of this paper is to propose a modi
ed Improved
Fire	y Algorithm (IFA, for short) based on the random-
weight and improved attractiveness to solve the size and
topology optimization of trusses with discrete design vari-
ables. In this method, the topology variables are included in
size variables, unstable topologies are disregarded as possible
solutions by the measure of geometric construction analysis,
and the singular optimal problem can be avoided by the
technique of variable elastic modulus. �e IFA can speed up
the convergence and then obtain a reasonable result, and the
e�ectiveness of the IFA is demonstrated through a selection
of benchmark examples.

�e remainder of this paper is structured as follows.
Section 2 describes the fundamentals of the FA and IFA. Sec-
tion 3 presents a general framework of the size and topology
optimization of trusses with discrete design variables. Addi-
tionally, two numerical examples are presented in Section 4.
Finally, the paper ends in Section 5 with main conclusions.

2. Firefly Algorithm (FA) and Improved
Firefly Algorithm (IFA)

2.1. Standard FA. �e FA is a recent nature-inspired meta-
heuristic algorithm developed by Yang (2009 [25]) which is
inspired by the 	ashing behavior of 
re	ies. �e FA has the
following three idealized assumptions.

(a) All 
re	ies are unisex, so that one 
re	y can be
attracted to other 
re	ies regardless of their sexes.

(b) Attractiveness is proportional to brightness; thus for
any two 	ashing 
re	ies, the less bright 
re	y will move
towards the brighter one. Both attractiveness and brightness
decrease as the distance between 
re	ies increases. If there
is no 
re	y brighter than a particular 
re	y, that 
re	y will
move randomly.

(c)�e brightness of a 
re	y is a�ected or determined by
the landscape of the objective function.

Based on these three assumptions, there are two essential
components of the FA, the variation of the light intensity
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and the formulation of the attractiveness. �e latter one is
assumed to be determined by the brightness of a 
re	y which
in turn is related to the objective function of the problem
being studied. Based on the idealized assumption (c), the
original light intensity of 
re	y �� is the objective function
value of the optimization problem:

�� = � (x�) , (1)

where �(x�) is the objective function of the problem being
studied, and x� is a vector which represents the position of
the 
re	y �.

As light intensity transmitting in nature, the light inten-
sity decreases as the distance from the light source increases.
�erefore, a monotonically decreasing function can express
the variation of light intensity. For a given medium with a

xed light absorption coe�cient�, the light intensity �� of 
re-
	y � seen by 
re	y � whose distance from 
re	y � is ��� can be

��� (���) = ���−��
2
�� , (2)

where the distance between 
re	ies � and � at x� and x� can
be de
ned as the Cartesian distance ��� = ‖x� − x�‖.

Inspired by (2), the attractiveness also decreases as the
distance from the light source increases. Since a 
re	y’s
attractiveness is proportional to the light intensity seen by
other 
re	ies, the variation of attractiveness should be a
monotonically decreasing function as well. �erefore, the
attractiveness of 
re	y � to attract 
re	y � whose distance
from 
re	y � is ��� can be de
ned by


�� (���) = 
0�−��
2
�� , (3)

where 
0 is the attractiveness; when � = 0 it is commonly set
to 1.

Based on these, the 
re	y � is attracted to another more
attractive (brighter) 
re	y � and its next iteration position is
determined by

x� (� + 1) = x� (�) + 
�� (���) (x� (�) − x� (�)) + ���, (4)

where � is the iteration number, �� is a random vector (e.g.,
the standard Gaussian random vector in which the mean
value is 0 and the standard deviation is 1), and � is the
randomization parameter. �e second term of (4) represents
the attraction between the 
re	ies and the third term is the
random movement. Equation (4) can be called the position
update formula.

A swarm of 
re	ies which contains n 
re	ies is generated
in the preliminary stage of optimization process. A 
re	y
whose position is a multidimensional vector containing
multiple design variables corresponds to a candidate solution
of optimization problem. Under the e�ect of attraction, new
candidate solutions are chosen in the process inwhich 
re	ies
update their position constantly.

2.2. Improved Fire�y Algorithm (IFA)

2.2.1. Discretization of FA. �e FA has proven to be an
e�ective metaheuristic search mechanism on continuous

optimization problems (Fister et al. 2013 [26]). Clearly, the
standard FA cannot be applied directly to deal with size
and topology optimization with discrete design variables
as their positions are real numbers. �ere are many dif-
ferent techniques proposed to solve this problem, such as
(1) utilizing a binary-coded technique to handle discrete
variables (Datta and Figueira 2011 [30], Datta and Figueira
2013 [31]), (2) replacing the continuous variables by the
closest discrete variables, (3) transforming the design variable
� to log10� and carrying out the algorithm operation on
log10�, (4) representing each discrete variable by an integer
in ascending order and performing the algorithm operation
on the integer (Ho-Huu et al. 2015 [32]), and (5) forming
a linking relationship between the integers and discrete
variables as in technique (4) and carrying out the algorithm
operation on the integer by a series of formulas (T. Y. Chen
and H. C. Chen 2009 [33]).

In this study, the discrete variables are arranged in
ascending order. Represent each discrete variable by an
integer in ascending order. Perform the algorithm operation
on the integer. In addition, the initial positions of 
re	ies and
the position updating formula are discretized to avoid the
appearance of noninteger.

(1) Discretization of Initial Positions of the Fire�ies. Initial
positions of the 
re	ies, which consist of continuous real
variables in standard FA, demand to be discretized so that
they can be composed of discrete integer variables. �e
modi
ed initial position of 
re	y � can be

x� = round ([��1, ��2, . . . , ���, . . . , ���]) , (5)

where ��� is the �th element of position of 
re	y �, � is the
number of optimization variables, and the product round
means integer conversion.

(2) Discretization of the Position Updating Formula. As the
second term and third term of position update formula may
be nonintegers, these terms need to be discretized to ensure
the updated positions of 
re	ies are integers. �e modi
ed
position updates formula can be

x� (� + 1) = x� (�) + round (
�� (���) (x� (�) − x� (�)))

+ round (���) .
(6)

�e above two parts of discretization can ensure that the ini-
tial and updated positions of each 
re	y are discrete integer
variables, and then the FA can be applied to optimization
problems with discrete design variables.

2.2.2. Improved Strategies of IFA. �ere is a drawback that
the standard FA algorithm performs in a slow speed and
with a high risk of falling in one of the poor local optima
when solving a large solution space optimization problem.
�e reason is obviously that the initial individuals widely
distributed in the large solution space lead to larger distances
among each individual and smaller attractiveness. As a result,
the moving distance of each individual is too small to 
nd
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better solutions. To make up the defect which is di�cult to
be solved by tuning the parameters of 
0 and �, the IFA is
proposed by adding the linear attractiveness and improving
the original attractiveness.

(1) Random-Weight. In order to enhance the global explo-
ration in the initial stage of the search process in which

re	ies move in a large space, the strategy of random-weight
is embedded in the proposed algorithm. �e strategy of
random-weight can be

� = random (�min, �max) , (7)

where �max and �min are upper and lower limit of random-
weight �, respectively, determined based on plenty of trial
calculation.

(2) Improved Attractiveness. To improve the local exploration
(the ability of escaping from poor local optima accurately
and fast), avoid excessive pace for location updating, and lead
to repeated oscillation in the last stage of the search process
where the algorithm depends mainly on the local search, the
attractiveness 
�� is improved as follows:


�� (���) = (
0 − 
) �−��
2
�� + 
, (8)

where 
 can be called basic attractiveness which is a constant
value and 
xed in 0.15 in this paper. 
0 and � are commonly

set to 1 and (0.5 ∗ � ∗ ∑�2� )−1/2, respectively, where � is the
length of position vector of 
re	y, and �� is the range of �th
element of 
re	y.

With the strategies of random-weight and improved
attractiveness, the improved position update formula is pro-
posed:

�⃗� (� + 1) = ��⃗� (�) + round (
�� (���) (�⃗� (�) − �⃗� (�)))

+ round (� ⃗��) � ≤ ��

�⃗� (� + 1) = �⃗� (�) + round (
�� (���) (�⃗� (�) − �⃗� (�)))

+ round (� ⃗��) � > ��,

(9)

where �� is the number of iteration step which embeds the
strategy of random-weight.

In this section, the IFA is presented by discretizing the
initial positions of 
re	ies and the position updating formula,
embedding the random-weight and improving the attractive-
ness. �is algorithm will be applied in the size and topology
optimization for trusses with discrete design variables with
an enhanced performance based on the Ground Structure
Approach. Some essential techniques will be introduced in
the next section.

3. Size and Topology Optimization for Trusses

�e Ground Structure Approach is followed in the proposed
methodology. �is scheme, initially proposed by Dorn et
al., starts with a universal truss containing all (or almost

all) possible member connections among all nodes in the
structure. A�erwards, the topology optimization procedure is
applied to discard the unnecessarymembers. Simultaneously,
the size optimization for the trusses is performed by changing
the cross-sectional area of the remaining structuralmembers.
�is optimization procedure seeks the minimum structural
weight of the truss subject to stress and displacement con-
straints.

3.1. Problem Formulation. With the Ground Structure
Approach, size and topology optimization can be
transformed into size optimization, while the vector

A = (�1, �2, . . . , ��)	 only includes size design variables.
When the value of size variables becomes zero, this member
is removed and topology of the structure changes. �us, the
optimization problem can be posed as


nd A = (�1, �2, . . . , ��)
	

min � =
�
∑
�=1
!�� �"�

st. ####$�,
 (A)
#### − $

max

� ≤ 0

(� = 1, . . . , %) , (" = 1, . . . , �)
####&�,
 (A)

#### − &
max

� ≤ 0 (' = 1, . . . , *)

� � ∈ / (� = 1, . . . , %) ,

(10)

where A is a candidate solution of the optimization problem,
� � is the cross-sectional area of the �th member, � is the
structural weight, !� is the speci
c weight of the �th member
material, "� is the length of �th member, $�,
 and $max

� are
the stress and the maximum allowable stress of the �th
member under "th load case, respectively, &�,
 and &max

� are the
displacement and maximum allowable displacement of the
node ' under "th load case, respectively, S = (/1, /2, . . . , /�)
is the discrete set of member cross-section, /1 → 0 means
that the member is deleted, and � is the number of elements
of S. It should be mentioned here that A, � �, and � are
equivalent to the location of 
re	y, the �th element of location
of 
re	y, and the light intensity of 
re	y, respectively, in
IFA. In the optimization process, the member’s cross-section
and structural topology are adjusted by changing the cross-
section number of each member which represents a cross-
section area arranged in the discrete set Swith the order from
small to large.

In this methodology, the penalty function method, one
of the most common constraint handling approaches, is
employed to handle the constraints. �e penalty function is
de
ned as follows:

penal (�) = � (�) [(1 + ])� − 1] ,

] =
�
∑
�=1

max {0, ####8̃� (�)
####} ,

8̃� (�) =
8� (�)
8�
− 1,

(11)
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where 8�(�) is the �th constraint of the optimization problem;
8� is the allowable value of �th constraint; ] denotes the sum

of the violated constraints; % is the number of constraints
in the problem; � is chosen considering the exploration and
the exploitation rates of the search space. In this study, the
parameter � starts from 1 and then linearly increases to 5.
�en, the objective function is de
ned as follows:

� = � + penal. (12)

3.2. Variable Elastic Modulus Technique. Researchers are apt
to be confrontedwith singular optimumswhen usingGround
StructureApproach to solve topology optimization problems.
�e singular optimums problems are caused by replacing
the section of canceled member with a smaller value for
the purpose of changing the topology. �ey may cause
great di�culties of member removal or insertion during the
process of optimization. Essentially, the measure using a
smaller value to replace the section of canceled member may
cause its stress (which is supposed to be zero) to be greater
than the allowable stress. �erefore, we can set the stress of
canceled member to zero to avoid the singular optimums
problems.

In the static analysis by Finite Element Method, the
displacement of structure can be obtained by

[:] {&} = {;} , (13)

where [:] is the structure global or total sti�ness matrix, {&}
is the vector of nodal displacement, and {;} is the vector of
global nodal force. �en, the internal forces of the structural
elements can be obtained by

{?}(�) = [:](�) [A] {&}(�) , (14)

where {?}(�), [:](�), [A], and {&}(�) are the vector of internal
forces, the sti�ness matrix, transfer matrix, and the vector of
nodal displacement of �th element, respectively.

From (13) and (14), there are two measures to set the
axial forces of canceled members to zero in the static analysis
with Finite Element Method. One is setting the displacement
of nodes connected to the canceled members to be zero,
and the other is setting the element sti�ness matrix of the
canceled members to null matrix. However, observing from
(13), the displacement of nodes connected to many members
including canceled ones is di�cult to be set to zero in practice;
this is because as long as retainedmembers are connected, the
displacement of nodes cannot be set to zero.�ereupon, from
(14), the measure of variable modulus of elasticity by which
the element sti�ness matrix of canceled member is set to null
matrix is the only feasible method to set the axial forces of
canceled members to zero and avoid the singular optimum
problems.

3.3. Geometric Construction Analysis. Because structural
topology is randomly generated by the IFA, the geometric
construction analysis is implemented as a necessary measure
to disregard the presence of unstable systems. �is measure
is applied by checking the positive de
niteness of the global
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Figure 1: Flow chart of size and topology optimization of trusses
with discrete variables based on the IFA.

sti�ness matrix of structure. A�er geometric construction
analysis, a static analysis is performed for each structure and a
large value is assigned to unstable systems to reduce unneces-
sary computation cost. And then, the penalty function whose
value has the function of re	ecting the degree of a structure in
violation of the constraint is applied to the stable structures.

It is notable that, in the process of geometric composi-
tion analysis, useless nodes will turn up without connected
member in the structure. �ere is no doubt that the useless
nodes should be deleted. In this paper, these nodes are treated
as 
xed hinge bearing to avoid causing the singular global
sti�ness matrix of the structure if these nodes were deleted.

3.4. Truss Size and Topology Optimization Process. A size and
topology optimization framework of trusses with discrete
variables based on the IFA is put forward in this section. Its
	ow chart is shown in Figure 1, where � means the iteration
number. And the optimization will stop when the iteration
number reaches the maximum number of iterations which is
set arti
cially.

4. Numerical Examples

To investigate the e�ectiveness of the proposed IFA for size
and topology optimization of trusses with discrete variables,
two benchmark examples are illustrated in this section. �e
results are compared with the solutions of FA or other algo-
rithms. In order to investigate the stability of the IFA which is
caused by the stochastic nature of the algorithm, each exam-
ple is run several times independently, and the average values
and variance are presented along with the optimal results.

For structural optimization problems, the stopping con-
dition should be set to have a relation with the search ability
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Table 1: Allowable stress for each member.

Group (1) (2) (3) (4) (5) (6) (7) (8)

$ −242.044 −79.941 −119.36 −242.044 −242.044 −46.619 −46.619 −76.437
$ 275.896 275.896 275.896 275.896 275.896 275.896 275.896 275.896

Table 2: Load cases of 25-bar spatial truss.

Case Node ;
/kN ;�/kN ;�/kN

1

1 44.5 44.5 −22.25
2 0 44.5 −22.25
3 2.225 0 0

6 2.225 0 0

2
1 0 89.0 −22.25
2 0 −89.0 −22.25

of the algorithm (like the convergence of the algorithm).�is
is because it is not easy to determine an adequate number
of maximum iterations if the reference solutions of problems
are not known. In Ho-Huu et al.’s (2016 [34], 2016 [35])
research, they 
nish the searching progress either when the
absolute value of deviation of the objective function of the
best individual and the whole population is less than or equal
to the previously assigned value of the tolerance or when
the maximum number of iterations is achieved. However, the
stopping condition is set to reach the maximum iteration in
this study. �is is because the required iteration using these
algorithms to solve the benchmark exampleswhich have been
studied by many scholars can be estimated and plenty of trial
calculation has been done.

4.1. 
e 25-Bar Spatial Truss Example. �e size and topology
optimization for a 25-bar spatial truss is examined as the

rst example. �e topology and nodal numbering of the
25-bar spatial truss structure is shown in Figure 2 (unit:
cm), and the form of the supports is 
xed hinge bearing.
25 bars are categorized into 8 groups using their symmetry:
(1) A1, (2) A2–A5, (3) A6–A9, (4) A10-A11, (5) A12-A13,
(6) A14–A17, (7) A18–A21, and (8) A22–A25. �e density

of the material is considered as 2.768 × 103 kg/m3 and

the modulus of elasticity is taken as 6.987 × 104MPa. �e
stress constraints vary for each group as shown in Table 1.
Maximumdisplacement limitation of 0.899 cm is imposed on
node 1 and node 2 in � and C directions. In this example, the
structure is subject to two load cases listed in Table 2. �e set
of discrete cross-sectional areas is {0.774, 1.355, 2.142, 3.348,
4.065, 4.632, 6.542, 7.742, 9.032, 10.839, 12.671, 14.581, 21.483,
34.839, 44.516, 52.903, 60.258, 65.226} cm2.�e parameters of
di�erent algorithms used in this example are listed in Table 3.
�is example is run 60 times independently.

�e best solution vectors, the corresponding weights, and
the required number of analyses obtained by the present and
some other algorithms for the size and topology optimization
of 25-bar spatial trusses are shown in Table 4.�e IFA ismore
e�cient than others for the reason that the weight of best

190.5
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Figure 2: �e 25-bar spatial truss structure.
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Figure 3: Best topology for the size and topology optimization of
the 25-bar spatial truss.

solution obtained by the IFA is the lightest, and the number
of required analyses by the IFA is the least.

Table 5 shows the statistical results of the optimum
solutions for the FA and IFA which include the minimum
weight (the best solution), the maximum weight (the worst
solution), the probability of the best solution, the average
weight, and the variance. Both the FA and IFA can 
nd
the best solution of 256.91 kg whose topology is shown in
Figure 3. However, the IFA has a better performance for the
reason that the IFA has a higher probability to 
nd the best
solution, and the maximum weight and the average weight
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Table 3: Parameters for the di�erent algorithm.

Algorithm � 
 � �
min

�
max

�� � �
FA 1.5 — 0.02 — — — 250 15

IFA 1.5 0.15 0.02 0.9 1.1 50 250 15

Table 4: Optimum solutions of the 25-bar spatial truss for the di�erent algorithms.

Element group

Optimal cross-sectional areas (cm2)

RDQA GATS
FA IFA

(Chai et al. 1999 [28]) (Luo 2006 [29])

(1) 0 0 0 0

(2) 12.671 10.839 10.839 10.839

(3) 21.483 21.483 21.483 21.483

(4) 0 0 0 0

(5) 0 0 0 0

(6) 6.452 7.742 6.452 6.452

(7) 14.581 12.671 12.671 12.671

(8) 14.581 14.581 14.581 14.581

Weight (kg) 275.0 262.97 256.91 256.91

Number of structural static analyses — 750 1245 570

Table 5: �e statistical results of the optimum solutions for 25-bar size and truss optimization problem.

Algorithm Minimum Maximum Probability of the best solution Average Variance

FA 256.91 kg 565.61 kg 93.3% 262.07 kg 1588.02

IFA 256.91 kg 256.91 kg 100% 256.91 kg 0
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100
255
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Figure 4: Convergence history of the average weight of the 60 times
for the size and topology optimization problem of the 25-bar spatial
truss.

obtained by the IFA are lighter than the FA. Besides, the
variance of the IFA is lower than the FA. �erefore, it is
further proved that the IFA is more stable.

�e convergence history of the average weight of the
60 times is shown in Figure 4. Comparison of the conver-
gence curves above provides some useful points about the

di�erences of the two algorithms. In the initial stage of the
search process in which the 
re	ies move in a larger solution
space, the IFA has a higher convergence rate than the FA. It
proves that the IFA performs an excellent global exploration
in that stage. In the last stage, the IFA performs a slighter
higher convergence rate to reach the 
nal result than FA. It
should be noted that the structure found by the IFA at any
iteration is much lighter than that found by the FA at the
same iteration. Above performances can be interpreted as the
improvement strategies improve the exploration capabilities
and convergence rate of the standard algorithm.

4.2.
e 72-Bar Spatial Truss Example. �e second example is
the size and topology optimization for a 72-bar spatial truss.
In order to investigate the function of improved attractiveness
in the search process of IFA for large solution space of the
size and topology optimization problem, the FA only improve
attractiveness (referred to as IAFA) and the FA only with
random-weight (referred to as RWFA) are applied in this
example.

�e topology and nodal numbering of the 72-bar spatial
truss structure are illustrated in Figure 5 (unit: cm), and the
form of the supports is 
xed hinge bearing. �e total 72
structural members of this spatial truss are categorized as 16
groups using symmetry: (1) A1–A4, (2) A5–A12, (3) A13–A16,
(4) A17-A18, (5) A19–A22, (6) A23–A30, (7) A31–A34, (8)
A35-A36, (9) A37–A40, (10) A41–A48, (11) A49–A52, (12)
A53-A54, (13) A55–A58, (14) A59–A66, (15) A67–A70, and
(16) A71-A72. �e density of the material is considered as
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Table 6: Load cases of 25-bar spatial truss.

Node
Case 1 Case 2

;
/kN ;�/kN ;�/kN ;
 ;� ;�/kN
(17) 22.25 22.25 −22.25 0.0 0.0 −22.25
(18) 0.0 0.0 0.0 0.0 0.0 −22.25
(19) 0.0 0.0 0.0 0.0 0.0 −22.25
(20) 0.0 0.0 0.0 0.0 0.0 −22.25

(1)

1

(2)

(3)(4)(5)
(6)

(8) (7)

(10)

(18)

(14)

(6)

(2)

(17)

(13)

(5)

(9)

(1) X

X

Y

Z

(304.8 cm)

(304.8 cm)

Typical story

(152.4 cm)

(152.4 cm)

(152.4 cm)

(152.4 cm)

(609.6 cm)

Element and node

numbering system

2

34

5
6 7

8

9

10

11

12

13

14
18

15

16

17

Figure 5: �e 72-bar spatial truss structure.

2767.990 kg/m3 and the modulus of elasticity is taken as
68,950MPa. �e members are subject to the stress limits
of ±172.375MPa. �e nodes are subject to the displacement
limits of ±0.635 cm. In this example, the structure is subject
to two load cases listed in Table 6.�e discrete cross-sectional
areas are displayed in Table 7. �e parameters of di�erent
algorithms used in this example are listed in Table 8. �is
example is run 100 times independently.

�e best solution vectors, the corresponding weights, and
the required number of analyses obtained by four di�erent
algorithms for the size and topology optimization of the
72-bar spatial truss are shown in Table 9. �e IFA is more
e�cient because the IFA obtains the best solution with the
least number of analyses. Moreover, Figure 6 illustrates two
typical topologies of the available solutions obtained by IFA.
It should be noted that the topology in Figure 6(a) achieves
the best weight. Figure 6(b) shows that the topology consists
of fewer members.

All solutions of the FA, IAFA, RWFA, and IFA are shown
in Figure 7, and Table 10 demonstrates the statistical results
of these solutions. It should be mentioned that an available
solution means the error between the obtained solution and

the best solution is less than 2.0 kg. Only RWFA and IFA
can 
nd the best solution of 167.04 kg which is meaningfully
lighter than that of the FA and IAFA. Moreover, all statistical
results of the IFA are better than other algorithms. It is proved
that the IFA has a remarkable performance in solving size
and topology optimization problem of trusses with discrete
variables in such a large search space. It should be noted that
the variances of IFA and RWFA which obtain the strategy of
random-weight are obviously reduced. It can be concluded
that the strategy of random-weight has the function to
enhance the stability and improve the accuracy. �is e�ect
can be re	ected intuitively in Figure 7.

�e convergence curves of the average weight for 100
times and the best solution are shown in Figures 8 and 9,
respectively. Comparison of the average convergence curves
above provides some useful information about the di�erences
of the two algorithms. In the initial stage of the search
process, the IFA has the highest convergence rate, followed
by RWFA, IAFA, and FA. �is explains that the strategy of
random-weight owns the superior global search ability and
the strategy of improved attractiveness can further increase
the global search ability of algorithm if it is combined with



Mathematical Problems in Engineering 9
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Figure 6: Best topology for the size and topology optimization of 72-bar spatial.
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Figure 7: All solutions for the size and topology optimization of 72-
bar spatial truss.

the strategy of random-weight. However, the solo strategy
of improved attractiveness only performs the limited search
ability for the large search space. In the last stage in which
the algorithm depends mainly on the local search, the IFA
performs a slighter higher convergence rate to reach the 
nal
result than RWFA. It indicates that the strategy of improved
attractiveness can enhance the local exploration.

Besides, the FA and IAFA converge to unavailable solu-
tions, which is the phenomenon of su�ering the premature
convergence problem.Despite the IAFAwith the solo strategy

FA
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RWFA
IFA
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Figure 8: Convergence history of the average weight for the size and
topology optimization of the 72-bar spatial truss.

of improved attractiveness which is supposed to gain a better
solution, the convergence curve shows that the convergence
of IAFA is worse than that of the FA. It indicates that the solo
strategy of improved attractiveness cannot improve the FA
and even leads to fall in an unavailable local optimal solution
much earlier.

As a whole, the strategies applied by the IFA have a
remarkable e�ect in improving the exploitation and explo-
ration capabilities, accuracy, convergence rate, and stability
of the algorithm.
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Table 7: �e available cross-section areas.

Number mm2

(1) 71.613

(2) 90.968

(3) 126.451

(4) 161.290

(5) 198.064

(6) 252.258

(7) 285.161

(8) 363.225

(9) 388.386

(10) 494.193

(11) 506.451

(12) 641.289

(13) 645.160

(14) 729.031

(15) 792.256

(16) 816.773

(17) 939.998

(18) 1008.385

(19) 1045.159

(20) 1161.288

(21) 1283.868

(22) 1374.191

(23) 1535.481

(24) 1690.319

(25) 1696.771

(26) 1858.061

(27) 1890.319

(28) 1993.544

(29) 2180.641

(30) 2238.705

(31) 2290.318

(32) 2341.931

(33) 2477.414

(34) 2496.769

(35) 2503.221

(36) 2696.769

(37) 2722.575

(38) 2896.768

(39) 2961.284

(40) 3096.768

(41) 3206.445

(42) 3303.219

(43) 3703.218

(44) 4658.055

(45) 5141.925

(46) 5503.215

(47) 5999.988

(48) 6999.986

(49) 7419.430

(50) 8709.660

(51) 8967.724

Table 7: Continued.

Number mm2

(52) 9161.272

(53) 9999.980

(54) 10322.560

(55) 10903.204

(56) 12129.008

(57) 12838.684

(58) 14193.520

(59) 14774.164

(60) 15806.420

(61) 17096.740

(62) 18064.480

(63) 19354.800

(64) 21612.860
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Figure 9: Convergence history of the best solution for the size and
topology optimization of the 72-bar spatial truss.

5. Conclusions

Based on the Fire	y Algorithm, an Improved Fire	y Algo-
rithm is proposed to conduct the size and topology optimiza-
tion for trusses with discrete design variables in this paper.
�e main conclusions are as follows:

(1) By embedding the random-weight and enhancing the
attractiveness, the performance of standard Fire	y
Algorithm is improved and thus the Improved Fire	y
Algorithm is proposed.

(2) Based on the Ground Structure Approach, size and
topology optimization for trusses with discrete design
variables is formulated using the single size variables
which are capable of including topology variables.
And with two essential techniques of variable elas-
tic modulus technology and geometric construction
analysis, an optimization method for the topological
design of trusses based on the Improved Fire	y
Algorithm is proposed.
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Table 8: Parameters for the di�erent algorithm.

Algorithm � 
 � �
min

�
max

�� � �
FA 1.5 — 0.01 — — — 500 35

IAFA 1.5 0.15 0.01 — — — 500 35

RWFA 1.5 — 0.01 0.8 1.2 200 500 35

IFA 1.5 0.15 0.01 0.8 1.2 200 500 35

Table 9: Optimum solutions of the 72-bar spatial truss for the di�erent algorithms.

Element group
Optimal cross-sectional areas (mm2)

FA IAFA RWFA IFA

(1) 2180.641 2180.641 1283.868 1283.868

(2) 729.031 252.258 363.225 363.225

(3) 729.031 0.000 0.000 0.000

(4) 729.031 0.000 0.000 0.000

(5) 494.193 792.256 792.256 792.256

(6) 161.290 285.161 285.161 285.161

(7) 729.031 0.000 0.000 0.000

(8) 729.031 0.000 0.000 0.000

(9) 729.031 729.031 363.225 363.225

(10) 198.064 285.161 363.225 363.225

(11) 0.000 729.031 0.000 0.000

(12) 729.031 729.031 71.613 71.613

(13) 71.613 90.968 126.451 126.451

(14) 729.031 363.225 363.225 363.225

(15) 729.031 729.031 285.161 285.161

(16) 729.031 161.290 363.225 363.225

Weight (kg) 197.80 220.84 167.04 167.04

Number of analyses 12635 14875 14280 9520

Table 10: �e statistical results of the optimum solutions for 72-bar size and truss optimization problem.

Algorithm Minimum Maximum Probability of available solution Average Variance

FA 197.80 kg 390.12 kg 0% 273.44 kg 1499.634

IAFA 220.84 kg 449.27 kg 0% 289.85 kg 1534.114

RWFA 167.04 kg 237.34 kg 76% 170.26 kg 72.128

IFA 167.04 kg 171.02 kg 95% 167.58 kg 0.507

(3) �e e�ectiveness of the IFA in size and topology
optimization for trusses with discrete variables is
demonstrated through the numerical examples of a
25-bar spatial truss and a 72-bar spatial truss. �e
solutions of these problems using IFA are compared
to those obtained using di�erent optimization algo-
rithms.�enumerical results reveal that the strategies
of random-weight and improved attractiveness have
a remarkable e�ect in improving the exploitation
and exploration capabilities, accuracy, convergence
rate, and stability of the algorithm. Last but not
least, the remarkable performance of IFA in solving
these problems also proves that IFA owns a stronger
robustness.
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