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Abstract

This paper finds strong evidence of time-variations in the joint distribution of returns on a stock

market portfolio and portfolios tracking size- and value effects. Mean returns, volatilities and corre-

lations between these equity portfolios are found to be driven by underlying regimes that introduce

short-run market timing opportunities for investors. The magnitude of the premia on the size and

value portfolios and their hedging properties are found to vary significantly across regimes. Regimes

are also found to have a large impact on the optimal asset allocation - especially under rebalancing -

and on investors’ welfare.

1. Introduction

Substantial empirical evidence links variations in the cross-section of stock returns to firm characteristics

such as market capitalization (e.g., Banz (1981), Keim (1983) Reinganum (1981), Fama and French

(1992)) and book-to-market values (e.g., Fama and French (1992, 1993), Davis, Fama, and French

(2000)). Cross-sectional variations associated with these characteristics are non-trivial by conventional

measures. Fama and French (1992) report that, over a recent sample, a portfolio comprising small firms

paid a return of 0.74 percent per annum in excess of the return on a portfolio composed of large firms.

Similarly, firms with a high book-to-market ratio outperformed firms with a low ratio by 1.35 percent

per annum. In neither case could such differences be explained by variations in CAPM betas.

Far less is known about the extent to which the joint distribution of returns on these equity portfolios

varies over time. This is clearly an important question. For a multiperiod investor the economic value of

investments in size and value portfolios is determined not only by their mean returns but also by their

volatilities and correlations with the market portfolio and by the extent to which these vary over time.

To address this question, we propose in this paper a new model for the joint distribution of returns on

the market portfolio and the size (SMB) and book-to-market (HML) portfolios proposed by Fama and

French (1993). We find evidence of four economic regimes that capture important time-variations in

mean returns, volatilities and return correlations. Two states capture outliers associated with periods

of high volatility and thus accommodate skews and fat tails in stock returns. The other two states are
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associated with shifts in the distribution of size and value returns. Regimes continue to be important

even if our model is extended to include the dividend yield as an additional state variable.

To quantify the economic significance of regimes in returns on US equity portfolios we consider their

importance from the perspective of a small investor’s optimal asset allocation. Optimal allocation to

size and value portfolios has received some attention in the existing literature. Brennan and Xia (2001)

solve the portfolio allocation problem of a long-term Bayesian investor assuming an asset menu similar to

ours. They study optimal stock holdings obtained under different priors over the size and value effects.

Their calculations suggest a substantial economic value of investments in the Fama French portfolios, on

the order of 5% per annum, although the certainty equivalent value depends on the investor’s coefficient

of risk aversion, prior beliefs and the extent of pricing errors in the underlying asset pricing model.

Pástor (2000) considers the single-period portfolio problem of a mean-variance investor. His calculations

suggest that the HML portfolio should be in much greater demand than the SMB portfolio and that even

investors with strong doubts about value effects should take substantial positions in the HML portfolio.

Here we focus instead on the presence of predictability linked to regimes underlying the joint distri-

bution of returns on the market, SMB and HML portfolios. The economic value of investment strategies

in the anomaly portfolios is of course related to the average size and value premium but further depends

on how much these vary across economic states. As pointed out by Brennan and Xia (2001, p. 906), an

important issue for a long-horizon investor is whether size and value effects, if genuine, can be expected

to persist in the future. By allowing these effects to vary across regimes we can address this important

question. Indeed we find strong evidence that optimal asset holdings vary significantly across regimes

and across short and long investment horizons as investors anticipate a shift out of the current state.

We study several aspects of the portfolio allocation problem, such as the importance of the rebalancing

frequency and the investment horizon. At long horizons we find that the size and value portfolios have

moderate weights in a buy-and-hold investor’s optimal allocation. This finding differs from previous

estimates of a more substantial role for the SMB and HML portfolios in the optimal long-run asset

allocation and is a reflection of the fat-tailed return distribution captured by the two high-volatility

states. At short horizons, we find a more significant role for these portfolios linked to the market timing

opportunities implied by the four-state model. By allowing for adjustments to portfolio weights following

changes in the underlying state probabilities, rebalancing enhances the weights on the size and value

portfolios in the optimal asset allocation.

We also study the hedging demand induced by regime switching and compare it to the hedging

demand under predictability from the dividend yield or under learning about the drift of the asset price

process. Consider the hedging demand for the market portfolio. Since shocks to the dividend yield

are negatively correlated with shocks to asset prices, the market portfolio provides a hedge against

shocks to future investment opportunities and the hedging demand for this portfolio is positive under

predictability from the dividend yield. In contrast, when investors learn about the mean return − as
assumed by Brennan and Xia (2001) − shocks to the investment opportunity set and shocks to returns
are positively correlated so the hedging demand for the market portfolio will be negative. Under regime

switching we see both positive and negative hedging demand depending on which state the market starts

from. The hedging demand is negative when the investor starts from regimes favorable to the market
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portfolio−and mean-reversion to less favorable investment opportunities is anticipated−but it is positive
when starting from bad states.

Consistent with recent findings by Barberis (2000) and Xia (2001), we find that parameter estimation

uncertainty has a large effect on optimal asset holdings. Nevertheless, regime shifts continue to have

a significant effect on the optimal asset allocation even after accounting for parameter uncertainty.

Furthermore, welfare cost calculations confirm the economic significance of regimes in the distribution of

returns on the market and Fama French portfolios even in the presence of uncertainty about parameter

values. Our estimates of the costs from ignoring regimes are substantial irrespective of whether we

include the dividend yield as an additional predictor variable.

Our paper is part of a growing literature that explores the asset allocation and utility cost impli-

cations of return predictability from the perspective of a multi-period, small investor who maximizes

expected utility. In an exercise involving a single risky stock market portfolio Kandel and Stambaugh

(1996) find that predictability can be small statistically yet still have a large effect on the optimal asset

allocation. Barberis (2000) extends their result to long horizons. Campbell and Viceira (1999) derive

closed-form expressions using log-linear approximations for a consumption and portfolio choice problem

with continuous rebalancing and infinite horizon. Outside the framework of allocations to pure equity

portfolios, Campbell and Viceira (2001, 2002) and Campbell Chan and Viceira (2003) have studied

strategic asset allocation and documented large effects of predictability on asset holdings and welfare

costs. Detemple, Garcia and Rindisbacher (2003) approach a wide class of portfolio choice problems in

continuous time, including strategic asset allocation. Building on the evidence that both interest rates

and the market price of risk(s) follow non-linear processes, they investigate the asset allocation implica-

tions of non-linear predictability. They show that findings obtained in linear models may be overturned

in the presence of non-linearities. Finally, to our knowledge the only other paper to study the effect on

asset allocation due to regime switching is Ang and Bekaert (2002), but their focus is on international

asset allocation and the home country bias.

The outline of the paper is as follows. Section 2 presents our multivariate regime switching model

for the joint distribution of returns on the market, size and book-to-market portfolios and its extensions

to include additional predictor variables. Section 3 presents empirical results while Section 4 sets up

the optimal asset allocation problem and Section 5 reports empirical asset allocation results. Section

6 provides utility cost calculations and also considers the impact of parameter estimation uncertainty.

Section 7 concludes.

2. Models for Regimes in the Joint Return Process

A vast literature in finance has reported evidence of predictability in stock market returns, mostly in the

context of linear, constant-coefficient models, c.f. Campbell and Shiller (1988), Fama and French (1988,

1989), Ferson and Harvey (1991), Goetzmann and Jorion (1993) and Lettau and Ludvigsson (2001). More

recently, some papers have found evidence of regimes in the distribution of returns on individual stock

portfolios or pairs of these (e.g., Ang and Bekaert (2002), Perez-Quiros and Timmermann (2000), Turner,

Startz and Nelson (1989), Whitelaw (2001)). Following this literature we model the joint distribution of

a vector of n stock returns, rt = (r1t, r2t, ..., rnt)
0 as a multivariate regime switching process driven by a
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common discrete state variable, St, that takes integer values between 1 and k :

rt = µst +

pX
j=1

Aj,strt−j + εt. (1)

Here µst = (µ1st , ..., µnst)
0 is a vector of mean returns in state st,Aj,st is an n×nmatrix of autoregressive

coefficients at lag j in state st and εt = (ε1t, ..., εnt)
0 ∼ N(0,Σst) is the vector of return innovations that

are assumed to be joint normally distributed with zero mean and state-specific covariance matrix Σst .

Innovations to returns are thus drawn from a Gaussian mixture distribution that is known to provide a

flexible approximation to a wide class of distributions, c.f. Timmermann (2000).1

Moves between states are assumed to be governed by the k×k transition probability matrix, P, with

generic element pji defined as

Pr(st = i|st−1 = j) = pji, i, j = 1, .., k. (2)

Each regime is hence the realization of a first-order Markov chain. Our estimates allow St to be unob-

served and treat it as a latent variable.

The model (1) - (2) nests several popular models from the literature as special cases. In the case

of a single state, k = 1, we obtain a linear vector autoregression (VAR) with predictable mean returns

provided that there is at least one lag for which Aj 6= 0. Absent significant autoregressive terms,

the discrete-time equivalent of the Gaussian model adopted by Brennan and Xia (2001) is obtained.

Allowing for regime shifts, the model is also consistent with observations of instability in US equity

portfolio returns, c.f. Pastor (2000) and Davis et. al. (2000).

Even in the absence of autoregressive terms, (1) - (2) imply time-varying investment opportunities.

For example, the conditional mean of asset returns is an average of the vector of mean returns, µst ,

weighted by the filtered state probabilities (Pr(st = 1|Ft), ..,Pr(st = k|Ft))0, conditional on information
available at time t, Ft. Since these state probabilities vary over time, the expected return will also

change. Similar comments apply to higher order moments of the return distribution.

Our model can be extended to incorporate an l × 1 vector of predictor variables, zt−1, comprising
variables such as the dividend yield or term and default premia that have been used in recent studies

on predictability of stock returns (e.g. Aı̈t-Sahalia and Brandt (2001) and Campbell, Chan and Viceira

(2003)). Define the (l + n)× 1 vector of state variables yt = (r0t z0t)0. Then (1) is readily extended to

yt =

Ã
µst
µzst

!
+

pX
j=1

A∗j,styt−j +

Ã
εt

εzt

!
, (3)

where µzst = (µz1st , ..., µzlst)
0 is the intercept vector for zt in state st, {A∗j,st}

p
j=1 are now (n+ l)× (n+ l)

matrices of autoregressive coefficients in state st and (ε
0
t ε

0
zt)
0 ∼ N(0,Σ∗st), where Σ

∗
st is an (n+ l×n+ l)

covariance matrix. This model allows for predictability in returns through the lagged values of zt.

It embeds a variety of single-state VAR models that have been considered in recent studies including

1Recent papers have emphasized the importance of adopting flexible modeling strategies (capable of capturing time-

varying correlations, skewness and kurtosis) applied to the joint distribution of asset returns for optimal portfolio choices,

see e.g. Manganelli (2004) and Patton (2004).
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Barberis (2000), Campbell and Viceira (1999, 2001) and Kandel and Stambaugh (1996). This model is

complicated by the joint presence of linear and non-linear predictability patterns, the latter arising due

to time-variations in the filtered state probabilities.

3. Regimes in market, size and book-to-market returns

This section investigates the presence of regimes in the joint distribution of returns on the market, SMB

and HML portfolios.

3.1. The Data

We study monthly, continuously compunded returns on US stock portfolios over the sample 1927:12 -

2001:12, a total of 889 observations. The basis for our analysis is the returns on six equity portfolios

formed on the intersection of two size portfolios and three book-to-market portfolios. All portfolios are

value-weighted with weights that are revised at the end of June every year and held constant for the

following twelve months.2 We also use data on the value-weighted stock index and the dividend yield.

To simplify the asset allocation problem, we follow Fama and French (1993) and consider two port-

folios tracking size and book-to-market ratio effects. The first portfolio (SMB) is long in small firms and

short in big firms, controlling for the book-to-market ratio:

rSMB
t =

1

3
(Small Value + Small Neutral + Small Growth)− 1

3
(Big Value + Big Neutral + Big Growth).

The second portfolio (HML) is long in firms with a high book-to-market ratio and short in firms with a

low book-to-market ratio, controlling for size:

rHML
t =

1

2
(Small Value + Big Value)− 1

2
(Small Growth + Big Growth).

Both SMB and HML are zero-investment portfolios. It is therefore appropriate to consider their simple

returns as opposed to returns in excess of a T-bill rate. Conversely, we follow common practice and

consider returns on the market portfolio in excess of the T-bill rate.

Table 1 reports summary statistics for the two spread portfolios and the market index. The mean

excess return on the market portfolio is 8% per annum. The volatility of this portfolio is 19% per annum

and it also has a thick-tailed, largely symmetric distribution. The HML portfolio earns a mean return

of 5% per annum and, at 13% per annum, is less volatile than the market portfolio but with strongly

skewed returns. The SMB portfolio earns a mean return of 3% per annum and has lower volatility and

more right-skew than the HML portfolio. Correlations between returns on the three equity portfolios

vary between 0.08 and 0.33.3

2The portfolios for July of year t to June of year t+1 include all NYSE, AMEX and NASDAQ stocks with market equity

data available for December of year t− 1 and June of year t, and book equity data for year t− 1. The book-to-market ratio
for June of year t is the book equity for the last fiscal year ending in t − 1 divided by the market equity in December of
year t− 1. Further details on data construction are available from Ken French’s web site at Dartmouth.

3These properties are similar to those reported by Davis et al. (2000) for a comparable sample 1929-1997. The correlation

between HML and SMB is slightly higher with our data.
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3.2. Regimes in the individual portfolio returns

Before undertaking the analysis of the joint distribution of returns on the three stock portfolios, it is

informative to consider the presence of regimes in returns on the individual portfolios, rMKT
t , rSMB

t and

rHML
t . For each portfolio we first tested the null of a single state against the alternative of multiple states

and found that the single state model was soundly rejected at the 1% significance level.4 A two-state

model was found to be appropriate for the market portfolio while three-state models were selected for

the HML and SMB portfolios.

Figure 1 plots the smoothed state probabilities obtained from the models fitted to the individual

portfolio returns. A high degree of coherence between the state probabilities indicates the presence

of common factors and hence suggests that we only need a small number of states to model the joint

return distribution. Indeed, the figure suggests similarities between the state variable underlying the

SMB and HML returns.5 A very different picture emerges for the market portfolio, however, whose state

probabilities are nearly uncorrelated with those identified for the SMB and HML portfolios. Economic

factors responsible for shifts in returns on the overall market thus appear to differ from those driving

shifts in returns on the SMB and HML portfolios.

3.3. Regimes in the joint return process

No previous work seems to have attempted to identify regimes in the joint process of returns on the

market, size and value portfolios (rMKT
t rSMB

t rHML
t )0. Economic theory offers little guidance on how

to select the number of regimes and lags. To address these issues and to make sure that there is robust

evidence of regimes in the first place we conduct a thorough specification analysis.

More specifically, we consider a range of values for the number of regimes consistent with our analysis

of returns on the individual portfolios (k = 1, 2, 3, 4, and 6). This covers very parsimonious as well

as heavily parameterized models. We use a consistent model selection criterion, namely the Schwarz

information criterion (SIC), to select the basic design for the regime switching model such as the number

of states and lags. We then use likelihood ratio tests to impose mean return and covariance restrictions

and see whether a more parsimonious model is consistent with the data.

Table 2 reports the outcome of this analysis. For each model we show the value of the SIC in addition

to the outcome of a test for a single state against the presence of multiple regimes. The single state

model is universally strongly rejected. Looking across all models, the preferred specification has four

states but no autoregressive terms. The absence of autoregressive terms is perhaps unsurprising given

the lack of serial correlation in the individual return series. That four states are required to capture the

dynamics of the joint returns on the market and Fama French portfolios is consistent with our finding

of three (largely common) states for the HML and SMB portfolios and two (uncorrelated) states for the

market portfolio. This suggests that the appropriate number of regimes for the joint process of stock

returns will likely exceed three and possibly be as high as 2× 3 = 6 regimes.
4Tests are performed using the statistic proposed by Davies (1977). This accounts for the fact that under the null of a

single state (k = 1) some of the regime switching parameters are not identified.
5Correlation estimates for the smoothed state probabilities of matched pairs of regimes for the HML and SMB returns

are all positive and large (0.33, 0.47 and 0.52).
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To assist in the economic interpretation of the four-state model, Table 3 presents parameter estimates

while Figure 2 plots the associated state probabilities.6 Regime 1 is a moderately persistent bear state

whose average duration is seven months. In this state the mean excess return on the market is significantly

negative at -14% per annum. During bear markets, the size and value anomalies are largely absent from

the data and mean returns on the SMB and HML portfolios are not significantly different from zero.

Volatility is high and return correlations closely track their unconditional counterparts listed in panel

A. Figure 2 shows that this regime captures major crashes and periods with sustained declines in stock

prices such as the 1929 crash, the Great Depression, the two oil shocks in the 1970s and the recent bear

market of 2000-2001.

Regime 2 is a highly persistent, low-volatility bull state with an average duration of 23 months that

captures long periods with growing stock prices during the 1940s and 1950s. Mean returns in this state

are significantly positive for the market and HML portfolios (15% in excess of the riskless rate and 5%

per annum, respectively) but close to zero for the SMB portfolio. Hence the value effect is strong in this

state while the size effect is much smaller. Returns on the HML portfolio are positively correlated with

returns on the SMB and market portfolios while SMB returns are uncorrelated with the market.

Regime 3 is another highly persistent, low-volatility state where all equity portfolios earn positive

mean returns (8%, 2%, and 3%, respectively). This state captures most of the bull markets since the mid-

sixties. A clear difference between regimes 2 and 3 is found in their correlation structure. In the second

state the SMB portfolio provides a hedge with respect to the performance of the market portfolio. In the

third state the HML portfolio plays a similar role and its returns are also strongly negatively correlated

with SMB returns.

Finally, regime 4 is a highly volatile, transient state that captures stock prices during parts of the

Great Depression and 1999. Mean returns in this state are high (18, 10, and 12 percent per month) but

not absurdly so since the average duration of this state is less than two months and volatilities in this

state are also very high, i.e. 47, 53, and 48% per annum. Despite its short duration, regime 4 is clearly

important for size and value effects to emerge in the data.

The steady state probabilities implied by the estimates, P̂ , are 21%, 25%, 53% and 1%, respectively.

Furthermore, transition probabilities follow a very particular pattern in our model: The market either

remains in the fourth, high return state (with a probability of one-third) or exits to the bear/crash state

(with a two-thirds probability) so that states 1 and 4 jointly identify periods with clustering of high

volatility.

These findings shed new light on some empirical regularities discussed in the literature. For instance,

Davis et al. (2000) note that the size premium has declined after the mid-1980s, and Pástor (2000) finds

that it fluctuates significantly over time.7 The first observation matches our finding that most of the

1980s and 1990s was spent in the third regime where the size premium is not significantly positive. The

second observation is consistent with our finding that SMB returns and volatilities vary substantially

across states. Similarly, the evidence reported by Pástor (2000) that the value premium is more stable

over time is consistent with our finding that the value premium exceeds the size premium and is positive

in all four states.

6Parameter estimates were computed by maximimum likelihood methods.
7Early evidence on the instability of the size premium is discussed in Banz (1981) and Brown et al. (1983).
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In sum, our findings confirm the presence of strong size and value effects but also show that they

are subject to significant time-variation related to the presence of economic regimes. Mean returns on

the SMB portfolio are positive and significant only in the short-lived fourth regime, while mean returns

on the HML portfolio are positive and significant in three out of four regimes, including the highly

persistent second and third states. Such variations are difficult to capture by a single-state model that

largely misses the hedging properties that the SMB portfolio has in regime 2 and the HML portfolio has

in regime 3 in relation to the market portfolio.

3.4. Testing restrictions and ARCH effects

Our very long data set on three relatively weakly correlated return series means that most parameters in

Table 3 are reasonably precisely estimated. Even so, the number of parameters of the four-state model

is quite large and it is worth investigating whether a more parsimonious specification can be obtained.

In view of the imprecise mean return estimates often found for equity portfolios, we follow Ang and

Bekaert (2002, pp. 1147-1149) and first test a model where mean returns are restricted to be identical

across regimes:

rt = µ+ εt εt ∼ N(0,Σst). (4)

We can formally test the restrictions on the mean return parameters through a likelihood-ratio test:

LR = 2(5422.52− 5408.40) = 28.24.

The implied p-value of 0.0009 strongly rejects the state-independence of mean returns.

Next, we test whether the regime switching model can be simplified by imposing covariance restric-

tions. Returns in regimes 1 and 4 are highly volatile so it is natural to test the hypothesis that Σ1 = Σ4

which implies six parameter restrictions:

LR = 2(5422.52− 5397.39) = 50.26.

This yields a p-value very near zero. Once again the restrictions are resoundingly rejected so we maintain

the general four-state model from Table 3.

Finally, we test whether the preferred four-state model is misspecified or needs to be extended to

incorporate ARCH-effects. To address this question, we estimated a bivariate Markov switching ARCH

model similar to that considered by Hamilton and Lin (1996):8

rt = µSt + εt, εt ∼ N(0,ΣSt)

ΣSt = KSt +∆Stε
0
tεt∆

0
St . (5)

Here KSt is restricted to be symmetric and positive definite and ∆St captures regime-dependent effects

of past shocks on current volatility. To formally test for ARCH effects, we imposed the restriction

∆St =∆, St = 1, 2, 3, 4 and obtained the likelihood ratio test

LR = 2 [5447.23− 5422.52] = 49.42.
8It remains clearly possible that other, non-nested multivariate regime switching GARCH models might improve the fit,

see e.g. Haas, Mittnik, and Paolella (2004). Notice though that these more general conditional heteroskedastic extensions

would make more difficult to interpret portfolio choices in regime-specific terms.
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The associated p-value is 0.301 so the null hypothesis of no ARCH effects fails to be rejected. We

therefore maintain the simpler four-state model without ARCH effects. The absence of ARCH effects in

our model can be explained by the fact that, at the monthly frequency, regime switching can capture

volatility clustering through time-variations in the probabilities of (persistent) states with very different

levels of volatility, c.f. Timmermann (2000).

3.5. Predictor Variables: The Dividend Yield

Many studies suggest that stock returns are predicted by regressors such as term and default spreads or

the dividend yield, c.f., Campbell and Shiller (1988), Fama and French (1988, 1989), Ferson and Harvey

(1991), Goetzmann and Jorion (1993). Most of the literature on optimal asset allocation has focused on

predictability from the dividend yield, c.f. Barberis (2000) and Kandel and Stambaugh (1996). Standard

linear predictors fail to explain much of the variation in the monthly returns of size- and book-to-market

sorted equity portfolios. However, the dividend yield is the predictor variable that generates strongest

variations in hedging demands. The possibility that the dividend yield might predict returns on the

SMB and HML portfolios has not been considered in the context of regime switching models.

To investigate the effect on our model of adding predictor variables such as the dividend yield, again

we used a battery of tests to determine the best model specification for (rMKT
t rSMB

t rHML
t dyt), where

dyt is the dividend yield in period t. Reflecting the strong persistence in the yield, the SIC strongly

suggests a VAR(1) model irrespective of the number of states, k. Even with a first order autoregressive

term included, a four-state model continues to be selected.

The economic interpretation of the four regimes is aided by studying the smoothed state probabilities

presented in Figure 3 and the parameter estimates reported in Panel B of Table 4. For comparison Panel

A reports estimates for the single-state benchmark model. The basic interpretation of the regimes

remains unchanged from the simpler model reported in Table 3. Regime 1 is a transient state with an

average duration less than two months that mostly picks up bear markets such as the Great Depression,

the two oil shocks in the 1970s and the more recent period 2000-2001. The main difference to the bear

state in the simpler model in Table 3 is that this state now has a shorter expected duration, records

large negative mean returns also for the SMB portfolio and a larger mean return on the HML portfolio.

Regimes 2 and 3 continue to be persistent, low volatility states with average durations exceeding ten

months. Taken together, these states capture most bull markets between the 1940s and 1990s. State 2

has a low dividend yield (on average 2.1%) while state 3 has a high yield (on average 4.6%). While state

2 tracks periods with small size and value anomalies, state 3 captures periods where the size anomaly is

strong. Three of four of the coefficients of the lagged dividend yield on the SMB and HML returns are

significant in these two states.

Finally, regime 4 remains an outlier state with large positive mean returns on the market and SMB

portfolio although it now has large negative returns on the HML portfolio. In this state the mean excess

return on the market is 24% per annum while growth stocks outperform value stocks to the tune of 12%

per annum and small firms outperform large firms by 30% per annum. Volatility is also high, ranging

from 22% to 36% per annum for the three portfolios.

Equity return correlations continue to vary significantly across states. The correlation between the
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market and SMB portfolio varies from 0.09 to 0.28, while the correlation between the market and

HML portfolio varies from -0.30 to 0.60. This again suggests important time-variations in the hedging

properties of the Fama French portfolios.

4. The Asset Allocation Problem

So far we have documented the presence of regimes in the process underlying returns on the market

portfolio and portfolios tracking size and value effects. We next explore the asset allocation implications

of such regimes. Since it is clear that regime shifts generate predictability in future investment opportu-

nities, we expect to find interesting horizon effects and hedging demands. Under the CAPM, investors

should not hold the size or value portfolios. To see if this continues to be valid here, we consider the asset

allocation problem of an investor with power utility over terminal wealth, Wt+T , coefficient of relative

risk aversion, γ > 1, and time horizon, T :

u(Wt+T ) =
W 1−γ

t+T

1− γ
. (6)

The investor is assumed to maximize expected utility by choosing at time t a portfolio allocation to the

market, SMB and HML portfolios, ωt ≡ (ωMKT
t ωSMB

t ωHML
t )0, while 1 − ω0tι3 is invested in riskless,

one-month T-bills. For simplicity we assume the investor has unit initial wealth and ignores intermediate

consumption. Portfolio weights are adjusted every ϕ = T
B months at B equally spaced points t, t + T

B ,

t+2 TB , ..., t+(B−1)
T
B .When B = 1, ϕ = T, so the investor simply implements a buy-and-hold strategy.

Let ωb (b = 0, 1, ..., B − 1) be the weights on the stock portfolios at these rebalancing times. Then
1− ω0bι3 is the weight on T-bills at time t+ b TB and the investor’s optimization problem becomes9

max
{ωj}B−1j=0

Et

"
W 1−γ

B

1− γ

#
s.t. Wb+1 =Wb

n
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b exp

³
Rb+1 + ϕrfe1

´o
(7)

Rb+1 = rtb+1 + rtb+2 + ...+ rtb+1 .

Here Et[.] denotes the conditional expectation given the information set at time t, Ft. The term

Rb+1 + ϕrfe1 (e1 ≡ [1 0 0]0) arises since we specified our model for the vector of excess returns on

the market portfolio and returns on the zero-investment SMB and HML portfolios, both continuously

compounded.10 The wealth process in (7) reflects the fact that our return data are continuously com-

pounded. Incorporating investors’ use of predictor variables, zb, at the decision points, b, the derived

utility of wealth is

J(Wb,yb,θb,πb, tb) ≡ max
{ωj}B−1j=b

Etb

"
W 1−γ

B

1− γ

#
. (8)

9As is common in the empirical literature on optimal asset allocation, we assume that the risk-free rate is constant over

time and also do not address market equilibrium issues so our investor is small relative to the total market.
10Both SMB and HML require short-selling stocks and thus depositing funds in margin accounts. If a proportion ω is

invested in one of these portfolios, a percentage ω of the agent’s wealth must be borrowed at the riskless rate to satisfy the

deposit requirement. This is equivalent to investing a proportion −ω in T-bills, c.f. Pástor (1999, p. 201).
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Here yb ≡ (rb zb)0, θb =
µn
µi,b, {Aj,i,b}pj=1,Σi,b

ok
i=1

,Pb

¶
collects the parameters of the regime switching

model, and πb is the state probabilities at point b. Investors face a large set of state variables, most

obviously the regime probabilities, πb, and the vector of returns and predictor variables, yb. The

parameter vector θb could also be treated as a separate state variable that gets updated at each point

in time, t. However, solving the associated problem implies using a very large set of state variables (as

many as 140 in some of our applications) and is infeasible. We therefore solve a simplified version of the

asset allocation program in which the model’s parameters are fixed at their estimated values θb = θ̂ for

all b = 0, 1, ..., B − 1.11 Moreover, as in Ang and Bekaert (2002), we assume that states are observable
at future rebalancing points so πb = ei (i = 1, ..., k). Assuming power utility, the expression for derived

utility of wealth simplifies to

J(Wb,yb, Sb) =
W 1−γ

b

1− γ
Q(yb, Sb), γ > 1, (9)

where Sb simply records the future state. Since

W 1−γ
b

1− γ
=

W 1−γ
b−1

1− γ
·
h
(1− ω0b−1ι3) exp

³
ϕrf

´
+ω0b−1 exp

³
Rb + ϕrfe1

´i1−γ
∝

h
(1− ω0b−1ι3) exp

³
ϕrf

´
+ ω0b−1 exp

³
Rb + ϕrfe1

´i1−γ
,

the first order conditions are

Eb−1
n
(Rp

b−1:b(ω̂b−1))
−γ
h
exp

³
Rb + ϕrfe1

´
− exp

³
ϕrf

´
ι3

i
Q(yb, Sb)

o
= 0, (10)

where Rp
b−1:b(ωb−1) ≡ (1−ω0b−1ι3) exp(ϕrf ) +ω0b−1 exp(Rb +ϕrfe1) is the overall portfolio return over

the interval [t+(b−1)ϕ, t+ bϕ], ω̂b−1 is the vector of optimal portfolio weights, and Eb−1[·] = E[·|Fb−1].

Since the information set Fb−1 includes knowledge of the state, Sb−1 = i, (10) can be re-written as:

kX
m=1

Pr{Sb=m|Sb−1=i}Eb−1
n
(Rp

b−1:b(ω̂b−1(i)))
−γ[exp(Rb + ϕrfe1)− exp(ϕrf ι3)]Q(yb, Sb=m)

o
= 0,

(11)

where Pr{Sb = m|Sb−1 = i} = e0iPem is the appropriate element of the transition matrix P. (11) yields

a system of three nonlinear equations in three unknowns that can easily be solved numerically. Once

ω̂b−1(i) has been found it follows that

Q(yb−1, Sb−1 = i) = Eb−1

½h
(1− ω̂0b−1(i)ι3) exp

³
ϕrf

´
+ ω̂0b−1(i) exp

³
Rb + ϕrfe1

´i1−γ
Q(yb, Sb)

¾
.

This expectation is a function of yb−1 which enters the conditioning information set used to compute

the expectation Eb−1[·]. At this point the problem can be solved recursively, starting at time T (where

Q(yB, SB) = 1 for all (yB, SB)
0) and moving backwards until time t, where, given St = i, ω̂0(i) = ω̂t(i)

provides the vector of optimal portfolio weights.

11Barberis (2000) considers a simple example with future updating limited to two parameter estimates.
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4.1. Quadrature Solution Methods

A variety of solution methods have been applied in the literature on portfolio allocation under time-

varying investment opportunities. Barberis (2000) employs simulation methods and studies a pure

allocation problem without interim consumption. Ang and Bekaert (2002) solve for the optimal asset

allocation using quadrature methods. Campbell and Viceira (1999, 2001) derive approximate analytical

solutions for an infinitely lived investor when interim consumption is allowed and rebalancing is contin-

uous. Campbell et al. (2003) extend this approach to a multivariate set-up and show that a mixture of

approximations and numerical methods can deliver powerful results. Finally, some papers have derived

closed-form solutions by working in continuous-time, e.g. Brennan et al. (1997) and Kim and Omberg

(1996) for the case without interim consumption.

The approach most closely related to ours is proposed by Ang and Bekaert (2002) who study Markov

switching for pairs of international stock market returns. Ang and Bekaert employ quadrature methods

to approximate expected utility at the investor’s decision points. We adopt their computational strategy,

generalized to deal with asset allocation problems when ϕ > 1, so rebalancing occurs less frequently than

new data is observed.

To illustrate our approach, consider first the case without predictor variables beyond asset returns

(so m = 0) and rebalancing every period. We can then rewrite (11) as

kX
m=1

¡
e0iPem

¢
Eb−1

n
g(Rb + ϕrfe1; ω̂b−1,m)

o
= 0, (12)

where g(Rb; ω̂b−1,m) ≡ (Rp
b−1:b(ω̂b−1(i)))−γ[exp

¡
Rb + rfe1

¢
− exp

¡
ϕrf

¢
ι3]Q(Rb, Sb = m). Following

Tauchen and Hussey (1991), an N−point quadrature rule for integration of a function g against a regime-
specific density f is a set of N regime-dependent points Rj

b(i) and nonnegative quadrature weights δ
j(i)

j = 1, ..., Ni, such that the conditional first order conditions of the problem are approximated by

kX
m=1

¡
e0iPem

¢
Eb−1

n
g(Rb + rfe1; ω̂b−1,m)

o
'

kX
m=1

¡
e0iPem

¢⎡⎣NmX
j=1

h(Rj
b(i); ω̂b−1,m)δ

j(i)

⎤⎦ = 0. (13)

Notice that both the approximation grid points and the quadrature weights are regime-specific and

depend only on the state-dependent density (“importance”) function ∆. Different rules can be used to

select ∆ and consequently the weights. In our case we adopt an N3-point multiplicative Gauss-Hermite

rule for multivariate integrals, thus choosing ∆ to be multivariate Gaussian. This is equivalent to using a

discrete Markov chain approximation with transition matrix P from the regime switching model. When

ϕ > 1, multiperiod portfolio returns are simulated sequentially from the approximating Markov chain

using the transition probabilities in P. The optimal portfolio choice can then be found using a nonlinear

equation solver.

A crucial issue in our application is the possibility that wealth can become negative (“bankruptcy”),

given that short-sale positions are admitted.12 As pointed out by Kandel and Stambaugh (1996) and

Barberis (2000), bankruptcy makes the asset allocation problem (7) ill-behaved and implies that no

12When short-sales are admitted, numerical quadrature makes it easy to control the truncation points for the joint

distribution of asset returns in order to impose the no-bankruptcy constraint.
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interior solution exists.13 In our algorithm however, the no-bankruptcy constraint is easily imposed:

given the grid points {Rj
b(i)}Nj=1 (m = 1, ..., k) employed by the quadrature method, we check that, at

all nodes on the grid and for ωb−1 constrained to lie in the set Λ,

(1−ω0b−1ι3) exp
³
rf
´
+ ω0b−1 exp(R

j
b(i) + rfe1) > 0, (14)

Hence wealth must be positive at all points on the approximating grid provided that ωb−1 ∈ Λ. In our
application we set Λ to the wide interval, [−5, 5]. This set includes plausible portfolio weights previously
reported in asset allocation exercises focusing on value and size anomalies (e.g. Brennan and Xia (2001)

and Pástor (2000)). The grid defining the approximating discrete Markov chain is shrunk when violations

of the no-bankruptcy constraint appear. Hence the portfolio choice problem is solved by appropriately

truncating the tails of the joint distribution obtained in Section 3.

We undertook a range of numerical experiments to assess the accuracy of the approximations provided

by the multiplicative Gauss-Hermite quadrature rule. Setting N = 8, the unconditional and conditional

(regime-dependent) moments for monthly portfolio returns under the approximating discrete Markov

chain are close to those implied by the data and the four-state regime switching model estimated in

Section 3.3. Furthermore, we checked that increasing N to 12 or higher values did not change our

conclusions.

Introducing rebalancing and including the dividend yield as a predictor variable we find, similar

to Ang and Bekaert (2002), that particular care should be used when constructing the discretization

grid over which the approximating Markov chain is defined. Rebalancing complicates the calculations

since y now contains additional state variables. Once again, the investor’s first order conditions can be

approximated by
kX

m=1

¡
e0iΠi→meg

¢⎡⎣ GX
g0=1

g(Rg0

b ; ω̂b−1(g, i),m)

⎤⎦ = 0, (15)

where g(Rg0

b ; ω̂b−1(g, i),m) ≡ (Rp,g0

b−1:b(ω̂b−1(g, i)))−γ [exp(R
g0

b + rfe1)− exp(ϕrf ι3)]Q(yg
0

b ,m) and Πi→m

gives the probability of moving from state i to state m on the quadrature grid. The expression requires

that both g and g0 be consistent with values of y that are admissible with regimes i and m, respectively.

The optimal portfolio choice conditional on an initial state g for the predictors and state i = 1, ..., k can

then be found using a nonlinear equation solver. At this point the problem can be solved recursively,

starting at time T and going backwards until time t. To define the G−point grid and the transition
matrices Πi→m employed by (15), we discretize the space on a grid of k × G1 × · · · × Gn+l points, so

each variable in the 4× 1 vector y is replaced by Gv discrete values. Following Ang and Bekaert (2002),

we calibrate an approximating discrete Markov chain to the full sample and to each of the regimes

and then combine these using the transition probabilities. Hence, we choose regime-dependent points

for each of the four variables on a (variable-specific) grid and a transition matrix Πi→m such that the

unconditional distribution of y is correctly approximated. At this stage, the support of the discretization

grid is truncated to reflect no-bankruptcy constraints.

13This occurs when in (10) Rp
b−1:b(ωb−1) ≤ 0, so the marginal utility of wealth Rp

b−1:b(ωb−1)
−γ
is either not defined (if

Rp
b−1:b(ωb−1) = 0) or becomes negative.
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Provided the approximating grid is sufficiently dense (especially with respect to the persistent divi-

dend yield), both conditional and unconditional means and covariance matrices are close to those implied

by the four-state model estimated in Section 3.4. Furthermore, when a multivariate regime switching

model is fitted to data simulated off the discrete Markov chain, we find that the majority of parameters

fall well within one standard deviation of the estimates reported in Table 4, while parameters rarely

switch signs. In particular, in our application we use G1 = G2 = G3 = 5 grid points for the portfolio

returns and G4 = 20 points for the grid used to approximate the dividend yield. Further details are

provided in an appendix that is available from the authors.

5. Empirical Asset Allocation Results

5.1. Buy-and-Hold Investor

We first consider the asset allocation strategy of a buy-and-hold investor who only solves the asset

allocation problem once, namely at time t. Consistent with choices in the literature the coefficient of

relative risk aversion is set at γ = 5. The levels of the risky asset holdings clearly depend on γ. However,

following Ang and Bekaert (2002) and choosing a different value such as γ = 10 revealed robustness of

our qualitative results on the allocations to the market, SMB and HML portfolios. We consider horizons

that vary between 1 and 120 months, c.f. Äıt-Sahalia and Brandt (2001). Figure 4 plots the optimal

portfolio weights as a function of the investment horizon starting from each of the four states.

Asset allocations vary significantly across regimes in the four-state model, particularly at short hori-

zons where market timing effects are strong. Regime 1 is dominated by the negative average return on

the market portfolio and by the relatively high mean returns on the SMB and HML portfolios. Starting

from this state, the allocation to the market portfolio is therefore small at short investment horizons

though it rises in T . While the weights on the SMB and HML portfolios initially rise, they decline as a

function of the horizon, T , for T ≥ 6 months.
Turning to regime 2, due to its high expected return, the market portfolio features prominently in

the optimal asset allocation with a weight above 100% at short horizons. Large, short positions are

taken in the SMB and HML portfolios to finance the long position in the market. Regime 3 produces

similar portfolio choices although the allocation to the market portfolio is far smaller than in regime 2,

reflecting its lower mean return. An investor should also hold a long position in the HML portfolio in

this state even at the shortest horizons. This is explained by the hedge that the HML provides with

respect to the market portfolio. Finally, in the short-lived fourth regime the equity portfolios offer high

mean returns and are generally held in long positions at short or medium horizons. The long equity

holdings are financed by substantial borrowings in T-bills.14

At the longest horizon almost 60% is held in the market, 15% in the HML portfolio, -20% in the SMB

portfolio and 45% in T-bills. These long-run asset allocation results are broadly consistent with those

reported by Pástor (2000) for a single-period exercise under a tight prior tilted towards the CAPM. Our

finding that the allocation to the HML portfolio is positive in three of four states and only negative in

14Consistent with findings reported by Ang and Bekaert (2002), the portfolio weights tend to already converge to their

long-run levels at horizons of 2-3 years.
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the fourth state for very short horizons is also consistent with Pastor’s results.

It is also interesting to compare our results to those reported by Brennan and Xia (2001) in a model

without predictor variables but with learning about mean returns on the equity portfolios. For a short

horizon (T = 1) with a zero prior on the CAPM, Brennan and Xia obtain an allocation heavily tilted

towards the HML (176%) and market portfolios (71%) and with slightly less weight on the SMB portfolio

(41%). These weights do not match our weights in any of the four regimes and differences grow larger at

the long horizon, T = 120. While Brennan and Xia report a weight on the HML portfolio that exceeds

unity (132%) and a large positive weight on the size portfolio (37%), our results show a more reduced

role for both the SMB and HML portfolios at long horizons. Our long-run allocations are, however, quite

similar to those in Brennan and Xia based on a 50-50 mixed prior over the CAPM and the empirical

distribution of asset returns which gives rise to weights on the HML, SMB and market portfolios of 14%,

-3% and 35%, respectively. Hence, similar long-run allocations with reduced weights on the SMB and

HML portfolios can be achieved either by putting a large prior on the CAPM or by adopting a model

such as ours that accounts for fat tails - and thus higher risk - in the returns on the size and value

portfolios.

5.2. Predictability from the Dividend Yield

Figure 5 shows the optimal asset allocation for a buy-and-hold investor when predictability from the

dividend yield is incorporated in the regime switching model. Qualitatively, the results are quite similar

to those shown in Figure 4. For example, the optimal allocation to the market portfolio is increasing

when starting from the bear state (state 1) and decreasing from the other states. The slope of the

investment demand for the SMB and HML portfolios also varies significantly across states. At short

horizons the optimal allocations to the size and value portfolios are again highly sensitive to the current

state probability, but quickly converge to their long-run levels as T grows. Comparing Figures 4 and 5,

holdings in the SMB and HML portfolios become more extreme once the yield is included as a predictor

variable.

The most notable difference with respect to the earlier results from Figure 4 is the large, positive

holdings in the HML portfolio and the negative holdings in the market and SMB portfolios in the bear

state (regime 1) at the shortest horizons. The reason for this change is the large negative mean returns

on the market and SMB portfolios and the large positive mean return on the HML portfolio in this state.

When combined with the fact that the bear state is highly transient in the extended model, this explains

why the equity positions now become more extreme at the very shortest horizons and why these positions

quickly revert to the steady-state weights as the horizon is expanded and a regime shift is anticipated.

To compare asset allocations under a broader set of models and to isolate the effect of regime switch-

ing, Figure 6 shows the optimal portfolio weights as a function of the investment horizon under three

alternative specifications, namely regime switching without the dividend yield (MS), regime switching

with the dividend yield included (MS-VAR(1)) and a VAR(1) model similar to that previously considered

by Barberis (2000):

yt =

Ã
µ

µdy

!
+A∗yt−1 +

Ã
εt

εdyt

!
, (ε0t εdyt)

0 ∼ N(0,Σ∗). (16)
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Estimates of this model can be found in panel A of Table 4.15 As is common in the literature, averag-

ing across states for the regime switching models is undertaken using the unconditional (steady-state)

distribution.

Consistent with findings reported by Barberis (2000) under the VAR(1) model the allocation to

stocks rises as a function of the investment horizon. For this model we also find that the allocations to

the HML and SMB portfolios grow as a function of the investment horizon.

The large positive demand for the HML portfolio and T-bills and the large negative demand for

the market and SMB portfolios at short horizons under the MS-VAR(1) model is explained by the large

negative mean returns of the market and SMB portfolios in the short-lived bear state (state 1) which−due
to the high marginal utility in this state−dominates results for this model. Increasing the investment
horizon from one to six months leads to an increased demand for the market and SMB portfolios and a

lower demand for the HML portfolio under the four state MS-VAR(1) model.

Clearly, the portfolio weights under the single state model (16) are quite different from those obtained

under the four-state model irrespective of whether this includes the dividend yield. Most notably, the

four regimes introduce short-run market timing effects while the single-state model is driven by slower,

long-run movements in the dividend yield. Asset demand curves are therefore steeper at horizons shorter

than six months under the four-state model.

5.3. Rebalancing and Hedging Demands

So far we have studied the optimal asset allocation for a buy-and-hold investor. Investors may, however,

have access to rebalancing opportunities. Table 5 shows the effects of rebalancing every 1, 3, 6, 12 or

24 months on optimal holdings in the three stock portfolios. If frequent rebalancing is possible, the

investor’s horizon matters far less than under the buy-and-hold scenario. Effectively, only the period

between the current time (t) and the next rebalancing point (t+ϕ) induces curvature in the investment

demand which is flat when T > ϕ.16 The investor also responds more aggressively to the current state.

The reason is simple: an investor who can rebalance frequently will utilize information about the current

state by taking large, short positions when the return distribution indicates poor prospective returns

and large, long positions in a state with more attractive returns. If the perceived state probabilities

change next period, the investor can simply adjust the portfolio weights. Such adjustment opportunities

are not available to the buy-and-hold investor who must consider the probability of future states during

the entire holding period.

The rebalancing frequency can clearly have a large effect on asset holdings, most notably when the

rebalancing frequency is varied from ϕ = 3 to ϕ = 1 in state four. The fourth state only has a ‘stayer’

probability of one-third and exits to the ‘bear’ state with a two-thirds probability. Under monthly

rebalancing, an investor will significantly increase holdings in the market portfolio (compared to scenarios

with higher values of ϕ) largely by lowering investments in the HML portfolio which has returns with a

15We estimate an unrestricted VAR that allows lagged returns to forecast future returns and the dividend yield, c.f.

Campbell, Chan and Viceira (2003). However, since lagged returns have weak predictive power our conclusions are robust

to imposing restrictions ruling out such effects as Barberis (2000) does.
16For ϕ ≥ T the optimal portfolio weights are identical to the buy-and-hold values and thus omitted from Table 5.
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lower mean that are strongly correlated with market returns in the fourth state. Conversely, moving to

ϕ = 3 and starting from the fourth state, a switch to the bear state will almost certainly occur prior to

the next rebalancing point. Since the bear state has low mean returns on the market and SMB portfolios

but high mean returns on the HML portfolio, the weights on the former assets are reduced while the

weight on the SMB portfolio increases substantially compared to the case with ϕ = 1.

We continue to observe large variations across states in the portfolio weights under rebalancing.

Starting from the first (bear) state, as rebalancing happens more frequently (ϕ declines) the allocation

to the market portfolio declines and becomes negative. Conversely, in states two and three the demand

for the market portfolio rises as ϕ is lowered while the non-monotonicities found for state four are

explained by the high probability of going from state four to the low return bear state (state 1). State

two (four) is associated with very large negative (positive) holdings in the SMB portfolio. The SMB

weight increases with the rebalancing frequency in regimes one and four while the opposite happens in

regimes two and three. Less variation across states is generally observed in the holdings of the HML

portfolio.

The introduction of rebalancing opportunities allows us to measure the optimal hedging demand

defined as the difference ω̂it(T )− ω̂it(1) (i = MKT, SMB, HML) for T ≥ 2 and ϕ = 1 month, i.e. when

rebalancing occurs at the same frequency as the data is observed (see Ingersoll (1987, p. 245)). Results

are reported in separate rows in Table 5. Hedging demands for the market and SMB portfolios are

substantially larger than hedging demands for the HML portfolio. The sign of the hedging demand

for the market portfolio has an intuitive interpretation. In the bear state, future regime switching

will improve investment opportunities so the hedging demand is positive and quite large (21 percent);

similarly, hedging demands remain positive in regime three. Conversely, shifts away from the high mean

return states (two and four) imply a worsening of the investment opportunities, so hedging demands for

the market portfolio are negative when starting from these states.

To compare hedging demands under multiple regimes with those derived under a VAR benchmark,

Table 5 also reports buy-and-hold allocations and hedging demands under linear predictability. For

simplicity, calculations are performed when all the variables in y (i.e. portfolio returns and the dividend

yield) are set at their sample means. For the market portfolio, hedging demand is positive but moderate

(14%) in the VAR(1) case. The positive value is consistent with findings in papers such as Barberis

(2000) and Campbell and Viceira (1999). The reason for the positive hedging demand is the negative

covariance between shocks to the dividend yield and stock market returns which leads investors with a

long horizon to hold more in stocks. Interestingly, the hedging demand for the market portfolio under

the VAR(1) model is relatively small compared to the positive hedging demand in regime 1 (21%) and

the large negative demand in regime 4 (-29%).

In the case of the SMB and HML portfolios, it is interesting to note the contrast between the rather

sizeable (47% and -39%, respectively) hedging demand under the VAR(1) model and the more modest

ones under regime switching. Though small, systematic patterns remain in these hedging demands

which, as in the case of the market portfolio, are positive in state 1 and negative in state 4. Brennan and

Xia (2001) find a somewhat larger negative hedging demand for all three portfolios in a model without

predictability but with learning about the unknown drift of the stock price process underlying the Fama-
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French portfolios. This finding is easy to understand since a positive shock to the unknown mean return

is always positively correlated with future investment opportunities, causing the hedging demand to be

negative. Our finding that regime switching only induces relatively small hedging demands for the size

and value portfolios is, however, consistent with Ang and Bekaert (2002)’s finding that for many of their

international equity portfolios the null hypothesis of a zero hedging demand cannot be rejected under

regime switching.

6. Economic Importance of Regimes

So far we have shown that regimes have a large effect on the optimal asset allocation. It does not

necessarily follow that ignoring regimes leads to welfare costs sufficiently large to give investors strong

incentives to use the more complicated model that we propose. To address this issue, we next investigate

the effect of parameter estimation uncertainty on the optimal portfolio weights and then undertake utility

cost calculations to quantify the economic significance of regimes.

6.1. Parameter uncertainty

A concern often expressed in the literature on optimal asset allocation under predictability (see Brandt

(1999) and Ang and Bekaert (2002)) is that the relatively large standard errors surrounding many

parameter estimates tend to result in imprecisely determined portfolio weights. Äıt-Sahalia and Brandt

(2001) refer to this as the “Achille’s heel” of models of conditional asset allocation. Although the portfolio

weights reported so far are determined by solving a complicated dynamic programming problem, these

weights condition on the parameter estimates, bθ, and are therefore themselves random variables. We

quantify the effect of estimation uncertainty by forming confidence intervals for the optimal portfolio

weights as follows. From asymptotic analysis (e.g., Krolzig (1997))

√
T
³bθ − θ0´ A∼ N(0, Vθ), (17)

where θ0 denotes the true but unknown vector of parameters. The optimal portfolio weights ω̂t(T )

maximizing expected utility over a T−period horizon are implicitly defined by the first-order condition
(10). This can be re-written as a generic function Ξt(θ̂, ω̂t(T )) = 0 that depends on θ̂ since the true

value of θ is replaced by its estimator, θ̂. As in Ang and Bekaert (2002, p. 1145), it can be shown that

when

det

"
∂Ξt
∂ω

¯̄̄̄
θ=θ0,ωt(T )=ω̂0,t(T )

#
6= 0, (18)

the implicit function theorem guarantees the existence of some function that maps the true parameters

θ0 into a vector of portfolio weights, ω̂0,t(T ) = ξ(θ0), such that

D ≡ ∂ξ

∂θ

¯̄̄̄
θ=θ0

= −
µ
∂Ξt
∂ω

¶−1 ∂Ξt
∂θ

¯̄̄̄
¯
θ=θ0,ωt(T )=ω̂0,t(T )

. (19)

Hence the Jacobian matrix of the partial derivatives of portfolio weights with respect to the predictive

density parameters is well-defined. The delta method then gives the (asymptotic) distribution of ω̂t(T )
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as √
T (ω̂t(T )− ω̂0,t(T )) A∼ N(0,DVθD

0).

Standard deviations of the portfolio weights ω̂t(T ) are thus obtained from the diagonal elements of

DVθD
0.17

Table 6 presents 95% confidence intervals for the portfolio weights under the regime switching model

calculated this way. Once again we consider scenarios starting from each of the four states and study

investment horizons of 1, 6, 60 and 120 months. For comparison, we also report the confidence interval

that applies to portfolio weights obtained under the assumption of an IID process for returns.

Unsurprisingly in view of the different complexity of the two types of models, confidence intervals

for IID weights tend to be more narrow than those produced by the four-state model. Confidence

intervals for the regime switching allocations are particularly wide at short horizons. The degree of

uncertainty about ω̂t(T ) varies significantly across states, however, with the fourth regime associated

with the greatest uncertainty. This reflects the short duration of this state and the fact that a small

change in the transition probabilities changes the likelihood of a transition to the very different low-return

bear state (state 1). At the longest horizons the confidence intervals for the portfolio weights derived

under regime switching are more narrow and more similar to those characterizing the IID weights.

Wide confidence intervals at short horizons are unsurprising: Äıt-Sahalia and Brandt (2001) also

report large standard errors for portfolio weights, especially when investment in cash is allowed as in our

paper. Furthermore, as pointed out by Campbell, Chan and Viceira (2003) the parameters governing

the dynamics of asset returns can have very large effects on the optimal asset holdings so that any

uncertainty about their values tends to have a large effect on portfolio weights.

Despite this uncertainty, ignoring regimes would clearly lead to a suboptimal portfolio allocation:

Most of the four-state intervals for the weights on the market and SMB portfolios do not overlap with

the confidence intervals obtained from the IID model. Ignoring regimes would lead an investor to invest

too little in (short) the market portfolio and too much in the size portfolio.

6.2. Utility cost calculations

Disregarding regimes or predictability from the dividend yield is equivalent to constraining investors

to choose optimal portfolio weights, ω̂IID
t , under the assumption that asset returns are drawn from a

single-state model. To quantify the costs of this constraint, we compute the increase in initial wealth

ηIIDt − or compensatory variation − an investor requires to derive the same level of expected utility
from the IID and unconstrained asset allocation problems:

(1 + ηIIDt )1−γ
(

BX
b=0

Et

£
(Wb)

1−γ¤) = Q(yb, Sb),

17In practice D depends on the unknown weights ω̂0,t(T ) but it can be replaced by a numerical estimate obtained by

perturbing each of the parameters in θ̂ by a small quantity �θ̂ei where, e.g., � = 0.0001. Portfolio weights are then

computed from (1 + �)θ̂ei and (1 − �)θ̂ei, solving for ω̂
+
t (T ) such that Ξt((1 + �)θ̂ei, ω̂

+
t (T)) = 0 and ω̂

−
t (T ) such that

Ξt((1− �)θ̂ei, ω̂
−
t (T)) = 0. The i− th column of D is then approximated by ω̂+t (T )− ω̂−t (T ) /2�θ̂ei.

19



where Q(yb, Sb) is the scaled value function under regime switching defined in equation (9). Solving for

ηIIDt , we have

η̃IIDt =

(
Q(yb, Sb)PB

b=0Et [(Wb)1−γ ]

) 1
1−γ

− 1. (20)

The compensatory variation - plotted in Figure 7 as an annualized percentage rate - ranges from about

two percent at the one-month horizon to about six percent at the ten-year horizon. Figure 7 also shows

95% asymptotic confidence intervals obtained by the delta method. Although the confidence bands

are quite wide there is no question that regimes in the return process for the market, size and value

portfolios are economically important. The lower band suggests a minimum of about 150 basis points

at most horizons. The upper band suggests higher compensatory returns.

Our estimates of utility costs of ignoring regimes are higher than those reported by Ang and Bekaert

(2002) for a study of international equity portfolios. This is easy to explain due to our finding of larger

and more significant mean return effects and the coincidence of the low mean return state with the high

volatility state (state 1). Reducing the allocation to equity portfolios during this state will be highly

beneficial to the investor, particularly if a risk-free asset is present as we assume here. Furthermore,

although relatively high, our estimate of the annualized welfare loss is well within the range of values

reported in the literature. For instance, Brennan and Xia (2001) report a certainty equivalence value of

investing in the HML and SMB portfolio that exceeds 8% per annum even in the presence of parameter

estimation uncertainty. Our estimates suggest that the utility costs arising from ignoring time-variations

in the joint distribution of returns on these portfolios due to regime switching is roughly of a similar

magnitude.

We also considered utility costs in the presence of predictability both from regime switching and from

the dividend yield. Calculations based on the MS-VAR(1) model suggested that utility costs are higher

at the shortest horizons compared to our estimates under the simple regime switching model. This is

in part a reflection of the large variations in the optimal weights that we observed at the short horizons

for this model in Figure 5. Utility costs under the two models are, however, very similar at the longest

investment horizon of 10 years.

7. Conclusion

This paper documented the presence of four regimes in the joint distribution of equity returns on market,

size and value portfolios. A single-state model appears to be misspecified as means, correlations and

volatilities of returns on these portfolios vary significantly across states. This finding is perhaps not so

surprising given the very different episodes and market conditions−such as the Great Depression, World
War II and the oil shocks of the 1970s−that occurred during a sample as long as ours (1927-2001). It is
difficult to imagine that the same single-state model is able to capture episodes of such diversity.

We quantified the economic value of investing in the three equity portfolios under regime switching by

considering the optimal asset allocations of an investor with power utility. Economically large variations

were found in the optimal portfolio weights as a function of the economic state and the investment

horizon. Rebalancing opportunities make the investor respond more aggressively to the current state

probabilities since portfolio weights can be adjusted rapidly should the state probabilities change. This
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option is not open to a buy-and-hold investor. Overall, our estimates suggest that it is important to

account for regimes when analyzing investments in returns on the market, size and value portfolios.

Furthermore, regimes and the dividend yield appear to identify quite different predictable components

in stock returns.

There are several ways in which our framework could be extended. First, our paper relies on a

parametric model that links state variables to asset returns. This has the advantage of tractability, but

also the disadvantage that optimal portfolio holdings inevitably reflect the underlying model assumptions.

We have argued that our model provides a flexible representation of the dynamics and distribution of

asset returns, but another approach would be to use semiparametric methods as advocated by Äıt-Sahalia

and Brandt (2001) and Brandt (1999).
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Table 1 

Summary Statistics for the Stock Portfolios 
This table reports summary statistics for monthly returns on the value-weighted market portfolio (in excess of the 1-
month T-bill rate) and Fama and French (1993) SMB (small minus big) and HML (high book-to-market minus low 
book-to-market) portfolios over the sample period 1927:12 – 2001:12. 
 
 

 Mean Median Minimum Maximum
Standard 
deviation 

Skew Kurtosis

A. Portfolio Returns  
SMB  0.0022 0.0005 -0.1626 0.2138 0.0341 2.1982 24.3045 
HML 0.0040 0.0022 -0.1323 0.1367 0.0365 1.8777 18.2384 
Market 0.0066 0.0099 -0.2901 0.3817 0.0552 0.2248 10.7615 

B. Correlation Matrix 

 SMB HML Market portfolio 
SMB 1   
HML 0.3274 1  
Market 0.2122 0.0854 1 
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Table 2 
Selection of Multivariate Regime Switching Model 

This table reports the fit (log-likelihood), Schwarz information criterion (SIC) and a likelihood ratio test of a single state 
model against multivariate Markov switching models of the form: 

t

p

j
jtjsst tt

A εrµr
1
∑
=

− ++=  

where 
ts

µ  is the intercept vector in state St, 
tjsA  is the matrix of autoregressive coefficients at lag p ≥ j ≥ 1 in state st and 

),( ~ε
tst N Σ0 . The unobserved state variable St is governed by a first-order Markov chain that assumes k distinct 

values. The three monthly return series are Fama and French’s (1993) SMB and HML portfolios and the excess return 
on a broad market portfolio. The sample period is 1927:12 – 2001:12. Acronyms are as follows: MS stands for Markov 
Switching, I for the presence of regime-dependent intercepts, A for regime-dependent autoregressive terms, H for 
regime-dependent covariance matrices (heteroskedasticity). The first number in parenthesis (k) is the number of regimes, 
the second (p) is the VAR order. 

Model 
(k,p) 

Number of 
parameters 

Log-
likelihood 

LR test for 
linearity 

SIC 

 Base model: MSIA(1,0) 
MSIA(1,0) 9 4806.03 NA -10.7435 
MSIA(1,1) 18 4852.31 NA -10.7910 
MSIA(1,2) 27 4851.62 NA -10.7328 

 Base model: MSIA(2,0) 

MSIA(2,0) 14 4848.03 83.9930 
(0.000) -10.7998 

MSIAH(2,0) 20 5288.48 964.8905 
(0.000) -11.7448 

MSIAH(2,1) 38 5340.67 976.707 
(0.000) -11.7380 

MSIAH(2,2) 56 5345.74 988.2458 
(0.000) -11.6250 

 Base model: MSIA(3,0) 

MSIA(3,0) 21 5048.75 485.4399 
(0.000) -11.1979 

MSIAH(3,0) 33 5366.00 1119.9421 
(0.000) -11.8199 

MSIAH(3,1) 60 5410.71 1116.8031 
(0.000) -11.7276 

 Base model: MSIA(4,0) 

MSIA(4,0) 30 5100.29 588.5121 
(0.000) -11.2451 

MSIAH(4,0) 48 5422.52 1232.9824 
(0.000) -11.8325 

MSIAH(4,1) 84 5474.00 1243.3862 
(0.000) -11.6866 

 Base model: MSIA(6,0) 

MSIA(6,0) 54 5188.70 765.3445 
(0.000) -11.2607 

MSIAH(6,0) 84 5500.30 1388.5308 
(0.000) -11.7325 

MSIAH(6,1) 138 5587.14 1469.6596 
(0.000) -11.5286 
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Table 3 

Parameter Estimates of Regime Switching Model for Market, SMB and HML Returns  
This table reports parameter estimates for the multivariate regime switching model: 

tst t
εµr +=  

where 
ts

µ  is the intercept vector in state St and ),( ~ε
tst N Σ0  is the vector of unpredictable return innovations. The 

unobserved state variable St is governed by a first-order Markov chain that can assume one of four values. The return 
series are net returns on Fama and French’s (1993) SMB and HML portfolios and excess returns on the value-weighted 
market portfolio. The sample period is 1927:12 – 2001:12. Panel A represents the single-state benchmark, while panel B 
refers to the four-state model. Values reported on the diagonals of the correlation matrices are annualized volatilities. All 
other estimates are monthly. Standard errors are shown in parentheses for mean coefficients and transition probabilities. 

 Panel A – Single State Model 
 Market SMB HML 
1. Mean excess return 0.0063 (0.0019) 0.0022 (0.0011) 0.0040 (0.0012) 
2. Correlations/Volatilities    
Market Portfolio 0.1921***   
SMB Portfolio 0.3318** 0.1179***  
HML Portfolio 0.2130* 0.0848 0.1262*** 
 Panel B – Four State Model 
 Market SMB HML 
1. Mean excess return    
Regime 1 -0.0120 (0.0060) 0.0015 (0.0032) 0.0017 (0.0040) 
Regime 2 0.0124 (0.0021) -0.0002 (0.0011) 0.0042 (0.0012) 
Regime 3 0.0068 (0.0018) 0.0016 (0.0012) 0.0022 (0.0011) 
Regime 4 0.1769 (0.0229) 0.0971 (0.0470) 0.1246 (0.0300) 
2. Correlations/Volatilities    
Regime 1:    
Market Portfolio 0.2843***   
SMB Portfolio 0.3404*** 0.1469***  
HML Portfolio 0.1508** 0.1032 0.1830*** 
Regime 2:    
Market Portfolio 0.1115***   
SMB Portfolio -0.0227 0.0541***  
HML Portfolio 0.4392*** 0.2649*** 0.0672*** 
Regime 3:    
Market Portfolio 0.1378***   
SMB Portfolio 0.3310*** 0.0911***  
HML Portfolio -0.3546*** -0.2273*** 0.0800*** 
Regime 4:    
Market Portfolio 0.4671***   
SMB Portfolio 0.1040 0.5263***  
HML Portfolio 0.7718*** -0.0729 0.4818*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 0.8518 (0.0166) 0.0347 (0.0120) 0.0765 (0.0139) 0.0371 
Regime 2 0.0271 (0.0119) 0.9572 (0.0406) 0.0208 (0.0118) 0.0013 
Regime 3 0.0330 (0.0104) 0.0066 (0.0049) 0.9604 (0.0049) 0.0000 
Regime 4 0.6436 (0.1663) 0.0000 (0.0259) 0.0000 (0.0317) 0.3534 

* significance at 10% level, ** significance at 5%, *** significance at 1%. 
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Table 4 

Estimates of Regime Switching Model for Stock Returns and the Dividend Yield 
This table shows parameter estimates for the regime switching model 

ttsst yAy
tt

εµ 1 ++= −  

where yt is a 4×1 vector collecting the market, SMB and HML portfolio returns in the first three positions and the 
dividend yield in the fourth. 

ts
µ  is the intercept vector in state st, 

tjsA  is the matrix of autoregressive coefficients in 

state st and ),( ~ε
tst N Σ0 . The unobservable state St is governed by a first-order Markov chain that can assume one of 

four distinct values. The sample period is 1927:12 – 2001:12. Panel A refers to the single-state case while panel B covers 
the four-state model. Values reported on the diagonals of the correlation matrices are annualized volatilities. All other 
estimates are monthly. Standard errors are shown in parentheses for mean coefficients and transition probabilities. 

 Panel A – VAR(1) (single state) Model 
 Market SMB HML Dividend Yield 
1. Intercept term -0.0065 (0.0052) -0.0056 (0.0031) -0.0046 (0.0034) 0.0009(0.0003) 
2. VAR(1) Matrix     
Market Portfolio 0.1074 (0.0361) -0.0273 (0.0573) 0.1163(0.0516) 0.2935(0.1211) 
SMB Portfolio 0.1618 (0.0215) -0.0219 (0.0341) 0.0736 (0.0308) 0.1647 (0.0721) 
HML Portfolio 0.0269 (0.0234) -0.0988 (0.0372) 0.1837 (0.0335) 0.1996 (0.0786) 
Dividend Yield -0.0066 (0.0021) 0.0051 (0.0033) -0.0112(0.0029) 0.9775 (0.0069) 
3. Correlations/Volatilities     
Market Portfolio 0.1900***    
SMB Portfolio 0.3072*** 0.1132**   
HML Portfolio 0.1941** 0.0561 0.1233**  
Dividend Yield -0.8834*** -0.2055*** -0.3256** 0.0108*** 
 Panel B – Four State Model 
 Market SMB HML Dividend Yield 
1. Intercept term     
Regime 1 -0.0475 (0.0021) -0.0510 (0.0036) 0.0741 (0.0039) -0.0003 (0.0001) 
Regime 2 0.0008 (0.0006) -0.0111 (0.0011) 0.0007 (0.0010) 0.0006 (1.9e-05) 
Regime 3 -0.0072 (0.0009) 0.0107 (0.0012) -0.0053 (0.0013) 0.0014 (0.0001) 
Regime 4 0.0334 (0.0040) 0.0529 (0.0064) -0.0654 (0.0063) 0.0017 (0.0003) 
2. VAR(1) Matrix     
Regime 1     
Market Portfolio 0.1620(0.0263) 0.1307 (0.0380) -0.0013 (0.0130) -0.3997 (0.0505) 
SMB Portfolio 0.0403 (0.0386) -0.1406 (0.0634) 0.0838 (0.0486) 0.7428 (0.0834) 
HML Portfolio -0.1276 (0.0506) 0.0028 (0.0183) -0.0103 (0.0267) -1.5608 (0.934) 
Dividend Yield -0.0102 (0.0010) -0.0016 (0.0015) -0.0057 (0.0015) 1.0851 (0.0020) 
Regime 2     
Market Portfolio -0.0314(0.0129) -0.0388(0.0257) -0.0880 (0.0265) 0.3761 (0.0176) 
SMB Portfolio 0.1809 (0.0274) 0.0875(0.0419) -0.0246 (0.0494) 0.3624(0.0340) 
HML Portfolio 0.0722(0.0229) 0.0019(0.5185) 0.1700 (0.0425) -0.0163 (0.0232) 
Dividend Yield 0.0012(0.0005) 0.0023(0.0007) 0.0039(0.0008) 0.9708 (0.0006) 
Regime 3     
Market Portfolio 0.0174(0.0195) -0.2286 (0.0379) 0.0396(0.0336) 0.3789 (0.0171) 
SMB Portfolio 0.0935 (0.0284) 0.1470(0.0491) 0.0824(0.0436) -0.1868 (0.0229) 
HML Portfolio 0.0081 (0.0201) -0.1656(0.0575) 0.2892 (0.0452) 0.1814 (0.0261) 
Dividend Yield -0.0028 (0.0010) 0.0113 (0.0019) -0.0010 (0.0015) 0.9692 (0.0009) 

• Significance at 10% level, ** significance at 5%, *** significance at 1%. 
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Table 4 (continued) 

 

 Panel B (continued)   
 Market SMB HML Dividend Yield 
2. VAR(1) Matrix (cont’d)     
Regime 4     
Market Portfolio -0.0700 (0.0360) -0.0876 (0.0665) 0.6966 (0.0576) -0.0653 (0.1197) 
SMB Portfolio 0.1300(0.0619) -0.1537 (0.1167) 0.2831 (0.0901) -0.5294 (0.1027) 
HML Portfolio 0.1701 (0.0641) -0.2456 (0.1126) 0.1883 (0.0912) 1.3480 (0.1030) 
Dividend Yield -0.0009 (0.0030) 0.0176 (0.0053) -0.0421(0.0045) 0.9451 (0.0051) 
3. Correlations/Volatilities     
Regime 1     
Market Portfolio 0.1710***    
SMB Portfolio 0.2469*** 0.1090***   
HML Portfolio -0.0569 0.1533 0.1149***  
Dividend Yield -0.9309*** -0.3438*** -0.0046 0.0067*** 
Regime 2     
Market Portfolio 0.1222***    
SMB Portfolio 0.2447*** 0.0840***   
HML Portfolio -0.2950*** -0.2393*** 0.0775***  
Dividend Yield -0.9408*** -0.2566*** 0.2407*** 0.0039*** 
Regime 3     
Market Portfolio 0.1196***    
SMB Portfolio 0.0919*** 0.0641***   
HML Portfolio 0.3596*** 0.2531*** 0.0778***  
Dividend Yield -0.9234*** -0.1573*** -0.3911*** 0.0063*** 
Regime 4     
Market Portfolio 0.3617***    
SMB Portfolio 0.2762*** 0.2174***   
HML Portfolio 0.5997*** -0.3057*** 0.2546***  
Dividend Yield -0.9212*** -0.1393*** -0.5147*** 0.0265*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 0.3882 (0.1868) 0.2952(0.1117) 0.0537 (0.0733) 0.2629 
Regime 2 0.0638 (0.0541) 0.9282 (0.0670) 1.79e-10 (0.0440) 0.0080 
Regime 3 0.0103(0.0727) 0.0135 (0.0106) 0.9118 (0.0696) 0.0644 
Regime 4 0.2357(0.1939) 0.0376 (0.0935) 0.2020 (0.1063) 0.5247 

* significance at 10% level, ** significance at 5%, *** significance at 1%. 
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Table 5 

Optimal Portfolio Weights under Rebalancing 
This table reports optimal weights on the market (Panel A), size (Panel B) and value (Panel C) portfolios as a function of 
the rebalancing frequency ϕ for an investor with a coefficient of relative risk aversion of 5. Returns are assumed to be 
generated by the regime switching model of Table 3. Allocations marked as ‘NA’ have ϕ ≥ T and imply portfolio weights 
identical to the buy-and-hold case. For comparison, portfolio weights under a Gaussian VAR(1) model (where the 
dividend yield and portfolio returns are set at their unconditional sample mean) are also shown. 
 

Panel A: Market Portfolio 

Rebalancing Frequency ϕ Investment Horizon T (months) 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Gaussian VAR(1) (Linear Predictability) 

ϕ = T (buy-and-hold) 0.56 0.58 0.60 0.62 0.82 1.13 
Hedging demand NA 0.14 0.14 0.14 0.14 0.14 

 Regime 1 
ϕ = T (buy-and-hold) -0.01 0.28 0.36 0.47 0.55 0.59 

ϕ = 24 months NA NA NA NA 0.53 0.53 
ϕ = 12 months NA NA NA 0.42 0.42 0.42 
ϕ = 6 months NA NA 0.32 0.32 0.32 0.32 
ϕ = 3 months NA -0.10 -0.13 -0.13 -0.13 -0.13 
ϕ = 1 month NA -0.18 -0.18 -0.18 -0.18 -0.18 

Hedging demand NA 0.21 0.21 0.21 0.21 0.21 
 Regime 2 

ϕ = T (buy-and-hold) 2.17 1.42 1.17 0.98 0.79 0.69 
ϕ = 24 months NA NA NA NA 0.87 0.87 
ϕ = 12 months NA NA NA 1.05 1.05 1.05 
ϕ = 6 months NA NA 1.33 1.30 1.30 1.30 
ϕ = 3 months NA 1.65 1.61 1.56 1.55 1.55 
ϕ = 1 month NA 2.12 2.12 2.12 2.12 2.12 

Hedging demand NA -0.05 -0.05 -0.05 -0.05 -0.05 
 Regime 3 

ϕ = T (buy-and-hold) 1.17 0.82 0.74 0.67 0.66 0.65 
ϕ = 24 months NA NA NA NA 0.69 0.69 
ϕ = 12 months NA NA NA 0.71 0.71 0.71 
ϕ = 6 months NA NA 0.78 0.78 0.78 0.78 
ϕ = 3 months NA 0.91 0.91 0.91 0.91 0.91 
ϕ = 1 month NA 1.29 1.29 1.29 1.29 1.29 

Hedging demand NA 0.12 0.12 0.12 0.12 0.12 
 Regime 4 

ϕ = T (buy-and-hold) 2.04 0.33 0.40 0.50 0.56 0.62 
ϕ = 24 months NA NA NA NA 0.54 0.54 
ϕ = 12 months NA NA NA 0.44 0.44 0.44 
ϕ = 6 months NA NA 0.39 0.39 0.39 0.39 
ϕ = 3 months NA 0.84 0.84 0.84 0.84 0.84 
ϕ = 1 month NA 1.75 1.75 1.75 1.75 1.75 

Hedging demand NA -0.29 -0.29 -0.29 -0.29 -0.29 
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Panel B – SMB (size) Portfolio 
 

Rebalancing Frequency ϕ Investment Horizon T (months) 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Gaussian VAR(1) (Linear Predictability) 

ϕ = T (buy-and-hold) -0.57 -0.61 -0.55 -0.49 -0.37 -0.28 
Hedging demand NA 0.47 0.47 0.47 0.47 0.47 

 Regime 1 
ϕ = T (buy-and-hold) -0.10 0.03 -0.03 -0.11 -0.20 -0.22 

ϕ = 24 months NA NA NA NA -0.17 -0.17 
ϕ = 12 months NA NA NA -0.09 -0.09 -0.09 
ϕ = 6 months NA NA -0.01 -0.01 -0.01 -0.01 
ϕ = 3 months NA 0.04 0.04 0.04 0.04 0.04 
ϕ = 1 month NA -0.01 -0.01 -0.01 -0.01 -0.01 

Hedging demand NA 0.09 0.09 0.09 0.09 0.09 
 Regime 2 

ϕ = T (buy-and-hold) -2.17 -0.96 -0.68 -0.50 -0.30 -0.28 
ϕ = 24 months NA NA NA NA -0.41 -0.41 
ϕ = 12 months NA NA NA -0.48 -0.48 -0.48 
ϕ = 6 months NA NA -0.91 -0.91 -0.91 -0.91 
ϕ = 3 months NA -1.51 -1.47 -1.41 -1.38 -1.38 
ϕ = 1 month NA -2.16 -2.16 -2.16 -2.16 -2.16 

Hedging demand NA 0.01 0.01 0.01 0.01 0.01 
 Regime 3 

ϕ = T (buy-and-hold) -0.89 -0.54 -0.43 -0.32 -0.28 -0.27 
ϕ = 24 months NA NA NA NA -0.30 -0.30 
ϕ = 12 months NA NA NA -0.35 -0.35 -0.35 
ϕ = 6 months NA NA -0.49 -0.49 -0.49 -0.49 
ϕ = 3 months NA -0.71 -0.71 -0.71 -0.71 -0.71 
ϕ = 1 month NA -0.96 -0.96 -0.96 -0.96 -0.96 

Hedging demand NA -0.07 -0.07 -0.07 -0.07 -0.07 
 Regime 4 

ϕ = T (buy-and-hold) 0.72 0.31 0.14 0.00 -0.13 -0.17 
ϕ = 24 months NA NA NA NA -0.04 -0.04 
ϕ = 12 months NA NA NA 0.10 0.10 0.10 
ϕ = 6 months NA NA 0.26 0.26 0.26 0.26 
ϕ = 3 months NA 0.45 0.45 0.45 0.45 0.45 
ϕ = 1 month NA 0.67 0.67 0.67 0.67 0.67 

Hedging demand NA -0.05 -0.05 -0.05 -0.05 -0.05 
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Panel C – HML (Book-to-market) Portfolio  
 

Rebalancing Frequency ϕ Investment Horizon T (months) 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Gaussian VAR(1) (Linear Predictability) 

ϕ = T (buy-and-hold) -0.01 -0.01 0.03 0.12 0.26 0.39 
Hedging demand NA -0.39 -0.39 -0.39 -0.39 -0.39 

 Regime 1 
ϕ = T (buy-and-hold) 0.02 0.22 0.20 0.16 0.12 0.12 

ϕ = 24 months NA NA NA NA 0.14 0.14 
ϕ = 12 months NA NA NA 0.19 0.19 0.19 
ϕ = 6 months NA NA 0.23 0.23 0.23 0.23 
ϕ = 3 months NA 0.24 0.24 0.24 0.24 0.24 
ϕ = 1 month NA 0.03 0.03 0.03 0.03 0.03 

Hedging demand NA 0.01 0.01 0.01 0.01 0.01 
 Regime 2 

ϕ = T (buy-and-hold) -0.42 -0.15 0.00 0.09 0.12 0.13 
ϕ = 24 months NA NA NA NA 0.10 0.10 
ϕ = 12 months NA NA NA -0.05 -0.05 -0.05 
ϕ = 6 months NA NA -0.07 -0.06 -0.06 -0.06 
ϕ = 3 months NA -0.18 -0.15 -0.11 -0.11 -0.11 
ϕ = 1 month NA -0.44 -0.45 -0.45 -0.45 -0.45 

Hedging demand NA -0.02 -0.02 -0.02 -0.02 -0.02 
 Regime 3 

ϕ = T (buy-and-hold) 0.23 0.10 0.09 0.10 0.13 0.15 
ϕ = 24 months NA NA NA NA 0.13 0.13 
ϕ = 12 months NA NA NA 0.11 0.11 0.11 
ϕ = 6 months NA NA 0.11 0.09 0.09 0.09 
ϕ = 3 months NA 0.00 0.00 0.00 0.00 0.00 
ϕ = 1 month NA 0.25 0.25 0.25 0.25 0.25 

Hedging demand NA 0.02 0.02 0.02 0.02 0.02 
 Regime 4 

ϕ = T (buy-and-hold) -0.10 0.40 0.32 0.24 0.18 0.14 
ϕ = 24 months NA NA NA NA 0.24 0.24 
ϕ = 12 months NA NA NA 0.29 0.29 0.29 
ϕ = 6 months NA NA 0.41 0.41 0.41 0.41 
ϕ = 3 months NA 0.50 0.51 0.52 0.52 0.52 
ϕ = 1 month NA 0.01 0.01 0.01 0.01 0.01 

Hedging demand NA -0.09 -0.09 -0.09 -0.09 -0.09 
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Table 6 

Effects of Parameter Estimation Uncertainty 
 

This table reports 95% (asymptotic) confidence intervals for a buy-and-hold investor’s optimal portfolio weights at 
different investment horizons, T, assuming a constant relative risk aversion coefficient of 5. Intervals are calculated by 
the delta method. Under regime switching, portfolio returns are assumed to be generated by the model 

tst t
εµr +=  

where 
ts

µ  are the intercepts in state st and ),( ~
tst N Σ0ε  is the vector of return innovations.  

 
 

  Investment Horizon T Investment Horizon T 
  T=1 T=6 T=60 T=120 T=1 T=6 T=60 T=120
  A: Allocation to the Market 

Portfolio 
B: Allocation to the SMB 

(Size) Portfolio 
Mean + 2 SD -0.30 -0.30 -0.30 -0.30 0.95 0.95 0.95 0.95 
Mean -0.49 -0.49 -0.49 -0.49 0.81 0.81 0.81 0.81 I.I.D. 
Mean - 2 SD -0.68 -0.68 -0.68 -0.68 0.67 0.67 0.67 0.67 
Mean + 2 SD 0.43 0.58 0.79 0.83 0.70 0.51 0.22 -0.02 
Mean -0.01 0.28 0.55 0.59 -0.10 0.03 -0.20 -0.22 Regime 1 
Mean - 2 SD -0.45 -0.02 0.31 0.35 -0.90 -0.45 -0.62 -0.42 
Mean + 2 SD 2.41 2.02 1.15 0.97 -3.17 0.28 0.18 0.16 
Mean 2.17 1.42 0.79 0.69 -2.17 -0.96 -0.30 -0.28 Regime 2 
Mean - 2 SD 1.97 0.82 0.43 0.41 -1.17 -2.20 -0.78 -0.72 
Mean + 2 SD 1.79 1.10 0.90 0.81 -0.07 0.08 0.16 0.15 
Mean 1.17 0.82 0.66 0.65 -0.89 -0.54 -0.28 -0.27 Regime 3 
Mean - 2 SD 0.55 0.54 0.42 0.39 -1.71 -1.16 -0.72 -0.69 
Mean + 2 SD 3.40 0.69 0.80 0.88 2.04 0.81 0.25 0.21 
Mean 2.04 0.33 0.56 0.62 0.72 0.31 -0.13 -0.17 Regime 4 
Mean - 2 SD 0.68 -0.03 0.32 0.56 0.60 -0.19 -0.51 -0.21 

  C: Allocation to the HML 
(Book-to-Market) Portfolio

D: Allocation to T-bills 

Mean + 2 SD 0.14 0.14 0.14 0.14 0.80 0.80 0.80 0.80 
Mean -0.00 -0.00 -0.00 -0.00 0.68 0.68 0.68 0.68 I.I.D. 
Mean - 2 SD -0.14 -0.14 -0.14 -0.14 0.56 0.56 0.56 0.56 
Mean + 2 SD 0.60 0.60 0.56 0.56 1.66 1.09 1.10 1.11 
Mean 0.02 0.22 0.12 0.12 1.08 0.47 0.52 0.53 Regime 1 
Mean - 2 SD -0.56 -0.26 -0.32 -0.32 0.50 -0.15 -0.06 -0.05 
Mean + 2 SD 1.08 0.67 0.58 0.59 2.72 1.29 0.99 0.97 
Mean -0.42 -0.15 0.12 0.13 1.42 0.69 0.39 0.39 Regime 2 
Mean - 2 SD -1.92 -0.97 -0.34 -0.33 0.12 0.09 -0.21 -0.19 
Mean + 2 SD 1.41 0.66 0.57 0.59 2.00 1.51 1.08 1.07 
Mean 0.23 0.10 0.13 0.15 0.48 0.63 0.48 0.47 Regime 3 
Mean - 2 SD -0.95 -0.46 -0.31 -0.29 -1.04 -0.29 -0.12 -0.13 
Mean + 2 SD 1.44 0.90 0.62 0.58 0.12 0.64 0.93 0.96 
Mean -0.10 0.40 0.18 0.14 -1.66 -0.04 0.39 0.40 Regime 4 
Mean - 2 SD -1.64 -0.10 -0.26 -0.30 -3.44 -0.72 -0.15 -0.16 
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Figure 1 

Smoothed State Probabilities for Regime Switching Models fitted to   
Individual Stock Portfolios 

The graphs plot smoothed state probability estimates for the Markov switching model 

ts

p

j
jtsjst ttt

rar εσµ ++= ∑
=

−
1

,  

where 
ts

µ  is the intercept vector in state St, 
tsja ,  is the j-th order autoregressive coefficients in state St and 

),0( ~ 2
tst N σε . The unobserved state variable St is governed by a first-order Markov chain that can assume k distinct 

values. The sample period is 1927:12 – 2001:12. 
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Figure 2 
Smoothed State Probabilities: Four-State Model for SMB, HML and  

Market Portfolio Returns 
The graphs plot the smoothed probabilities of regimes 1-4 for the multivariate Markov switching model comprising 
monthly return series on SMB and HML portfolios and excess returns on the value-weighted market portfolio. The 
sample period is 1927:12 – 2001:12. Parameter estimates underlying these plots are reported in Table 3. 
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Figure 3 
Smoothed State Probabilities: Four-State Model for Equity Returns and the Dividend Yield 

The graphs plot the smoothed probabilities of regimes 1-4 for the multivariate Markov switching model comprising 
monthly return series on the SMB and HML portfolios, the value-weighted market portfolio and the dividend yield. The 
sample period is 1927:12 – 2001:12. Parameter estimates underlying these plots are reported in Table 4. 
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Figure 4 

Optimal Asset Allocation as a Function of the Investment Horizon 
The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and risk-free T-bills under a four-
state regime switching model as a function of the investment horizon for an investor with constant coefficient of relative 
risk aversion γ = 5. 
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Figure 5 

Optimal Asset Allocation under Predictability from the Dividend Yield 
The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and risk-free T-bills under a four-
state regime switching model in which the dividend yield predicts portfolio returns as a function of the investment 
horizon for an investor with constant coefficient of relative risk aversion γ = 5.  
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Figure 6 

Comparison of Optimal Asset Allocation Across Models 
The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and risk-free T-bills as a function 
of the investment horizon for an investor with constant coefficient of relative risk aversion γ = 5. The VAR(1) model 
assumes predictability from the dividend yield. The MS model assumes the presence of four states while the MS-VAR(1) 
model allows for four regimes and predictability from the dividend yield.  
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Figure 7 

Welfare Costs of Ignoring Regimes 
This graph shows the compensation required for a buy-and-hold investor with power utility (γ = 5) to be willing to 
ignore regimes in asset returns surrounded by 95% confidence bands computed using the delta method.  
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