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Abstract

Refined asymptotic methods are used to produce degrees-of-freedom

adjusted Edgeworth and Cornish-Fisher size corrections of the t and F

testing procedures for the parameters of a S.U.R. model with serially

correlated errors. The corrected tests follow the Student-t and F distri-

butions, respectively, with an approximation error of order O(τ3), where

τ = 1/
√
T and T is the number of time observations. Monte Carlo sim-

ulations provide evidence that the size corrections suggested hereby have

better finite sample properties, compared to the asymptotic testing pro-

cedures (either standard or Edgeworth corrected), which do not adjust for
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the degrees of freedom.
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1 Introduction

Refined asymptotic methods can considerably improve the finite-sample perfor-

mance of estimation and testing procedures in applied econometric research (see,

e.g., Ullah (2004), for a survey). These methods involve higher order asymp-

totic approximations of the distributions of well known economertic estima-

tors and/or test statistics which can efficiently approximate their sample dis-

tributions (see Magdalinos and Symeonides (1995), Magee (1985), Rothenberg

(1984b), Symeonides et al. (2007), inter alia). In finite samples, considerable

discrepancies between the true and estimated values of these estimators or nor-

mality of error terms lead to substantial differences between the actual (sample)

and nominal size of standard testing procedures. In the literature, these discrep-

ancies are found to be very severe, especially for the linear regression model with

non-scalar covariance matrix of error terms estimated by the feasible general-

ized least squares (FGLS), or maximum likelihood. Estimation of this model

requires efficient methods of estimating the nuisance parameters of the error

term covariance matrix.

Despite the substantial amount of work on refined asymptotic bias expan-

sions of alternative estimators for the linear regression model or simultaneous

systems of equations (see, e.g., Iglesias and Phillips (2010, 2011), Kiviet and

Phillips (1996), Phillips (2000, 2007), inter alia), there are only a few papers in
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the literature of applying these methods to conventional test statistics, like the

F and t ones. Rothenberg (1984b, 1988) used Edgeworth expansions in terms of

the chi-square and normal distributions, respectively, to derive general formu-

lae of corrected critical values of the Wald (or F ) and t test statistics. Instead

of using Edgeworth corrections of the critical values, Magdalinos and Syme-

onides (1995) suggested the use of degrees-of-freedom-adjusted Cornish-Fisher

corrected t and F statistics for the linear regression model with first-order au-

tocorrelated errors. Cornish-Fisher corrected t and F statistics for the linear

regression model with heteroskedastic error term have been recently suggested

by Symeonides et al (2007).

In this paper, we extend the above testing procedures of Rothemberg, Mag-

dalinos and Symeonides to systems of Seemingly Unrelated Regression (S.U.R.)

equations which allow for first-order autoregressive error terms. This is a multi-

regression model which is frequently used in economics to simultaneously esti-

mate investment functions, arbitrage asset pricing models, demand equations of

different economic units (like industries, assets or countries) allowing for cross-

correlation among them. Panel data models with fixed or random effects can

be seen as special cases of the S.U.R model. Allowing for autoregression in the

error terms, the S.U.R model can capture dynamic effects of the dependent and

independent variables on economic relationships of interest, often considered in

macroeconomic studies.

In particular, the paper derives degrees-of-freedom adjusted Edgeworth cor-

rected critical values and Cornish-Fisher corrected statistics of the t and F

testing procedures, for the above extension of the S.U.R. model, with serially

correlated errors, estimated using FGLS. These corrections follow the Student-t
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and F distributions, respectively, with an approximation error of order O(τ3),

where τ = 1/
√
T and T is the number of time observations of the sample. The

use of degree-of-freendom adjusted forms of the above tests lead to approxi-

mations that are ‘locally exact’, i.e., the approximate distributions reduce to

the exact ones, when the model is sufficiently simplified Magdalinos (1985).

These approximations are found to increase the small sample performance of

the tests (see Magdalinos and Symeonides (1995), Symeonides et al. (2007)). To

our knowledge, this is the first paper in the literature which suggests size cor-

rected test statistics for the S.U.R. model with serially correlated errors. The

most closely related to our work is that of Strivastava and Maekawa (1995)

who provided an Edgeworth expansion of the limiting distribution of the FGLS

estimator of the S.U.R. model under the assumption of non-normal error terms.

Since the Cornish-Fisher expansion is the inversion of the Edgeworth cor-

rection of the critical values, the Edgeworth and Cornish-Fisher size corrections

are asymptotically equivalent to the order of the required accuracy. However,

the use of the Cornish-Fisher corrected test statistics, instead of the Edgeworth

corrected critical values, can be recommended, in practice, for the following

two main reasons (see Cornish and Fisher (1937), Fisher and Cornish (1960),

Hill and Davis (1968), Magdalinos (1985), inter alia): First, they are proper

random variables and their distributions have well-behaved tails, whereas the

Edgeworth approximations are not well-defined distribution functions. The lat-

ter may assign negative ‘probabilities’ in the tails of the distributions. Second,

the Cornish-Fisher corrected test statistics can be readily implemented in ap-

plied research based on the tables of standard distributions, which are publicly

available. They do not require the calculation of new critical values.
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The paper is organised as follows. Section 2 provides some preliminary no-

tations. Section 3 presents the S.U.R. model and the assumptions needed in

our expansions. Analytic formulae for the locally exact Edgeworth and Cornish-

Fisher second order size corrections of the t and F test statistics are derived in

Section 4. Section 5 conducts out a Monte Carlo exercise evaluating the perfor-

mance of the suggested corrected tests. Finally, Section 6 concludes the paper.

Proofs of the results of the paper are given in the Appendix.

2 Preliminary notation

Throughout the paper, we use the tr, vec, ⊗, and matrix differentiation notation

as defined in Dhrymes (1978, pages 518–540), and for any two indices i and j, we

denote Kronecker’s delta as δij . Moreover, any (n×m) matrix L with elements

lij is denoted as

L = [(lij)i=1, ..., n; j=1, ..., m],

with obvious modifications for vectors and square matrices. If lij are (ni ×mj)

matrices, then L is the (
∑
ni×

∑
mj) partitioned matrix with submatrices lij .

The following matrices:

PX = X(X ′X)−1X ′, PX = I − PX = I −X(X ′X)−1X ′

denote the orthogonal projectors into the spaces spanned by the columns of the

matrix X and its orthogonal complement, respectively. Finally, for any stochas-

tic quantity (scalar, vector, or matrix) we use the symbol E(·) to denote the

expectation operator.
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3 The model

Consider a S.U.R. system of M contemporaneously correlated regression equa-

tions of the form

yµ = Xµβµ + uµ (µ = 1, . . . , M), (1)

where yµ are (T ×1) vectors of observations on the dependent variables, Xµ are

(T ×nµ) matrices of observations on sets of nµ non-stochastic regressors, βµ are

(nµ×1) vectors of parameters to be estimated and uµ are (T×1) vectors of non-

observable serially correlated stochastic error terms of the µ-th equation, defined

as utµ (t = 1, . . . , T ). These terms are generated by the following stationary

first-order autoregressive (AR(1)) process:

utµ = ρµu(t−1)µ + εtµ, −1 < ρµ < 1 (t = 1, . . . , T ; µ = 1, . . . , M), (2)

where εtµ are normally distributed innovations. For any two indices µ, µ′ =

1, . . . , M , we have E(εtµ) = 0, for all t. Moreover, for t 6= 1 or t′ 6= 1, the co-

variance between two innovations εtµ and εt′µ′ is given as E(εtµεt′µ′) = δtt′σµµ′ .

For t = t′ = 1 and µ, µ′ = 1, . . . , M , E(εtµεt′µ′) becomes

E(ε1µε1µ′) = σµµ′(1− ρ2µ)1/2(1− ρ2µ′)1/2/(1− ρµρµ′), (3)

see Parks (1967, pages 507–508). In addition to assumption ρµ ∈ (−1, 1), sta-

tionarity of AR(1) processes (2) implies the following relationships on the initial

conditions of the error terms of the S.U.R. equations:

u1µ = (1− ρ2µ)−1/2ε1µ (t = 1; µ = 1, . . . , M). (4)
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These relationships imply that, for all t = 1, . . . , T and µ, µ′ = 1, . . . , M , the

error terms utµ satisfy the following conditions:

E(utµ) = 0, E(u2tµ) = σµµ/(1− ρ2µ), E(utµutµ′) = σµµ′/(1− ρµρµ′). (5)

Let n =
∑M
µ=1 nµ, and define the (MT × 1) vectors y and u, the (n × 1)

vector β and the (MT × n) block diagonal matrix X as follows:

y = [(yµ)µ=1, ..., M ], u = [(uµ)µ=1, ..., M ],

β = [(βµ)µ=1, ..., M ], (6)

X = [(δµµ′Xµ)µ,µ′=1, ..., M ].

Then, the system of equations (1) can be written in a matrix form as follows:

y1

y2

...

yM


=



X1 0 · · · 0

0 X2 · · · 0

...
...

. . .
...

0 0 · · · XM





β1

β2

...

βM


+



u1

u2

...

uM


, (7)

or, more compactly in a vectorized form, as

y = Xβ + u. (8)

To derive size corrected significance tests for the elements of the vector β, the

above representations of the S.U.R. system will be written in an autocorrelation-

free form, after applying appropriate transformations on y, X and u. Following
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Parks (1967), define the (T × T ) matrices Pµ and Rµµ
′
as follows:

Pµ =



(1− ρ2µ)−
1
2 0 0 · · · 0

(1− ρ2µ)−
1
2 ρµ 1 0 · · · 0

(1− ρ2µ)−
1
2 ρ2µ ρµ 1 · · · 0

...
...

...
. . .

...

(1− ρ2µ)−
1
2 ρT−1µ ρT−2µ ρT−3µ · · · 1


, Rµµ

′
= P−1′µ P−1µ′ , (9)

and the following (MT ×MT ) block diagonal matrix

P = [(δµµ′Pµ)µ,µ′=1, ..., M ]. (10)

Then, (2) implies that the (T × 1) random vectors uµ can be written as

uµ = Pµεµ (µ = 1, . . . , M), (11)

where εµ are (T × 1) random vectors with non-autocorrelated elements εtµ, i.e.,

εµ = [(εtµ)t=1, ..., T ; µ=1, ..., M ]. (12)

As in (11), consider the (T ×1) vectors yµ∗ and (T ×nµ) matrices Xµ∗, with

non-autocorrelated elements, satisfying the following relations:

yµ∗ = P−1µ yµ, Xµ∗ = P−1µ Xµ, (13)

and define the (MT × 1) vector y∗ and (MT × n) block diagonal matrix X∗ as

follows:

y∗ = [(yµ∗)µ=1, ..., M ], X∗ = [(δµµ′Xµ∗)µ,µ′=1, ..., M ]. (14)

Then, premultiplying the µ-th equation of (7) by P−1µ , we can derive the fol-
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lowing S.U.R. model with non-autocorrelated error terms:

y1∗

y2∗

...

yM∗


=



X1∗ 0 · · · 0

0 X2∗ · · · 0

...
...

. . .
...

0 0 · · · XM∗





β1

β2

...

βM


+



ε1

ε2

...

εM


(15)

(see Zellner (1962, 1963), Zellner and Huang (1962), Zellner and Theil (1962)).

In more compact form, this model can be written as

y∗ = X∗β + ε, (16)

where y∗ = P−1y, X∗ = P−1X and ε = P−1u. The above representation of

the S.U.R. system implies that the (MT × 1) error vector u in (8) is normally

distributed with mean and variance-covariance matrix given as follows:

E(u) = 0, E(uu′) = Ω−1 = PE(εε′)P ′ = P (Σ⊗ IT )P ′, (17)

where

Σ = [(σµµ′)µ,µ′=1, ..., M ]. (18)

The last relationship implies that

Ω = P ′−1(Σ−1 ⊗ IT )P−1 (19)

is a function of the ((M + M2) × 1) parameter vector γ = (%′, ς ′)′, where % =

(ρ1, . . . , ρM )′ is the (M × 1) vector of autocorrelation coefficients in (2) and ς

is the (M2 × 1) vector ς = vec(Σ−1) ∈ £ = RM2 − 0, where 0 is the subspace

of RM2

in which Σ is not positive definite. After defining the composite index

(µµ′) = µ+M(µ′ − 1) ((µµ′) = 1, . . . , M2), (20)
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for any two indices µ, µ′ = 1, . . . , M , it can be easily seen that the (µµ′)-th

element of vector ς, denoted as ς(µµ′), is actually the (µ, µ′)-th element of matrix

Σ−1, denoted as σµµ
′
.

The system of equations (16) (or (15)) can be seen as the vectorized repre-

sentation of the following form of the S.U.R. model of M equations:

Y∗ = ZB + E, (21)

where Y∗ and E are (T ×M) random matrices defined as

y∗ = vec(Y∗), ε = vec(E), (22)

respectively, where the rows of matrix E are NM (0,Σ) random vectors and B

is a (K ×M) matrix whose columns, denoted as bµ, are defined as

bµ = Ψµβµ (µ = 1, . . . , M), (23)

where Ψµ are (K × nµ) known submatrices of the (MK × n) block diagonal

matrix

Ψ = [(δµµ′Ψµ)µ,µ′=1, ..., M ]. (24)

Finally, Z is a (T ×K) matrix with non-autocorrelated columns, defined by the

following relationship:

X∗ = [(δµµ′Xµ∗)µ,µ′=1, ..., M ] = [(δµµ′ZΨµ)µ,µ′=1, ..., M ]

= [(δµµ′Z)µ,µ′=1, ..., M ][(δµµ′Ψµ)µ,µ′=1, ..., M ]

= (IM ⊗ Z)Ψ. (25)

The above representation of the S.U.R. model, given by (21), will facilitate the

expansions needed in our derivations of the size corrected tests suggested in the

paper.

10



3.1 Assumptions

To carry out our expansions, it would be theoretically convenient to introduce

a reparameterization of the error covariance matrix of model (8) as follows:

y = Xβ + σu, σ > 0, u ∼ NMT (0,Ω−1), (26)

assuming that parameter σ2 can be estimated separately from the rest terms of

the covariance matrix Ω−1 of vector u.1

For the derivation of our size correceted tests, we need to make a number of

assumptions on the elements of matrix Ω, which is the inverse of the variance-

covariance matrix of the error vector u. To this end, we denote as Ωi, Ωij ,

etc., the (MT × MT ) matrices of first, second and higher-order derivatives,

respectively, of the elements of matrix Ω with respect to the elements of the

((M + M2) × 1) vector of nuisance parameters γ = (%′, ς ′)′. For any estimator

of γ, define the ((1 +M +M2)× 1) vector δ, with elements

δ0 =
σ̂2 − 1

τ
, δρµ =

ρ̂µ − ρµ
τ

, δς(µµ′) =
ς̂(µµ′) − ς(µµ′)

τ
, (27)

where µ = 1, . . . , M, (µµ′) = 1, . . . , M2 and τ = 1/
√
T is the ‘asymptotic

scale’ of our second order stochastic expansions. Then, our size corrected tests

can be derived based on the following assumption.

Assumption 1:
1The nuisance parameters σ and γ can be simultaneously identified under the restriction

σ = 1, which implies that the estimate of matrix Σ, denoted as Σ̂, is accurate, up to a

multiplicative factor. This is not true in samples with small time dimension. A convenient

method to estimate σ is through the following feasible GL estimator

σ̂GL =
[
(y −Xβ̂)′

(
P̂ ′−1
GL (Σ̂−1

GL ⊗ IT )P̂−1
GL

)
(y −Xβ̂)/(MT − n)

]1/2
,

where β̂ is the feasible GL estimator based on any consistent estimators of Σ−1 and P−1.
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(i) The elements of Ω and Ω−1 are bounded for all T , all vectors % with

elements ρµ ∈ (−1, 1), and all vectors ς ∈ £. Moreover, the following

matrices:

A = X ′ΩX/T, F = X ′X/T, Γ = Z ′Z/T (28)

converge to non-singular limits, as T →∞.

(ii) Up to the fourth order, the partial derivatives of the elements of Ω with

respect to the elements of % and ς, are bounded for all T , all vectors % with

elements in the interval (−1, 1), and all vectors ς ∈ £.

(iii) The estimators %̂ and ς̂ are even functions of u, and they are functionally

unrelated to the parameter vector β, i.e., they can be written as functions

of X, Z, and u only.

(iv) The vector of nuisance parameters δ admits a stochastic expansion of the

form

δ =
[
δ0, [(δρµ)µ=1, ..., M ]′, [(δς(µµ′))(µµ′)=1, ..., M2 ]′

]′
= d1 + τd2 + ω(τ2), (29)

where the order of magnitude ω(·), defined in the Appendix, has the same

operational properties as order O(·), and the expectations

E(d1d
′
1), E(

√
Td1 + d2) (30)

exist and have finite limits, as T →∞.

The first two conditions of Assumption 1 imply that the following matrices:

Ai = X ′ΩiX/T, Aij = X ′ΩijX/T, A∗ij = X ′ΩiΩ
−1ΩjX/T (31)

12



are bounded. Thus, according to Magdalinos (1992), the Taylor series expansion

of β constitutes a stochastic expansion. Since the vectors of nuisance parameters

% and ς are functionally unrelated to β, condition (iii) of Assumption 1 is sat-

isfied for a wide class of estimators %̂ and ς̂, including the maximum likelihood

estimators and the simple or iterative estimators based on the regression resid-

uals (see Breusch (1980), Rothenberg (1984a)). Note that we need not assume

that estimators %̂ and ς̂ are asymptotically efficient.

Moreover, conditions (i)–(iv) of Assumption 1 should be satisfied by all the

estimators of % and ς, considered in the paper. The estimators of the elements of

%, i.e., ρµ (µ = 1, ...,M) include the following: the least squares (LS), Durbin-

Watson (DW), generalized least squares (GL), Prais-Winsten (PW) and maxi-

13



mum likelihood (ML).2 The elements of vector ς = vec(Σ−1) can be estimated

by

ς̂ = vec
[
(Y∗ − ZB̂)′(Y∗ − ZB̂)/T

]−1
, (32)

where B̂ is any consistent estimator of the matrix of parameters B of regression

model (21). Consistent estimators of B include the unrestricted and restricted

least squares (denoted as UL and RL, respectively), the simple and iterative

generalized least squares (denoted as GL and IG, respectively) and the maximum

likelihood (ML) estimators.3

To present the expansions suggested in the paper, expectations E(d1d
′
1) and

2The closed forms of these estimators of ρµ, for all µ, are given as follows:

(i) LS:

ρ̃µ =
∑T

t=2
ũtµũ(t−1)µ

/∑T

t=1
ũ2tµ,

where ũtµ are the LS residuals of regression model (1).

(ii) DW:

ρ̂
(DW )
µ = 1− (DW/2),

where the DW is the Durbin-Watson statistic.

(iii) GL:

ρ̂µ =
∑T

t=2
ûtµû(t−1)µ

/∑T

t=1
û2tµ,

where ûtµ denote the GL estimates of utµ, based on the autocorrelation-correction of

regression model (1), for all µ, using any asymptotically efficient estimator of ρµ.

(iv) PW: This estimator of ρµ, denoted as ρ̂(PW )
µ , together with the PW estimator of β, de-

noted as β̂(PW )
µ , minimize the sum of squared GL residuals (Prais and Winsten (1954)).

(v) ML: This estimator, denoted as ρ̂(ML)
µ , satisfies a cubic equation with coefficients defined

in terms of the ML residuals (Beach and MacKinnon (1978)).

3The closed forms of these estimators of B are given as follows:

(i) UL:

B̂(UL) = (Z′Z)−1Z′Y∗.
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E(
√
Td1 + d2) will be defined as follows:

lim
T→∞

E(d1d
′
1) =


λ0 λ′% λ′ς

λ% Λ% Λ′%ς

λς Λ%ς Λς

 and lim
T→∞

E(
√
Td1 + d2) =


κ0

κ%

κς

 , (33)

respectively, where λ0 and κ0 are scalars, λ% and κ% are (M ×1) vectors, λς and

κς are (M2 × 1) vectors, Λ% is a (M ×M) matrix, Λς is a (M2 ×M2) matrix

and Λ%ς is a (M2 ×M) matrix. The following partitions of the above matrix

and vector will be of use in the paper:λ0 λ′

λ Λ

 and

κ0
κ

 , (34)

where

Λ =

Λ% Λ′%ς

Λ%ς Λς

 , λ =

λ%
λς

 and κ =

κ%
κς

 , (35)

where Λ is a ((M +M2)× (M +M2)) matrix, and λ and κ are ((M +M2)× 1)

vectors. The elements of the vectors and matrices in (33), (34) and (35) can be

interpreted as ‘measures’ of the accuracy of the expansions of estimators σ̂2, ρ̂µ

and ς̂(µµ′) around the true values of the corresponding parameters.

(ii) RL:

vec(B̂(RL)) = Ψ(X′∗X∗)
−1X′∗y∗.

(iii) GL:

vec(B̂(GL)) = Ψ
[
X′∗(Σ̂

−1
I ⊗ IT )X∗

]−1
X′∗(Σ̂

−1
I ⊗ IT )y∗,

where Σ̂−1
I is the UL or RL estimator of Σ.

(iv) IG: This estimator, denoted as B̂(IG), is computed by iterative implementation of the

GL estimator.

(v) ML: This estimator, denoted as B̂(ML), can be computed by iterating the GL estimation

process up to convergence (Dhrymes (1971)).
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4 Size corrected test statistics

In this section, we derive size corrected t, Wald and F test statistics, as well as

the second-order approximations of their distributions based on the conditions

of Assumption 1. The versions of the test statistics which adjust for the degrees

of freedom, namely the Student-t and F , are locally exact. That is, if the vector

of parameters γ = (%′, ς ′)′ is known to belong to a ball of radius ϑ, then the

approximate distributions of these test statistics become exact, as ϑ→ 0.

4.1 The t test

Let e be a (n× 1) vector of known quantities and e0 be a known scalar. To test

null hypothesis

H0 : e′β = e0 (36)

against its one-sided alternatives, the t statistic takes the following form:

t = (e′β − e0)/
[
σ̂2e′(X ′Ω̂X)−1e

]1/2
. (37)

This statistic takes into account the degrees of freedom of the Student-t distri-

bution.

For the derivation of the suggested asymptotic expansions, we define the

((M +M2)× 1) vector l and the ((M +M2)× (M +M2)) matrix L as follows:

l =

[
[(lρµ)µ=1, ..., M ]′, [(lς(µµ′))(µµ′)=1, ..., M2 ]′

]′
, (38)

L =


[(lρµρµ′ )µ,µ′=1,...,M ;] [(lρµς(νν′)) µ=1, ..., M ;

(νν′)=1,...,M2

]

[(lς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(lς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 , (39)
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where the elements of the vector l and the matrix L are defined below:

lρµ = h′GAρµGh, lς(µµ′) = h′GAς(µµ′)Gh,

lρµρµ′ = h′GCρµρµ′Gh, lρµς(νν′) = h′GCρµς(νν′)Gh, (40)

lς(νν′)ρµ = h′GCς(νν′)ρµGh, lς(µµ′)ς(νν′) = h′GCς(µµ′)ς(νν′)Gh,

where G = A−1 = (X ′ΩX/T )−1 is a (n×n) matrix, h = e/(e′Ge)1/2 is a (n×1)

vector and

Cρµρµ′ = A∗ρµρµ′ − 2AρµGAρµ′ +Aρµρµ′/2,

Cρµς(νν′) = A∗ρµς(νν′) − 2AρµGAς(νν′) +Aρµς(νν′)/2, (41)

Cς(µµ′)ς(νν′) = A∗ς(µµ′)ς(νν′) − 2Aς(µµ′)GAς(νν′) +Aς(µµ′)ς(νν′)/2,

with obvious modifications for Cς(νν′)ρµ .

The next two theorems give Edgeworth approximations of the distribution

functions of the t statistic, given by (37), and its version which adjusts for the

degrees of freedom.

Theorem 1. Under null hypothesis (36), the distribution function of the t

statistic, given by (37), admits the Edgeworth expansion

Pr{t ≤ x} = I(x)− τ2

2

[(
p1 + 1

2

)
+
(
p2 + 1

2

)
x2
]
xi(x) +O(τ3), (42)

where I(·) and i(·) are the standard normal distribution and density functions,

respectively, and

p1 = tr(ΛL) +
l′Λl

4
+ l′(κ+

λ

2
)−κ0 +

λ0 − 2

4
, p2 =

l′Λl − 2l′λ+ λ0 − 2

4
. (43)

Analytic formulae for the computation of scalars λ0, κ0, and the elements of λ,

κ, Λ, l and L are given in the Appendix (see Lemmas A.15 and A.17).
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Theorem 2. Under null hypothesis (36), the distribution function of the t

statistic, given by (37), admits the Edgeworth expansion

Pr{t ≤ x} = IMT−n(x)− τ2

2

[
p1 + p2x

2
]
xiMT−n(x) +O(τ3), (44)

where IMT−n(·) and iMT−n(·) are the Student-t distribution and density func-

tions, respectively, and quantities p1 and p2 are defined in (43).

Theorem 1 implies that we can calculate the Edgeworth corrected α% critical

value of t statistic (37) as

n∗α = nα +
τ2

2

[(
p1 + 1

2

)
+
(
p2 + 1

2

)
n2α
]
nα, (45)

based on the α% significant point of the standard normal distribution, denoted

as nα. Similarly, based on Theorem 2, we can calclulate the Edgeworth corrected

α% critical value of t statistic (37) as

t∗α = tα +
τ2

2

[
p1 + p2t

2
α

]
tα, (46)

using the α% significant point of the Student-t distribution, denoted as tα.

The Edgeworth approximation employed by Theorems 1 and 2 to obtain the

size corrected critical values n∗α and t∗α is not a proper distribution function, as

it can assign negative ‘probabilities’ in the tails of the approximate distribution.

To overcome this problem, we can use a Cornish-Fisher expansion. This corrects

the test statistics of interest, instead of their critical values. The Cornish-Fisher

expansion is simply the inversion of the Edgeworth correction of the critical

values and, thus, it is expected to have very similar properties around the mean

of the approximate distribution. However, at the tails of this distribution, which

are important for inference, the properties of the Cornish-Fisher expansion are

different. In fact, the Cornish-Fisher size corrected statistics constitute random
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variables with well-behaved tails, and thus they do not assign negative ‘proba-

bilities’ at the tails of their distributions.

The Cornish-Fisher corrected t statistic for testing null hypothesis (36) is

given in the following theorem.

Theorem 3. Under null hypothesis (36), the Cornish-Fisher size corrected t

statistic

t∗ = t− τ2

2

[
p1 + p2t

2
]
t (47)

is distributed, with an approximation error of order O(τ3), as a Student-t ran-

dom variable with MT − n degrees of freedom.

The Cornish-Fisher size corrected t statistic t∗, given by equation (47), can

be readily used, in practice, to test null hypothesis (36) against its one-sided

alternatives. This can be done by using the tables of the Student-t distribution

with MT − n degrees of freedom.

4.2 The Wald and F tests

Let H be a known (m×n) matrix of rank m and h0 be a known (m×1) vector.

To test null hypothesis

H0 : Hβ = h0, (48)

against all possible alternatives, we can use the Wald statistic

w = (Hβ̂ − h0)′
[
H(X ′Ω̂X)−1H ′

]−1
(Hβ̂ − h0)/σ̂2, (49)

or the familiar F statistic

F = (Hβ̂ − h0)′
[
H(X ′Ω̂X)−1H ′

]−1
(Hβ̂ − h0)/mσ̂2, (50)

which adjusts for the degrees of freedom.
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For the derivation of the suggested asymptotic expansions, we define the

(n× n) matrix

Q = H ′(HGH ′)−1H, (51)

and we partition the (n× n) matrices G = A−1 = (X ′ΩX/T )−1 and Ξ = GQG

and the (n× 1) vector h as follows:

G = [(Gij)i,j=1, ..., M ], Ξ = [(Ξij)i,j=1, ..., M ], h = [(hi)i=1, ..., M ], (52)

where Gij and Ξij are the (i, j)-th (ni × nj) submatrices of G and Ξ, respec-

tively, and hi = ei/(e
′Ge)1/2 is the i-th (ni × 1) subvector of h, where ei is the

corresponding i-th (ni × 1) subvector of the (n× 1) vector e.

Next, define the ((M +M2)× 1) vector c, and the ((M +M2)× (M +M2))

matrices C and D∗ as follows:

c =

[
[(cρµ)µ=1, ..., M ]′, [(cς(µµ′))(µµ′)=1, ..., M2 ]′

]′
, (53)

C =


[(cρµρµ′ )µ,µ′=1, ..., M ] [(cρµς(νν′)) µ=1, ..., M ;

(νν′)=1, ..., M2

]

[(cς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(cς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 (54)

and

D∗ =


[(dρµρµ′ )µ,µ′=1, ..., M ] [(dρµς(νν′)) µ=1, ..., M ;

(νν′)=1, ..., M2

]

[(dς(νν′)ρµ)(νν′)=1, ..., M2;
µ=1, ..., M

] [(dς(µµ′)ς(νν′))(µµ′)=1, ..., M2;

(νν′)=1, ..., M2

]

 , (55)
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where the elements of vector c, and matrices C and D∗ are defined as follows:

cρµ = tr(AρµΞ), cρµρµ′ = tr(Cρµρµ′ Ξ),

cρµς(νν′) = tr(Cρµς(νν′)Ξ),

cς(µµ′) = tr(Aς(µµ′)Ξ), cς(µµ′)ς(νν′) = tr(Cς(µµ′)ς(νν′)Ξ), (56)

dρµρµ′ = tr(D∗ρµρµ′ Ξ), dς(µµ′)ς(νν′) = tr(D∗ς(µµ′)ς(νν′)Ξ),

dρµς(νν′) = tr(D∗ρµς(νν′)Ξ),

where

D∗ρµρµ′ =
AρµΞAρµ′

2
, D∗ρµς(νν′) =

AρµΞAς(νν′)
2

,

(57)

D∗ς(µµ′)ς(νν′) =
Aς(µµ′)ΞAς(νν′)

2
,

with obvious modifications for cς(νν′)ρµ , dς(νν′)ρµ and D∗ς(νν′)ρµ .

The next two theorems give Edgeworth approximations of the distribution

functions of the Wald (w) and F statistics, given by (49) and (50), respectively.

Theorem 4. Under null hypothesis (48), the distribution function of Wald

statistic w, given by (49), admits the Edgeworth expansion

Pr{w ≤ x} = Fm(x)− τ2 [ξ1 + (ξ2/(m+ 2))x]
x

m
fm(x) +O(τ3), (58)

where Fm(·) and fm(·) are the chi-square distribution and density functions,

respectively, and

ξ1 = tr[Λ(C +D∗)]− c′Λc/4 + c′κ+m[c′λ/2− κ0 − (m− 2)λ0/4],

(59)

ξ2 = tr(ΛD∗) + [c′Λc− (m+ 2)(2c′λ−mλ0)]/4.
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Analytic formulae for the computation of scalars λ0 and κ0, and the elements of

λ, κ, Λ, c, C and D∗ are given in the Appendix (see Lemmas A.16 and A.17).

Theorem 5. Under null hypothesis (48), the distribution function of F statistic,

given by (50), admits the Edgeworth expansion

Pr{F ≤ x} = FmMT−n(x)− τ2 [q1 + q2x]xfmMT−n(x) +O(τ3), (60)

where FmMT−n(·) and fmMT−n(·) are the F distribution and density functions,

respectively, and

q1 = ξ1/m+ (m− 2)/2, q2 = ξ2/(m+ 2)−m/2, (61)

where quantities ξ1 and ξ2 are defined in (59).

Theorem 4 implies that the Edgeworth corrected α% critical value of the

Wald statistic (49) is given as

χ∗α = χα + τ2
[
ξ1
m

+
ξ2

m(m+ 2)
χα

]
χα, (62)

based on the α% significant point of the chi-square distribution, denoted as χα.

Theorem 5 enables us to calclulate the Edgeworth corrected α% critical value

of F statistic (50) as

F ∗α = Fα + τ2 [q1 + q2Fα]Fα, (63)

based on the α% significant point of the F distribution, denoted as Fα.

The Cornish-Fisher size corrected F statistic for testing null hypothesis (48)

is given in the next theorem.

Theorem 6. Under null hypothesis (48), the Cornish-Fisher size corrected F

statistic

F∗ = F − τ2 [q1 + q2F ]F (64)
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is distributed, with an approximation error of order O(τ3), as an F random

variable with m and MT − n degrees of freedom.

Unlike the Edgeworth approximation, the Cornish-Fisher corrected F statis-

tic, denoted as F∗ in equation (64), is a proper random variable and it does not

assign negative ‘probabilities’ in the tails of its distribution. Thus, the Cornish-

Fisher corrected F statistic can be be readily implemented, in applied research,

to test null hypothesis (48). This can be done by using the tables of the F

distribution, with MT − n degrees of freedom.

5 Monte-Carlo simulations

In this section, we evaluate the small-sample performance of the size corrected

tests suggested in the previous section, compared to their corresponding stan-

dard (first-order asymptotic approximation) versions. To this end, we rely on

a Monte Carlo simulation exercise based on 5000 iterations and we consider

small-smaples of T = 15, 20, 40 observations.

In our simulation exercise, we consider the original S.U.R. model of M = 2

unrelated equations (see, e.g., Zellner (1962)), i.e.,

yt,1 = β0,1 + β1,1xt1,1 + β2,1xt2,1 + ut,1

yt,2 = β0,2 + β1,2xt1,2 + β2,2xt2,2 + ut,2

(t = 1, . . . , T ), (65)

where error terms ut,1 and ut,2 are contemporaneously correlated with covari-

ance σ12. Both of these error terms follow AR(1) process (2), with normally

distributed innovations. The autoregressive coefficients of this process ρ1 and ρ2

are assumed to be equal, i.e., ρ1 = ρ2 = ρ ∈ (−1, 1). To ensure stationarity of

error terms ut,1 and ut,2, conditions (3) are satisfied. For t = 0, these conditions
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require

y0,1 ∼ N (0, σ11/(1− ρ21))

y0,2 ∼ N (0, σ22/(1− ρ22))

and E(y0,1y0,2) = σ12
(1− ρ21)1/2(1− ρ22)1/2

1− ρ1ρ2
.

In our analysis, we assume σ11 = σ22 = 1 and we are focused on investigating the

consequences of the different sign and magnitude of covariances σ12 on our tests,

for the following cases: σ12 = ±0.1, ±0.5, ±0.75, ±0.9. Since σ11 = σ22 = 1, σ12

is the correlation coefficient between ut,1 and ut,2.

According to (15) (or (16)), the above S.U.R. model can be written in terms

of the following transformed equations, with non-autocorrelated errors:

y1∗ = X1∗β1 + ε1; y2∗ = X2∗β2 + ε2,

where y1∗ and y2∗ are (TX1) vectors of observations on the dependent variables,

with Pµyµ∗ = yµ, for µ = 1, 2, where Pµ is defined by (9), X1∗ and X2∗ are

(T × 3) matrices of regressors, with PµXµ∗ = Xµ and β1 = (β0,1, β1,1, β2,1)′,

β2 = (β0,2, β1,2, β2,2)′ are (3× 1) vectors of parameters, including the constant.

In terms of the S.U.R. representation (21), the above equations can be written

as

Y∗ = ZB + E,

where Y∗ is a (T × 2) matrix of observations on vectors y1∗ and y2∗, E is a

(T × 2) matrix whose rows are vectors of normally distributed innovations with

variance-covariance Σ = [(σµµ′)µ,µ′=1,2], B is a (3× 2)-dimension matrix whose

columns, β1 and β2, are vectors of parameters and Z is a (T × 6) matrix whose
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columns are vectors of possibly collinear variables defined as

zt1 ≡ zt6 ≡ (1− ρ2)1/2 (t = 1),

zt1 ≡ zt6 ≡ (1− ρ) (t = 2, 3, ..., T ),

ztj = α1/2ζt1 + (1− α)1/2ζtj (j = 2, 3, 4, 5),

where ζtj (j = 2, 3, 4, 5) are N (0, 1) random variables and α stands for the

common correlation coefficient between any two non-constant columns of Z

(see also McDonald and Galarneau (1975)). This captures the same degree of

multicollinearity between regressors xt1,µ and xt2,µ of S.U.R. model (65). In

our simulation exercise, we consider the following two values of the collinearity

coefficient: α = 0.5, 0.9. According to (25), submatrices X1∗ and X2∗ (collected

in matrix X∗) can be obtained from Z by assuming that submatrices Ψ1 and

Ψ2, of the block diagonal matrix Ψ are given as follows:

Ψ1 =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0



; Ψ2 =



0 0 0

0 0 0

0 0 0

0 1 0

0 0 1

1 0 0



.

In all iterations of our simulation study, the two equations of S.U.R. model

(65) were estimated by LS. The residuals of these equations were used to com-

pute the LS estimates of autoregressive coefficients ρ1 and ρ2, denoted as ρ̃1

and ρ̃2. Then, the transformed variables y∗1,µ and x∗tj,µ, for j = 0, 1, 2 (where ‘0’

stands for the constant), are calculated as follows:

y∗1,µ = (1− ρ̃2µ)1/2y1,µ

y∗t,µ = yt,µ − ρ̃µy(t−1),µ

x∗1j,µ = (1− ρ̃2µ)1/2x1j,µ

x∗tj,µ = xtj,µ − ρ̃µx(t−1)j,µ

(t = 1),

(t 6= 1).

(66)
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These variables were then used to compute the feasible GL estimates of βj,µ

(j = 0, 1, 2; µ = 1, 2), denoted as β̂j,µ. The columns of matrix Z were obtained

as z1 = x∗0,1, z2 = x∗1,1, z3 = x∗2,1, z6 = x∗0,2, z4 = x∗1,2, z5 = x∗2,2, while

the unrestricted estimates of matrix B were based on the GL estimates β̂j,µ.

The unrestricted estimates of the inverse covariance matrix Σ−1 were estimated

based on (32) and the feasible GL estimate σ̂GL which is calculated by using

the following formula:

σ̂GL =
[
(y −Xβ̂)′

(
P̂ ′−1I (Σ̂−1I ⊗ IT )P̂−1I

)
(y −Xβ̂)/(MT − n)

]1/2
,

where I denotes any consistent estimators of matrices Σ−1 and P−1 (see Ap-

pendix), used to obtain a feasible GL estimator of β.

The results of our simlation exercise are presented in Tables 1a, 1b and 2.

The actual sizes of our size corrected tests of the following null hypothesis:

H0 : β2,1 = 0, (67)

against its one-sized alternatives, are reported in Tables 1a and 1b. In partic-

ular, Table 1a presents results against alternative Ha : β2,1 > 0, while Table

1b against Ha : β2,1 < 0. The table presents the actual sizes (i.e., the rejection

probabilities) at the 5� significance level of the following: the standard normal

and Student-t tests (denoted as z and t, respectively), their finite-sample size

corrected versions based on the Edgeworth corrected critical values of the stan-

dard normal and Student-t distributions (denoted as E-z and E-t, respectively)

and the Cornish-Fisher finite-sample size corrected Student-t test (denoted as

CF-t). Note that we do not examine the performance of the above t tests for

the null hypothesis (67) against its two-sided alternatives, since this is a special

case of the F test examined in Table 2.
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Table 2 presents the actual sizes of our size correceted tests of the following

joint null hypothesis on the slope coefficients of S.U.R. model (65), across its

two equations:

H0 : β1,1 = β2,1 = β1,2 = β2,2 = 0. (68)

This is done against the alternative hypothesis that at least one of these coeffi-

cients are different from zero, i.e., at least one βj,µ 6= 0 (j = 1, 2; µ = 1, 2). The

table presents the actual sizes at the 5� significance level of the following: the

standard Wald (chi-square) and F tests (denoted as χ2 and F , respectively),

their finite-sample size corrected versions based on the Edgeworth corrected

critical values of the chi-square and F distributions (denoted by E-χ2 and E-F,

respectively) and the Cornish-Fisher finite-sample size corrected F test (denoted

as CF-F ).

Turning now into the discussion of the results of our simulation study, Ta-

bles 1a and 1b clearly indicate that the size corrected tests have better size

performance in small samples, like those of T = 15 or 20, compared to the stan-

dard versions of them based on first order approximations. This is true for both

alternatives considered and across all different values of ρ, σ12 and a examined.

Between the above different categories of size corrected tests, our results

indicate that the CF-t test outperforms the E-z and E-t ones. This is true for

almost all cases of a and σ12 considered, if ρ takes large values, i.e., ρ = ±0.8.

The same is true when σ12 is positive and ρ = 0.5. The E-t test outperforms

the CF-t test for values of ρ = ±0.5, when σ12 is negative.

Regarding the chi-square and F tests, the results of Table 2 indicate that, in

most of the cases examined, the size corrected versions of these tests, i.e., E-χ2,

E-F and CF-F, perform better in small-samples, compared to their standard
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versions. Between the Edgeworth and Cornish-Fisher size corrected versions of

these tests (i.e., E-F (or E-χ2) and CF-F ), the latter is found to perform better

than the former in the case that σ12 takes moderate values, i.e., σ12 = ±0.5.

This is true for all cases of ρ and a considered. On the other hand, the E-F

and E-χ2 tests tend to perform better than the CF-F test in the case that

σ12 takes very large values (i.e., σ12 = ±0.9), implying a very close to unity

correlation coefficient between error terms ut,1 and ut,2. This, however, happens

for moderate values of ρ, i.e., ρ = ±0.5. For large values of ρ, i.e., ρ = ±0.9,

the CF-F test has better size performance than E-F (or E-χ2), even in the case

that σ12 = ±0.9.

Summing up, the results of our simulation exercise clearly indicate that

the finite-sample size corrected tests E-χ2, E-F and CF-F can considerably im-

prove the performance of the standard (uncorrected) tests in small-samples. This

happens even for very high levels of autocorrelation and/or cross-correlation be-

tween the error terms of the equations of the S.U.R. model. Another interesting

conclusion that can be drawn from the results of this exercise is that the ad-

justed for the degrees of freedom versions of the tests perform better than their

unadjusted ones in most of the cases of our simulation exercise considered. Note

that this is also true for the standard (uncorrected) versions of the tests.
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Table 1a: H0 : β2,1 = 0 against HA : β2,1 > 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 11.2 7.2 10.5 7.2 5.3 7.4 4.7 6.8 4.9 4.3 6.4 3.8 5.8 4.1 3.7 8.2 5.0 7.6 5.2 4.4
-0.90 20 10.9 7.4 10.3 7.5 6.1 6.7 4.4 6.3 4.6 4.3 5.7 3.5 5.2 3.7 3.4 7.2 4.5 6.6 4.6 4.0

40 7.5 5.9 7.4 6.1 5.6 5.5 4.2 5.3 4.4 4.3 4.4 3.3 4.3 3.5 3.4 6.6 4.7 6.4 4.8 4.5
15 10.8 6.8 10.2 7.0 5.1 7.7 4.9 7.0 5.1 4.6 6.8 3.9 6.1 4.2 3.6 8.6 5.6 8.1 5.8 4.9

-0.75 20 11.2 7.1 10.6 7.2 5.8 7.2 5.2 6.7 5.4 4.9 6.0 3.8 5.5 4.0 3.7 8.8 5.3 8.2 5.5 4.9
40 8.1 5.6 7.8 5.8 5.5 6.0 4.7 5.8 4.8 4.8 5.6 4.3 5.4 4.5 4.4 6.6 4.7 6.5 4.9 4.5
15 10.9 6.6 10.2 6.7 4.7 7.3 4.5 6.8 4.7 4.2 7.5 4.8 6.7 5.1 4.7 10.2 6.6 9.6 6.9 5.9

-0.50 20 10.1 6.9 9.8 7.1 5.6 6.8 4.4 6.4 4.5 4.4 6.6 4.4 6.3 4.6 4.3 8.8 5.9 8.3 6.0 5.2
40 7.3 5.5 7.1 5.6 5.1 6.7 5.3 6.5 5.4 5.3 6.0 4.8 5.8 4.9 4.8 7.9 5.8 7.7 6.0 5.6
15 9.2 5.9 8.4 6.0 4.0 6.7 4.1 6.1 4.2 3.8 7.5 5.3 6.9 5.4 5.0 11.9 8.1 11.0 8.3 7.0

0.50 20 8.1 5.0 7.7 5.2 4.0 5.5 3.4 5.1 3.7 3.3 7.5 5.2 6.9 5.3 4.9 10.2 7.0 9.7 7.2 6.1
40 6.1 4.1 5.9 4.3 3.9 5.6 4.4 5.5 4.5 4.5 6.6 5.3 6.4 5.4 5.3 8.7 6.6 8.3 6.8 6.4
15 8.3 4.8 7.6 4.8 3.4 6.3 3.7 5.7 3.9 3.4 7.6 4.9 6.8 5.0 4.6 11.8 7.9 10.9 8.0 7.0

0.75 20 7.5 4.4 7.1 4.5 3.7 5.7 3.6 5.3 3.7 3.5 7.3 4.9 6.9 5.1 4.8 10.6 7.4 10.1 7.6 6.8
40 6.0 4.1 5.7 4.3 4.0 4.7 3.3 4.5 3.5 3.4 5.9 4.4 5.8 4.6 4.5 8.3 6.5 8.1 6.6 6.2
15 7.4 4.0 6.7 4.1 3.2 5.5 3.0 5.0 3.1 2.6 8.1 5.0 7.2 5.2 4.8 11.2 7.7 10.5 7.9 6.8

0.90 20 7.0 4.0 6.6 4.2 3.3 5.3 2.9 4.7 3.1 2.9 7.5 5.1 7.0 5.3 5.1 10.2 7.2 9.8 7.4 6.1
40 5.2 3.4 5.0 3.6 3.3 4.5 3.3 4.3 3.5 3.4 5.7 4.4 5.4 4.4 4.3 8.1 6.0 8.0 6.2 5.9

0.9

15 12.3 7.6 11.5 7.7 5.5 7.9 5.1 7.3 5.3 4.7 6.5 3.9 5.9 4.2 3.8 8.9 5.5 8.0 5.8 4.8
-0.90 20 11.5 7.3 10.9 7.3 5.9 6.6 4.4 6.1 4.6 4.4 6.3 4.4 5.8 4.7 4.3 7.8 4.9 7.3 5.1 4.4

40 7.7 5.6 7.5 5.8 5.3 5.8 4.5 5.6 4.6 4.5 4.8 3.5 4.6 3.6 3.6 5.6 4.2 5.4 4.2 4.0
15 12.5 7.7 11.7 7.8 5.4 7.4 4.5 6.7 4.7 4.1 7.2 4.7 6.5 4.9 4.5 9.5 6.1 8.7 6.3 5.3

-0.75 20 11.3 7.8 10.7 7.9 6.1 8.0 5.4 7.3 5.6 5.3 6.4 4.4 6.1 4.6 4.2 8.8 5.7 8.3 5.8 4.9
40 7.7 5.6 7.4 5.9 5.4 6.2 4.9 6.0 5.1 5.0 5.7 4.1 5.5 4.3 4.1 7.0 5.1 6.9 5.2 4.9
15 11.1 6.9 10.2 6.9 5.1 7.4 4.3 6.6 4.5 4.0 7.7 4.8 7.0 5.1 4.6 9.3 6.0 8.7 6.2 5.3

-0.50 20 10.6 7.4 10.1 7.5 5.8 7.8 5.1 7.3 5.4 5.0 6.5 4.3 6.1 4.5 4.2 8.5 5.8 8.1 6.0 5.3
40 8.0 5.7 7.9 5.9 5.6 6.2 4.7 6.1 4.9 4.8 6.2 4.6 6.0 4.7 4.6 6.8 4.9 6.7 5.1 4.7
15 8.7 5.4 8.0 5.5 3.9 7.2 4.5 6.5 4.8 4.1 8.6 5.6 7.9 5.8 5.3 12.1 8.3 11.3 8.5 7.2

0.50 20 8.7 5.6 8.3 5.8 4.4 6.0 4.0 5.5 4.2 3.9 7.8 5.3 7.2 5.6 5.1 10.9 7.6 10.3 7.9 6.8
40 5.7 4.1 5.6 4.2 3.9 5.2 4.0 5.0 4.0 4.0 5.9 4.6 5.7 4.8 4.7 8.1 5.7 7.8 5.7 5.5
15 8.4 5.1 7.8 5.3 3.7 6.3 3.8 5.7 4.0 3.5 8.4 5.3 7.7 5.6 5.1 11.6 8.2 11.0 8.4 7.1

0.75 20 8.7 5.0 8.2 5.2 4.0 6.0 3.6 5.4 3.8 3.5 7.8 5.2 7.5 5.4 5.1 10.9 7.4 10.3 7.6 6.7
40 6.4 4.2 6.1 4.3 4.1 5.3 4.1 5.0 4.2 4.1 6.7 5.4 6.6 5.5 5.4 8.6 6.7 8.3 6.8 6.5
15 7.3 4.3 6.8 4.4 3.3 5.3 3.0 4.8 3.2 2.8 8.0 5.2 7.5 5.5 4.9 11.8 7.7 11.0 7.9 6.8

0.90 20 7.4 4.3 7.0 4.5 3.5 5.5 3.4 5.1 3.6 3.3 7.6 5.4 7.0 5.6 5.2 10.6 7.3 10.0 7.4 6.6
40 6.3 4.5 6.0 4.7 4.5 4.9 3.6 4.7 3.7 3.6 6.4 4.9 6.0 5.0 4.9 8.1 6.3 7.8 6.4 6.2
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Table 1b: H0 : β2,1 = 0 against HA : β2,1 < 0 (Nominal size: 5�)

Actual sizes (�)
Test: z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t z E-z t E-t CF-t
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 11.2 6.7 10.2 6.8 5.1 7.0 4.4 6.4 4.6 3.9 6.7 3.4 6.0 3.9 3.3 8.8 5.4 8.1 5.5 4.8
-0.90 20 10.2 6.5 9.8 6.6 5.1 7.0 4.5 6.6 4.8 4.3 5.7 3.6 5.3 3.8 3.4 8.7 5.3 8.1 5.6 4.7

40 6.9 5.2 6.7 5.4 4.9 5.1 3.9 4.9 4.1 4.0 5.0 3.7 4.8 3.8 3.7 5.9 4.3 5.7 4.4 4.1
15 11.0 6.6 10.2 6.7 4.7 8.0 5.2 7.4 5.5 4.9 6.4 4.2 5.8 4.4 4.1 9.1 6.0 8.5 6.2 5.3

-0.75 20 10.2 6.4 9.7 6.5 5.2 6.8 4.6 6.3 4.8 4.5 6.3 4.0 5.8 4.2 3.9 8.5 5.5 7.9 5.7 4.8
40 7.7 5.4 7.3 5.6 5.2 5.7 4.5 5.5 4.7 4.6 4.4 3.3 4.2 3.4 3.3 7.0 5.0 6.8 5.2 4.8
15 10.7 6.7 9.8 6.8 5.1 7.8 4.7 7.0 4.9 4.2 7.5 4.8 6.8 5.0 4.5 9.5 6.2 8.7 6.4 5.4

-0.50 20 10.1 6.4 9.5 6.5 5.0 7.2 5.0 6.7 5.3 5.0 7.1 4.4 6.6 4.7 4.3 8.6 5.5 7.9 5.6 4.9
40 7.7 5.7 7.6 5.8 5.4 6.3 4.9 6.1 5.1 4.9 5.8 4.7 5.6 4.9 4.7 7.0 5.4 6.8 5.6 5.3
15 9.4 5.4 8.5 5.6 4.0 6.2 3.9 5.4 4.0 3.8 9.2 6.1 8.6 6.3 5.9 10.9 7.6 10.1 7.7 6.5

0.50 20 7.5 4.5 7.1 4.7 3.5 6.6 3.8 6.2 4.1 3.7 7.5 4.9 6.9 5.1 4.9 11.1 7.7 10.6 8.0 6.8
40 6.0 4.7 5.9 4.7 4.5 5.6 3.9 5.4 4.1 4.0 6.9 5.3 6.5 5.4 5.3 7.9 6.0 7.6 6.1 5.8
15 8.0 4.9 7.4 4.9 3.7 5.6 3.3 5.0 3.5 3.1 7.9 5.2 7.1 5.4 4.9 11.8 8.2 11.1 8.4 7.3

0.75 20 8.0 4.7 7.4 4.9 4.0 5.2 3.3 4.6 3.4 3.1 7.7 5.1 7.2 5.3 5.0 10.5 7.6 9.9 7.7 6.9
40 5.7 3.8 5.5 4.0 3.6 5.4 4.1 5.3 4.2 4.2 5.4 4.3 5.3 4.4 4.4 8.2 6.0 7.8 6.1 5.9
15 6.9 4.1 6.3 4.2 3.1 5.0 2.5 4.3 2.6 2.3 7.5 4.8 6.8 4.9 4.5 11.3 7.5 10.5 7.7 6.6

0.90 20 6.4 3.5 5.9 3.6 2.6 5.2 2.9 4.7 3.2 2.8 6.8 4.6 6.5 4.9 4.4 11.2 7.9 10.5 8.1 7.3
40 4.9 2.9 4.7 3.1 2.8 4.4 3.1 4.2 3.2 3.1 5.4 4.1 5.3 4.2 4.1 7.4 5.5 7.2 5.5 5.2

0.9

15 12.4 8.1 11.3 8.2 5.8 7.8 4.8 7.0 5.0 4.4 6.3 3.8 5.6 4.0 3.5 8.8 5.5 8.0 5.5 4.6
-0.90 20 10.8 7.0 10.2 7.2 5.7 7.0 4.6 6.5 4.8 4.2 6.4 3.9 5.7 4.1 3.7 8.4 5.6 7.9 5.8 4.6

40 7.3 5.4 7.1 5.6 5.2 5.6 4.3 5.4 4.5 4.4 5.0 3.8 4.8 4.0 3.9 6.4 4.5 6.0 4.5 4.4
15 11.9 7.2 11.0 7.4 5.3 7.0 4.5 6.1 4.6 4.2 7.0 4.6 6.5 4.9 4.4 8.8 5.6 8.1 5.7 4.8

-0.75 20 9.7 6.6 9.2 6.7 5.4 7.8 5.0 7.2 5.3 4.9 6.8 4.9 6.4 5.2 4.7 8.4 5.4 7.9 5.5 4.9
40 8.7 6.3 8.5 6.4 6.2 5.9 4.6 5.8 4.8 4.7 4.9 4.1 4.9 4.1 4.1 7.1 5.3 6.9 5.5 5.0
15 11.2 7.0 10.1 7.1 5.1 8.1 4.8 7.3 5.0 4.5 6.8 4.5 6.2 4.6 4.3 10.1 6.2 9.2 6.5 5.5

-0.50 20 9.8 6.1 9.4 6.2 4.8 6.7 4.6 6.3 4.7 4.5 6.9 4.5 6.4 4.6 4.4 9.0 6.1 8.6 6.4 5.5
40 7.5 5.4 7.4 5.7 5.3 6.7 5.2 6.4 5.4 5.3 5.5 4.1 5.2 4.2 4.2 7.8 5.6 7.6 5.7 5.5
15 9.5 5.7 8.8 5.7 4.2 6.3 3.7 5.7 3.9 3.6 8.1 5.7 7.4 5.9 5.5 11.9 8.3 11.3 8.5 7.1

0.50 20 8.1 5.0 7.6 5.2 4.1 6.9 4.3 6.4 4.6 4.3 7.5 5.1 7.0 5.3 5.0 11.0 7.7 10.5 7.8 6.8
40 6.4 4.5 6.3 4.7 4.4 5.1 4.0 4.9 4.2 4.1 6.3 5.2 6.1 5.3 5.2 8.7 6.3 8.5 6.4 6.1
15 8.6 5.0 8.0 5.0 3.6 5.9 3.2 5.3 3.4 3.0 8.5 5.5 7.7 5.7 5.2 12.0 8.3 11.2 8.5 7.3

0.75 20 7.6 4.2 7.0 4.3 3.2 5.7 3.4 5.3 3.6 3.3 7.9 5.6 7.5 5.8 5.4 10.7 7.4 10.2 7.5 6.8
40 6.1 4.5 5.9 4.6 4.2 4.4 3.3 4.2 3.5 3.4 6.9 5.3 6.6 5.4 5.3 8.9 6.6 8.6 6.7 6.4
15 8.4 4.8 7.8 4.8 3.6 5.1 3.0 4.4 3.1 2.8 7.9 5.4 7.2 5.6 5.2 11.1 7.6 10.4 7.8 6.6

0.90 20 7.1 4.3 6.5 4.5 3.5 5.6 3.5 5.2 3.8 3.3 7.7 5.5 7.3 5.7 5.4 11.3 8.0 10.7 8.2 7.3
40 5.7 3.3 5.4 3.5 3.1 4.5 3.1 4.2 3.2 3.2 5.4 4.4 5.2 4.5 4.4 8.6 6.6 8.4 6.8 6.5
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Table 2: H0 : β1,1 = β2,1 = β1,2 = β2,2 = 0 (Nominal size: 5�)

Actual sizes (�)
Test: χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F χ2 E-χ2 F E-F CF-F
α σ12 T ρ = −0.8 ρ = −0.5 ρ = 0.5 ρ = 0.8

0.5

15 30.5 17.0 24.6 14.1 2.8 12.6 5.2 8.6 4.6 2.7 11.4 5.7 8.4 5.3 3.8 21.7 12.0 17.0 10.6 5.3
-0.90 20 25.5 14.3 21.4 13.0 3.7 11.0 5.1 8.4 4.9 3.7 9.1 4.2 7.1 4.0 2.9 16.6 8.9 13.7 8.4 4.3

40 13.4 7.7 11.7 7.8 5.6 6.9 3.9 5.9 4.1 3.8 4.5 2.3 3.9 2.4 2.1 8.8 4.7 7.6 4.8 3.4
15 32.3 18.5 26.7 15.3 2.5 14.4 6.6 10.0 6.1 3.8 14.7 7.4 10.5 7.0 5.2 25.2 15.9 20.8 14.2 7.4

-0.75 20 27.7 16.2 23.7 14.8 4.2 12.4 6.2 9.7 6.2 4.6 11.1 5.7 8.8 5.6 4.4 21.0 12.5 17.8 11.7 6.1
40 13.5 8.2 12.3 8.3 6.5 6.5 4.0 5.6 4.2 3.9 6.4 3.4 5.4 3.7 3.3 11.3 6.7 10.2 6.8 5.5
15 32.9 19.6 27.4 16.8 3.1 16.4 8.0 11.7 7.4 4.9 16.9 9.1 12.6 8.6 6.2 30.0 18.5 24.5 16.8 9.1

-0.50 20 27.9 15.6 23.7 14.5 4.5 13.2 6.1 10.3 6.3 4.9 13.0 6.9 9.9 7.0 5.6 23.5 14.2 20.2 13.4 7.3
40 15.7 9.7 14.1 9.8 7.6 8.2 4.6 7.1 5.1 4.6 8.0 4.2 6.6 4.5 4.2 13.1 7.9 12.0 8.1 6.3
15 27.0 16.0 22.0 13.5 2.5 13.4 6.3 9.5 5.8 4.1 18.6 9.7 14.3 9.1 6.9 33.3 20.2 26.6 18.5 9.8

0.50 20 21.7 12.6 18.2 11.6 3.8 9.8 5.2 7.8 5.2 4.1 14.5 7.9 11.4 7.9 6.5 30.8 18.9 26.1 18.0 10.0
40 11.0 6.3 9.7 6.3 4.7 6.4 3.4 5.4 3.7 3.4 9.2 5.3 7.8 5.7 5.2 18.1 11.4 16.2 11.5 9.4
15 22.5 12.4 18.2 10.5 2.0 10.4 4.8 7.2 4.4 2.9 16.2 8.0 11.9 7.6 5.8 31.0 19.1 25.7 16.9 9.3

0.75 20 17.5 9.8 14.5 9.1 2.7 8.6 3.8 6.3 3.8 2.9 13.2 7.1 10.2 7.0 5.4 29.6 17.9 25.5 16.9 9.2
40 9.3 4.9 7.9 5.0 3.6 5.0 2.8 4.2 2.9 2.7 7.8 5.0 6.7 5.2 4.8 15.3 9.4 13.6 9.6 7.7
15 18.2 10.1 14.3 8.6 1.5 8.1 3.3 5.3 2.8 1.6 14.7 6.7 10.7 6.1 4.6 28.6 16.1 22.7 14.1 7.1

0.90 20 14.8 7.8 12.3 6.9 2.0 6.4 3.0 4.8 2.9 2.1 12.1 6.1 9.7 6.1 4.3 26.2 14.9 21.5 13.9 7.3
40 7.9 4.0 7.0 4.1 2.8 3.9 2.0 3.3 2.2 2.0 6.5 3.2 5.5 3.6 3.1 15.1 9.3 13.5 9.3 7.2

0.9

15 25.0 13.4 19.9 11.4 1.8 9.3 4.2 6.2 3.8 2.4 7.9 3.7 5.4 3.5 2.5 16.7 9.5 13.4 8.5 4.7
-0.90 20 19.9 11.4 16.8 10.4 3.5 7.5 3.2 5.4 3.2 2.4 6.3 3.1 4.9 3.0 2.3 13.2 7.6 11.2 7.1 3.5

40 9.5 5.3 8.5 5.4 4.0 3.8 0.2 3.2 2.3 2.1 2.7 1.8 2.5 1.8 1.7 6.0 3.1 5.6 3.3 2.2
15 29.8 16.5 24.2 14.0 2.6 11.4 5.3 8.2 4.9 3.4 12.3 6.8 9.1 6.5 5.0 22.3 13.8 18.0 12.7 6.6

-0.75 20 24.5 13.4 20.2 12.5 3.8 10.2 4.6 7.4 4.6 3.5 8.8 4.5 6.8 4.4 3.6 18.7 10.6 15.6 10.1 5.0
40 10.2 5.9 9.1 6.0 4.4 5.1 2.9 4.4 3.4 2.9 3.9 2.2 3.3 2.3 2.2 8.9 5.0 7.8 5.2 3.8
15 32.0 18.3 26.0 15.7 2.7 14.9 7.4 10.8 6.9 5.1 16.5 8.8 12.2 8.2 6.5 28.5 17.5 23.4 16.2 8.3

-0.50 20 26.5 15.0 22.7 13.3 4.2 12.6 6.2 9.9 6.2 4.8 12.1 6.3 9.6 6.3 5.0 23.2 14.0 19.3 13.5 7.7
40 13.0 7.6 11.6 7.7 5.8 7.6 4.0 6.2 4.3 4.0 7.4 3.9 6.4 4.3 3.8 11.8 6.7 10.4 6.9 5.1
15 25.1 14.6 20.3 12.7 2.1 13.8 6.7 9.9 6.3 4.4 17.7 9.4 13.4 8.8 6.9 33.7 21.3 27.5 19.4 10.0

0.50 20 21.6 12.1 18.4 11.1 3.1 9.2 4.5 7.1 4.5 3.6 13.5 7.3 10.5 7.3 5.8 28.8 18.0 24.9 17.0 9.2
40 9.8 5.3 8.5 5.4 4.1 5.8 3.2 4.7 3.4 3.2 8.4 5.2 7.4 5.4 4.9 15.9 9.6 14.3 9.8 8.0
15 19.9 11.5 16.1 9.9 1.7 8.6 3.9 6.0 3.7 2.5 13.7 6.9 10.0 6.4 5.0 29.7 17.5 23.8 16.0 8.6

0.75 20 15.9 9.1 13.4 8.5 2.6 6.7 2.9 4.8 2.9 2.4 11.1 5.7 8.8 5.8 4.5 25.5 14.9 21.2 14.3 7.7
40 7.1 4.0 6.4 4.0 2.9 4.0 2.2 3.3 2.4 2.1 5.0 2.5 4.2 2.7 2.4 12.6 7.6 11.2 7.8 5.8
15 15.1 8.5 11.9 7.1 1.5 6.5 2.7 4.4 2.4 1.7 10.1 4.4 7.3 4.0 2.9 22.2 12.2 17.2 10.9 5.6

0.90 20 11.7 6.5 9.6 5.9 1.5 4.9 2.1 3.7 2.0 1.5 8.5 4.0 6.3 3.9 3.1 21.1 12.0 17.3 11.1 6.3
40 5.3 2.8 4.7 2.8 2.0 2.4 1.2 2.0 1.3 1.2 3.9 2.3 3.5 2.5 2.3 10.6 6.4 9.4 6.4 5.2
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6 Conclusions

In this paper, we have employed Edgeworth expansions of the standard nor-

mal (or Student-t) and chi-square (or F ) distributions to derive second-order

size corrected testing procedures for the coefficient of the S.U.R. model with

first-order autocorrelated errors. These procedures include (i) the Edgeworth

corrected critical values of the well-known Wald (or F ) and t tests and (ii)

the Cornish-Fisher corrected F and t test statistics. Since the standard F and

t tests are adjusted for the degrees of freedom, they are locally exact, which

means that their approximate distributions become exact when the model is

sufficiently simplified.

The Edgeworth and Cornish-Fisher expansions, employed by the paper, are

equivalent to each other, since the latter constitutes an inversion of the former.

However, in practice, the use of the Cornish-Fisher corrected test statistics is

recommended, since they are proper random variables with well-behaved distri-

bution tails. The Edgeworth approximation can assign negative ‘probabilities’

in the tails of the approximate distributions. Furthermore, the Cornish-Fisher

size corrected tests can be easily implemented, in practice, using the tables of

the Student-t and the F distributions.

To evaluate the small-sample performance of the suggested tests, the paper

has conducted a Monte Carlo study. The results of this exercise indicate that

the size corrected t and F tests lead to substantial size improvements upon their

standard versions assuming first-order asymptotic approximations. This is true

even for very small samples of 15 or 20 observations. Between the Edgeworth

and Cornish-Fisher categories of the size corrected tests suggested in the paper,
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the second category is found to perform better than the first, for most cases

of serial and cross-equation correlation of the error terms of the S.U.R. model

examined. This result is also robust across different degrees of multicollinearity

between the independent variables of the model considered. In particular, both

the t and F Cornish-Fisher size corrected tests are found to outperform their

Edgeworth size corrected counterparts, when the degree of serial correlation of

the error terms is very high, as often observed in practice. For the t test, this is

true even for a close-to-unity degree of correlation across the two equations of

the S.U.R. model.

Appendix

In this appendix, we provide proofs of the main results of the paper. To prove these

results, we rely on a number of lemmas. Some of them are given without proof for

reasons of space. These proofs are available upon request. The presentation of our

proofs is scheduled as follows: First, we provide some preliminary matrix-algebra re-

sults, needed for the calculation of the quantities in the stochastic expansions of all

estimators considered and the tests. Then, given these lemmas, we give the proofs of

the theorems.

Matrix-algebra results

Following Magdalinos (1992, page 344), let I be a given set of indices which, without

loss of generality, can be considered to belong to the open interval (0, 1). For any

collection of real-valued stochastic quantities (scalars, vectors, or matrices) Yτ (τ ∈ I),

we write Yτ = ω(τ i), if for any given n > 0, there exists a 0 < ε <∞ such that

Pr
[
‖Yτ/τ i‖ > (− ln τ)ε

]
= o(τn), (A.1)
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as τ → 0, where the ‖ · ‖ is the Euclidean norm. If (A.1) is valid for any n > 0, we

write Yτ = τ(∞). The use of this order of magnitude is motivated by the fact that,

if two stochastic quantities differ by a quantity of order ω(τ i), then, under general

conditions, the distribution function of the one provides an asymptotic approximation

of the distribution function of the other, with an error of order O(τ i). Furthermore,

orders ω(·) and O(·) have similar operational properties (Magdalinos (1992)).

Define the following (T × T ) matrices: D whose (t, t′)-th element is equal to 1 if

|t− t′| = 1 and 0 elsewhere, Dj whose (t, t′)-th element is equal to 1 if t− t′ = 1 and 0

elsewhere, Di whose (t, t′)-th element is equal to 1 if t−t′ = −1 and 0 elsewhere. Also,

define the following (T ×T ) matrices: ∆ with 1 in (1, 1)-st and (T, T )-th positions and

0’s elsewhere, ∆11 with 1 in (1, 1)-st position and 0’s elsewhere, ∆TT with 1 in (T, T )-

th position and 0’s elsewhere. Moreover, by using matrix Pµ in (9), we can calculate

(T × T ) matrices Rij as follows:

Rij = PiP
′
j =

1

1− ρiρj



1 ρj · · · ρT−1
j

ρi 1 · · · ρT−2
j

...
...

...

ρT−1
i ρT−2

i · · · 1


. (A.2)

Matrices Rij help us to write the elements of matrix Ω analytically. For these

matrices and their derivatives the following two lemmas hold:

Lemma A.1. For matrix Rii, which is the inverse of Rii, the following result holds:

Rii = P ′−1
i P−1

i = (1 + ρ2i )IT − ρiD − ρ2i∆, (A.3)

where Rii = R−1
ii (∀i). Moreover, for matrix Rij, the following result holds:

Rij = P ′−1
i P−1

j = (1 + ρiρj)IT − ρiDi − ρjDj − ρiρj∆TT

+[(1− ρ2i )1/2(1− ρ2j )1/2 − 1]∆11. (A.4)

Note that Rij is not the inverse of Rij, i.e., Rij 6= R−1
ij (∀i 6= j).
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Proof of Lemma A.1. The proof is straightforward.

Define the (M ×M) matrix Σ−1 = [(σµµ
′
)µ,µ′=1, ..., M ] and scalars:

αij = (1− ρ2i )1/2(1− ρ2j )1/2,

ξ′(i)j = ∂αij/∂ρi, ξ′′(i)j = ∂2αij/∂
2ρi, ξ′′(i)(j) = ∂2αij/∂ρi∂ρj , (A.5)

Rijρµ = ∂Rij/∂ρµ, Rijρµρµ′ = ∂2Rij/∂ρµ∂ρµ′ .

Lemma A.2. The following results on the partial derivatives of matrix Rij hold:

Riiρi = 2ρiIT −D − 2ρi∆, Riiρiρi = 2(IT −∆) (∀i),

Riiρj = Riiρjρj = Riiρiρj = 0 (∀i 6= j),

Rijρi = ρjIT −Di − ρj∆TT + ξ′(i)j∆11 (∀i, j), (A.6)

Rijρiρi = ξ′′(i)j∆11, Rijρiρj = IT −∆TT + ξ′′(i)(j)∆11 (∀i, j),

Rijρµ = Rijρµρµ = Rijρµρi = Rijρµρj = 0 (∀µ 6= i ∧ ∀µ 6= j),

with obvious modifications for Rijρj and Rijρjρj . Further,

ξ′(i)j = −ρi(1− ρ2i )−1/2(1− ρ2j )1/2 (∀i),

ξ′′(i)j = −(1− ρ2i )−3/2(1− ρ2j )1/2 (∀i),

ξ′′(i)(j) = ρiρj(1− ρ2i )−1/2(1− ρ2j )−1/2 (∀i, j), (A.7)

∂αij
∂ρµ

=
∂2αij
∂ρ2µ

=
∂2αij
∂ρµ∂ρi

=
∂2αij
∂ρµ∂ρj

= 0 (∀µ 6= i ∧ ∀µ 6= j).

Proof of Lemma A.2. The proof follows using Lemma A.1, after tedious algebra.
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Lemma A.3. For the elements of matrix Ω can be analytically written as follows:

∑M

k=1
σikσ

ki =
∑M

k=1
σikσki = 1,∑M

k=1
σikσ

kj =
∑M

k=1
σikσkj = 0 (∀i 6= j),∑M

k=1
σikσ

kiRikR
ki =

∑M

k=1
σikσkiR

ikRki = ITM , (A.8)∑M

k=1
σikσ

kjRikR
kj =

∑M

k=1
σikσkjR

ikRkj = 0 (∀i 6= j).

Proof of Lemma A.3. The results of the lemma can be proved by noticing that

that

Ω−1 = P (Σ⊗ IT )P ′ = [(σijRij)i,j=1, ..., M ]⇒ Ω = [(σijRij)i,j=1, ..., M ], (A.9)

since P is block diagonal, ΣΣ−1 = Σ−1Σ = IM and ΩΩ−1 = Ω−1Ω = ITM .

To derive the partial derivatives of Ω with respect to nuisance parameters, given

in the next lemma, we need the following definitions. For the composite index (ij) =

1, . . . , M2, defined in (20), let ς(ij) = σij be the elements of the (M2 × 1) vector

ς = vec(Σ−1). Also, let ∆µµ′ = [(δµiδjµ′)i,j=1, ,..., M ] be a (M ×M) matrix with 1 in

the (µ, µ′)-th position and 0’s elsewhere. Then, for all µ, µ′, ν and ν′, we have

∂

∂ς(µµ′)
(Σ−1 ⊗ IT ) = ∆µµ′ ⊗ IT ,

∂2

∂ς(µµ′)∂ς(νν′)
(Σ−1 ⊗ IT ) = 0. (A.10)

Lemma A.4. The partial derivatives of Ω with respect to the elements of vectors %

and ς, can be analytically written as follows:

Ως(µµ′) = [(δµiδjµ′Rµµ
′
)i,j=1, ..., M ], Ως(µµ′)ς(νν′) = 0, (A.11)

Ωρµ = [(δµiσ
µjRµjρµ + δjµσ

iµRiµρµ + δµiδjµσ
µµRµµρµ )i,j=1, ..., M ],

Ωρµρµ = [(δµiσ
µjRµjρµρµ + δjµσ

iµRiµρµρµ + δµiδjµσ
µµRµµρµρµ)i,j=1, ..., M ], (A.12)

Ωρµρµ′ = [(δµiδjµ′σµµ
′
Rµµ

′
ρµρµ′

+ δµ′iδjµσ
µ′µRµ

′µ
ρµρµ′

)i,j=1, ..., M ],
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Ωρµς(νν′) = [(δνiδjν′δµνR
µν′
ρµ + δνiδjν′δν′µR

νµ
ρµ + δνiδjν′δµνδν′µR

µµ
ρµ )i,j=1, ..., M ]

(A.13)

⇒ Ωρµς(νν′) = 0 (∀ν 6= µ ∧ ∀ν′ 6= µ).

Proof of Lemma A.4. The proof is straightforward by using Lemmas A.2, A.3 and

equations (A.9), (A.10).

To derive the elements of the product of matrices ΩiΩ
−1Ωj , needed for the partial

derivatives of matrix A (see Lemmas A.14 – A.17), we define the following matrices:

Wij = σiµσµµ′σµ
′jRiµρµRµµ′Rµ

′j
ρµ′

+ δµi
{[∑M

k=1
σµkσkµ′RµkρµRkµ′

]
+ σµµσµµ′RµµρµRµµ′

}
σµ

′jRµ
′j
ρµ′

+ δjµ′σiµRiµρµ

{[∑M

r=1
σµrσ

rµ′
RµrR

rµ′
ρµ′

]
+ σµµ′σµ

′µ′
Rµµ′Rµ

′µ′
ρµ′

}
+ δµiδjµ′

{∑M

k=1

∑M

r=1
σµkσkrσ

rµ′
RµkρµRkrR

rµ′
ρµ′

+
[∑M

k=1
σµkσkµ′RµkρµRkµ′

]
σµ

′µ′
Rµ

′µ′
ρµ′

+ σµµRµµρµ

[∑M

r=1
σµrσ

rµ′
RµrR

rµ′
ρµ′

]
+ σµµσµµ′σµ

′µ′
RµµρµRµµ′Rµ

′µ′
ρµ′

}
, (A.14)

Ω∗ρµρµ′ = ΩρµΩ−1Ωρµ′ , Ω∗ς(µµ′)ς(νν′) = Ως(µµ′)Ω
−1Ως(νν′) ,

(A.15)

Ω∗ρµς(νν′) = ΩρµΩ−1Ως(νν′) and Ω∗ς(νν′)ρµ = Ως(νν′)Ω
−1Ωρµ .

Lemma A.5. The elements of matrices Ω∗ρµρµ′ , Ω∗ς(µµ′)ς(νν′) , Ω∗ρµς(νν′) and Ω∗ς(νν′)ρµ

can be analytically written as follows:

Ω∗ρµρµ′ = [(Wij)i,j=1, ..., M ],

Ω∗ς(µµ′)ς(νν′) = [(δµiδjν′σµ′νR
µν′)i,j=1, ..., M ],

Ω∗ρµς(νν′) =

[((∑M

k=1
σikσkνR

ik
ρµRkν

)
δjν′R

νν′
)
i,j=1, ..., M

]
, (A.16)

Ω∗ς(νν′)ρµ =

[(
δνiR

νν′
(∑M

r=1
σν′rσ

rjRν′rR
rj
ρµ

))
i,j=1, ..., M

]
.
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Proof of Lemma A.5. The results (A.16) can be easily proved by using Lemma A.4

and equations (A.9), (A.14).

Asymptotic expansions of estimators

For all estimators of matrix B and the nuisance patameters considered in the paper,

in the next lemmas we derive the following asymptotic expansions. In each case, these

estimators are indexed by I (see footnotes 2 and 3).

Lemma A.6. All estimators B̂I (I = UL,RL,GL, IG,ML) of matrix B, defined in

(21), admit a stochastic expansion of the form

B̂I = B + τBI1 + ω(τ2), (A.17)

where

BUL1 =
√
T (Z′Z)−1Z′E,

vec(BRL1 ) =
√
TΨ(X ′∗X∗)

−1X ′∗ε, (A.18)

vec(BGL1 ) = vec(BIG1 ) = vec(BML
1 )

=
√
TΨ

[
X ′∗(Σ

−1
I ⊗ IT )X∗

]−1
X ′∗(Σ

−1
I ⊗ IT )ε.

Proof of Lemma A.6. The results of the lemma follow immediately by using the

definitions of all estimators BI considered (see footnote 3).

Let ÊI be the residuals corresponding to the estimators B̂I . Then, the following

lemma holds for the estimators Σ̂I and Σ̂−1
I of matrix Σ and its inverse, respectively,

based on ÊI .

Lemma A.7. All estimators Σ̂I (I = UL,RL,GL, IG,ML) of matrix Σ admit a

stochastic expansion of the form

Σ̂I = Σ + τ(Σ1 + τΣI2) + ω(τ3), (A.19)
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where

Σ1 =
√
T (E′E/T − Σ), ΣI2 = (BI1 −BUL1 )′Γ(BI1 −BUL1 )− E′PZE, (A.20)

Γ is any conformable matrix and PZ is the orthogonal projector spanned by the columns

of matrix Z. Estimator Σ̂−1
I admits a stochastic expansion of the form

Σ̂−1
I = Σ−1 − τS1 + τ2SI2 + ω(τ3), (A.21)

where

S1 = Σ−1Σ1Σ−1, SI2 = Σ−1(Σ1Σ−1Σ1 − ΣI2)Σ−1. (A.22)

Proof of Lemma A.7. The proof is straightforward based on Lemma A.6.

The stochastic expansion of estimator of vector ς, denoted as ς̂I is given in the

next lemma.

Lemma A.8. All estimators ς̂I = vec{[Ê′IÊI/T ]−1} (I = UL, RL, GL, IG, ML) of

vector ς admit a stochastic expansion of the form

ς̂I = ς − τvec(S1) + τ2vec(SI2 ) + ω(τ3) (A.23)

and thus, the (M2 × 1) vector δς = (ς̂ − ς)/τ , with elements δς(µµ′) defined in (27),

admits a stochastic expansion of the form

δς = −vec(S1) + τvec(SI2 ) + ω(τ2)

= d1ς + τd2ς + ω(τ2), (A.24)

which implies that

d1ς = −vec(S1), d2ς = vec(SI2 ). (A.25)

Proof of Lemma A.8. The proof follows simply from equations (21), (29), (32) and

(A.21).
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To derive the stochastic expansion of the estimators of σ, denoted as σ̂I , we define

the following (M ×M) matrices (indexed by I):

∆I = lim
T→∞

TE [(B̂I − B̂UL)′Γ(B̂I − B̂UL)]

= lim
T→∞

E [(BI1 −BUL1 )′Γ(BI1 −BUL1 )], (A.26)

where Γ is any conformable matrix.

Lemma A.9. All estimators σ̂2
I (I = UL,RL,GL, IG,ML) of σ2 (see footnote 1)

satisfy the relation

σ̂2
I = tr(Σ̂−1

I Σ̂J)/(M − τ2n)

= {M + τ2tr[(SI2 − SJ2 )Σ]}/(M − τ2n) + ω(τ3). (A.27)

The last equation implies that

(σ̂2
I − 1)/τ = {M/τ + τtr[(SI2 − SJ2 )Σ]}/(M − τ2n)− 1/τ + ω(τ2)

= τ{tr[(SI2 − SJ2 )Σ] + n}/M + ω(τ2), (A.28)

i.e., scalar δ0, defined in (27), admits a stochastic expansion of the form

δ0 = σ0 + τσ1 + ω(τ2), (A.29)

which in turn implies that

σ0 = 0 and σ1 = {tr[(SI2 − SJ2 )Σ] + n}/M. (A.30)

Proof of Lemma A.9. To prove the lemma we rely on the following results (see

(A.31) and (A.32)): Since the rows εt (t = 1, . . . , T ) of E are independent NM (0,Σ)

random vectors, matrix E′E is a Wishart matrix with weight matrix Σ and T degrees

of freedom, i.e., E′E ∼ WM (Σ, T ) and E(E′E) = TΣ. Then, it is easy to show that

E(E′EΣ−1E′E) = T (M + T + 1)Σ. (A.31)

Moreover, since E′E ∼ WM (Σ, T ) and PZ is idempotent of rank K, it follows that

matrix E′PZE ∼ WM (Σ,K) and E(E′PZE) = tr(PZ)Σ = KΣ. Further, E(Σ1) = 0,
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E(Σ1Σ−1Σ1) = (M + 1)Σ and

E(S1) = 0, E(SI2 ) = (M +K+ 1)Σ−1−Σ−1E [(BI1 −BUL1 )′Γ(BI1 −BUL1 )]Σ−1. (A.32)

Let ε̂GL = vec(ÊGL) be the GL residuals of regression equation (16). Then, the

corresponding estimator of Σ is Σ̂J = Ê′GLÊGL/T . Also, let β̂GL be the GL estimator

of β in (16). Define the (M ×M) matrices MI = limT→∞ E(SI2 ) (I = UL, RL, GL,

IG, ML) and the (M2 ×M2) matrix N whose ((ij), (kr))-th element is ν(ij)(kr) =

σikσjr + σirσjk (i, j, k, r = 1, . . . , M). Then, (A.26) and (A.32) imply that

MI = (M +K + 1)Σ−1 − Σ−1∆IΣ
−1 (A.33)

⇒ lim
→∞

TE [(SI2 − SJ2 )Σ] = (MI −MGL)Σ = Σ−1(∆GL −∆I), (A.34)

where

∆UL = 0,

∆RL =
[[(

tr(B−1
ii BijB

−1
jj Bji)− ni − nj +K

)
σij
]
i,j=1, ..., M

]
, (A.35)

∆GL = ∆IG = ∆ML = KΣ−
[
(tr(GijBji))i,j=1, ..., M

]
.

Since E′E ∼ WM (Σ, T ) and E(E′E) = TΣ, matrix W∗ =
√
TΣ1 = E′E − TΣ, with

elements wij , is a Wishart matrix in deviations from it expected values. Following

Zellner (1971, page 389, equation (B.58)), we find that

E(wijwkr) = T (σikσjr + σirσjk) = Tν(ij)(kr) (A.36)

⇒ lim
T→∞

E [(vec(S1))(vec(S1))′] = (Σ−1 ⊗ Σ−1)N(Σ−1 ⊗ Σ−1). (A.37)

The proof of the lemma can be completed using the following relationship:

(M − τ2n)−1 = M−1(1− τ2n/M)−1 = (1 + τ2n/M)/M + ω(τ4). (A.38)
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Before deriving the asymptotic expansion of the estimators of ρµ, next we define

the following (T × T ) matrices:

Rµµi = Rµµρµ + iρµ∆ (i = 1, 2),

(A.39)

Vµ =
[
I −Xµ(X ′µR

µµXµ)−1X ′µRµµ
]
Rµµ.

The first assumption in Subsection 3.1 implies that matricesX ′µRµµXµ/T andX ′µXµ/T

converge to non-singular matrices, as T →∞, and that matrices

X ′µ∆Xµ/T, X ′µ∆RµµXµ/T, X ′µRµµ∆Xµ/T, X ′µ∆Rµµ∆Xµ/T and X ′µRµµXµ/T

are of order O(T−1). The above matrices help to derive expectations of products of

quadratic forms of u, needed in the expansions of estimators of ρµ. These are given in

the next lemma:

Lemma A.10. For quadratic forms of vector u, we have the following results:

E(u′µR
µµ
2 uµ) =

2ρµσµµ
1− ρ2µ

,

E(u′µuµu
′
µR

µµ
2 uµ) = −

2Tρµσ
2
µµ

(1− ρ2µ)2
+O(1),

E(u′µR
µµ
2 uµu

′
µR

µµ
2 uµ) =

4Tσ2
µµ

1− ρ2µ
+O(1),

E(u′µR
µµ
2 uµu

′
µ′Rµ

′µ′

2 uµ′) =
4Tσµµσµ′µ′

1− ρµρµ′
+O(1),

E(u′µPXµR
µµ
2 PXµVµR

µµuµ) =
σµµ
ρµ

[
nµ − tr(F−1

µµ BµµF
−1
µµ Θµµ)

]
+O(T−1), (A.40)

E(u′µPXµR
µµ
2 PXµuµ) =

σµµ
ρµ

[
2
[
ρ2µ/(1− ρ2µ)− nµ

]
+ (1− ρ2µ)tr(F−1

µµ Θµµ)

+ tr(F−1
µµ BµµF

−1
µµ Θµµ)

]
+O(T−1),

E(u′µR
µµVµPXµR

µµ
2 PXµVµR

µµuµ) =
σµµ
ρµ

[ [
tr(F−1

µµ BµµF
−1
µµ Θµµ)− nµ

]
+ (1− ρ2µ)

[
tr(FµµB

−1
µµ )− tr(F−1

µµ Θµµ)
] ]

+O(T−1).
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Proof of Lemma A.10. The results of the lemma follow based on the result of Mag-

nus and Neudecker (1979) given in page 389, after tedious algebra. Note that in cal-

culating the traces of the lemma, terms of the form Tnρ2Tµ → 0 since 0 ≤ ρµ < 1 and

L’ Hospital’s rule implies that limT→∞ T
nρ2Tµ = 0.

The stochastic expansion of the LS estimator of ρµ is given in the next lemma:

Lemma A.11. The LS estimator of ρµ, denoted as ρ̃µ, admits a stochastic expansion

of the form

ρ̃µ = ρµ + τ
(
ρ(1)µ + τρ(2)µ

)
+ ω(τ3), (A.41)

where

ρ(1)µ = −
u′µR

µµ
2 uµ

2
√
Tσ2

uµ

, ρ(2)µ = −
u′µPXµR

µµ
2 PXµuµ

2σ2
uµ

+
u′µuµu

′
µR

µµ
2 uµ

2Tσ4
uµ

. (A.42)

Proof of Lemma A.11. To prove the lemma, we rely on the following results (see

(A.43) – (A.46)): Let εti be the (t, i)-th element of matrix E. Then, the (i, j)-th

element of matrix E′E/T is

eij =
∑T

t=1
εtiεtj/T = ε′iεj/T, (A.43)

where εi is the i-th column of matrix E. Since σij and σij are the (i, j)-th ele-

ments of matrices Σ and Σ−1, respectively, Σ−1 = Σ−1ΣΣ−1 implies that σij =∑M
k=1

∑M
r=1 σ

ikσkrσ
rj . Thus, the (i, j)-th element of matrix Σ1 in Lemma A.7 is

given as

σ
(1)
ij =

√
T (eij − σij) (A.44)

and the (ij)-th element of (M2 × 1) vector vec(S1), where S1 = Σ−1Σ1Σ−1, is given

as

s
(1)

(ij) =
√
T
{∑M

k=1

∑M

r=1
σik(ε′kεr/T )σrj − σij

}
. (A.45)

Since uµ = Pµεµ ⇒ u′µR
µµ
2 uµ = ε′µP

′
µR

µµ
2 Pµεµ and Rµµ = PµP

′
µ, we can show

that

E(u′µR
µµ
2 uµ) = σµµtr(R

µµ
2 Rµµ)⇒
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⇒ E [(ε′kεr/T )u′µR
µµ
2 uµ] = σkrσµµ

2ρµ
1− ρ2µ

+O(T−1)

⇒ E
(
s
(1)

(ij)u
′
µR

µµ
2 uµ

)
=
√
Tσµµ

2ρµ
1− ρ2µ

{∑M

k=1

∑M

r=1
σikσkrσ

rj − σij
}

+O(T−1/2)

⇒ lim
T→∞

E
(
s
(1)

(ij)u
′
µR

µµ
2 uµ

)
= 0. (A.46)

The rest of the proof follows using Lemma A.10.

The stochastic expansions of the rest of the estimators of ρµ, listed in footnote 2,

are given in the next lemma.

Lemma A.12. The GL, PW , ML and DW estimators of ρµ admit the following

stochastic expansions, respectively:

ρ̂GLµ = ρ̂PWµ = ρ̃µ − τ2
1− ρ2µ
σµµ

[
u′µPXµR

µµ
2 PXµVµR

µµuµ

+u′µR
µµVµPXµR

µµ
2 PXµVµR

µµuµ/2
]

+ ω(τ3),

ρ̂ML
µ = ρ̂GLµ + τ2

[
ρµ

1− ρ2µ
σµµ

(u2
1µ + u2

Tµ)− ρµ
]

+ ω(τ3), (A.47)

ρ̂DWµ = ρ̃µ + τ2
1− ρ2µ
2σµµ

(u2
1µ + u2

Tµ) + ω(τ3).

Proof of Lemma A.12. The results of the lemma can be easily proved based on

Magee (1985, pages 279–281) for the GL and iterative PW estimators of ρµ, Beach

and MacKinnon (1978, pages 52–54) and Magee (1985, pages 281–284) for the ML

estimator, and using Lemma A.11 and the definition of the DW estimator of ρµ.

The stochastic expansion of the elements of vector δ%, are given in the next lemma:

Lemma A.13. The (M × 1) vector δ% =
√
T (%̂− %)/τ , with elements δρµ defined in

(27), admits a stochastic expansion of the form

δ% = d1% + τd2% + ω(τ2). (A.48)
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For estimators ρ̂Iµ (I = LS,GL, PW,ML,DW ), the elements of d1% and d1% in (A.48)

are analytically given as follows: dGL(1)ρµ
= dPW(1)ρµ

= dML
(1)ρµ

= dDW(1)ρµ
= dLS(1)ρµ

and

dLS(1)ρµ = ρ(1)µ ,

dLS(2)ρµ = ρ(2)µ ,

dGL(2)ρµ = dPW(2)ρµ = dLS(2)ρµ −
1− ρ2µ
σµµ

[
u′µPXµR

µµ
2 PXµVµR

µµuµ

+u′µR
µµVµPXµR

µµ
2 PXµVµR

µµuµ/2
]
, (A.49)

dML
(2)ρµ = dGL(2)ρµ + ρµ

1− ρ2µ
σµµ

(u2
1µ + u2

Tµ)− ρµ,

dDW(2)ρµ = dLS(2)ρµ +
1− ρ2µ
2σµµ

(u2
1µ + u2

Tµ).

Proof of Lemma A.13. The proof is straightforward using Lemmas A.11 and A.12.

Next, we provide analytic forms of the elements of vectors l and c, and matrices

L, C and D∗ employed in the stochastic expansions of the tests statistics given in the

paper. To this end, we first derive the partial derivatives of matrix A, given in (28),

with respect to the elements of % and ς. Using matrices Bij = X ′iR
ijXj/T , matrix A

defined in (28) can be partitioned as follows:

A = [(σijBij)i,j=1, ..., M ]. (A.50)

Lemma A.14. The partial derivatives of matrix A with respect to the elements of %
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and ς can be analytically written as follows:

Aρµ = [(
σij

T
X ′iR

ij
ρµXj)i,j=1,..., M ], Aρµρµ′ = [(

σij

T
X ′iR

ij
ρµρµ′

Xj)i,j=1, ..., M ],

A∗ρµρµ′ = [(X ′iWijXj/T )i,j=1, ..., M ], Aς(µµ′) = [(δµiδjµ′Bµµ′)i,j=1, ..., M ],

Aς(µµ′)ς(νν′) = 0, A∗ς(µµ′)ς(νν′) = σµ′νAς(µν′) ,

Aρµς(νν′) = [(δνiδjν′X
′
νR

νν′
ρµ Xν′/T )i,j=1, ..., M ], (A.51)

A∗ρµς(νν′) =

[(∑M

k=1

δjν′σ
ikσkν
T

X ′iR
ik
ρµRkνR

νν′Xν′

)
i,j=1, ..., M

]
,

A∗ς(νν′)ρµ =

[(∑M

r=1

δνiσν′rσ
rj

T
X ′νR

νν′Rν′rR
rj
ρµXj

)
i,j=1, ..., M

]
.

Proof of Lemma A.14. The proof follows immediately from equation (31), and

Lemmas A.4 and A.5.

Analytic formulae of the elements of vector l and matrix L are given in the following

lemma

Lemma A.15. The elements of vector l and matrix L can be calculated as follows:

lρµ =
∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σkrh′iGikX

′
kR

kr
ρµXrGrjhj/T, (A.52)

lς(µµ′) =
∑M

i=1

∑M

j=1
h′iGiµBµµ′Gµ′jhj , (A.53)

lρµρµ′ =
∑M

q=1

∑M

s=1

∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σikσrj

×h′qGqiX ′iRikρµ(σkrRkr − 2XkGkrX
′
r/T )Rrjρµ′XjGjshs/T

+
∑M

q=1

∑M

s=1

∑M

i=1

∑M

j=1
σij

×h′qGqiX ′iRijρµρµ′XjGjshs/2T, (A.54)

lς(µµ′)ς(νν′) = σµ′ν lς(µν′) − 2
∑M

i=1

∑M

j=1
h′iGiµBµµ′Gµ′νBνν′Gν′jhj , (A.55)

lρµς(νν′) =
∑M

q=1

∑M

s=1

∑M

i=1

∑M

k=1
σikh′qGqiX

′
iR

ik
ρµ

×(σkνRkν − 2XkGkνX
′
ν/T )Rνν

′
Xν′Gν′shs/T

+
∑M

q=1

∑M

s=1
h′qGqνX

′
νR

νν′
ρµ Xν′Gν′shs/2T, (A.56)
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lς(νν′)ρµ =
∑M

q=1

∑M

s=1

∑M

j=1

∑M

r=1
σrjh′qGqνX

′
νR

νν′

×(σν′rRν′r − 2Xν′Gν′rX
′
r/T )RrjρµXjGjshs/T

+
∑M

q=1

∑M

s=1
h′qGqνX

′
νR

νν′
ρµ Xν′Gν′shs/2T. (A.57)

Proof of Lemma A.15. The results of the lemma follow by using the definitions in

(41), partition of the matrix G in (52) and Lemmas A.1 – A.14.

Analytic formulae of the elements of vector c and matrices C and D∗ are given in

the following lemma:

Lemma A.16. The elements of vector c and matrices C and D∗ can be calculated as

follows:

cρµ =
∑M

i=1

∑M

j=1
σijtr(X ′iR

ij
ρµXjΞji)/T, (A.58)

cς(µµ′) = tr(Bµµ′Ξµ′µ), (A.59)

cρµρµ′ =
∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σikσkrσ

rj

×tr(X ′iRikρµRkrR
rj
ρµ′
XjΞji)/T

−2
∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σikσrj

×tr(X ′iRikρµXkGkrX
′
rR

rj
ρµ′
XjΞji)/T

2

+
∑M

i=1

∑M

j=1
σijtr(X ′iR

ij
ρµρµ′

XjΞji)/T, (A.60)

cς(µµ′)ς(νν′) = σµ′νcς(µν′) − 2tr(Bµµ′Gµ′νBνν′Ξν′µ), (A.61)

cρµς(νν′) =
∑M

i=1

∑M

k=1
σikσkνtr(X

′
iR

ik
ρµRkνR

νν′Xν′Ξν′i)/T

−2
∑M

i=1

∑M

k=1
σiktr(X ′iR

ik
ρµXkGkνBνν′Ξν′i)/T

+tr(X ′νR
νν′
ρµ Xν′Ξν′ν)/2T, (A.62)

cς(νν′)ρµ =
∑M

j=1

∑M

r=1
σν′rσ

rjtr(X ′νR
νν′Rν′rR

rj
ρµXjΞjν)/T

−2
∑M

j=1

∑M

r=1
σrjtr(Bνν′Gν′rX

′
rR

rj
ρµXjΞjν)/T

+tr(X ′νR
νν′
ρµ Xν′Ξν′ν)/2T, (A.63)
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dρµρµ′ =
∑M

i=1

∑M

j=1

∑M

k=1

∑M

r=1
σikσrj

×tr(X ′iRikρµXkΞkrX
′
rR

rj
ρµ′
XjΞji)/2T

2, (A.64)

dς(µµ′)ς(νν′) = tr(Bµµ′Ξµ′νBνν′Ξν′µ)/2, (A.65)

dρµς(νν′) =
∑M

i=1

∑M

k=1
σiktr(X ′iR

ik
ρµXkΞkνBνν′Ξν′i)/2T, (A.66)

dς(νν′)ρµ =
∑M

j=1

∑M

r=1
σrjtr(Bνν′Ξν′rX

′
rR

rj
ρµXjΞjν)/2T. (A.67)

Proof of Lemma A.16. The results of the lemma can be easily calculated by using

the definitions (56) and (57), partition of matrix Ξ in (52) and the following traces:

tr(AρµΞ), tr(Aρµρµ′ Ξ), tr(Aς(µµ′)Ξ), tr(Aς(µµ′)ς(νν′)Ξ),

tr(Aρµς(νν′)Ξ), tr(A∗ρµρµ′ Ξ), tr(A∗ς(µµ′)ς(νν′)Ξ), tr(A∗ρµς(νν′)Ξ), (A.68)

tr(AρµGAρµ′ Ξ), tr(AρµGAς(νν′)Ξ), tr(Aς(µµ′)GAς(νν′)Ξ),

with obvious modifications for

tr(Aς(νν′)ρµΞ), tr(A∗ς(νν′)ρµΞ), tr(Aς(νν′)GAρµΞ),

tr(AρµΞAρµ′ Ξ), tr(AρµΞAς(νν′)Ξ), tr(Aς(νν′)ΞAρµΞ), tr(Aς(µµ′)ΞAς(νν′)Ξ).

By using the above results and Lemmas A.1 – A.14, the proof completes.

Analytic formulae of the scalars and vectors given in (33) are derived in the fol-

lowing lemma.

Lemma A.17. Scalars λ0 and κ0, vectors λ%, λς , κ% and κς , and matrices Λ%, Λς

and Λ%ς can be calculated as follows:

λ0 = 0, λ% = 0, λς = 0, (A.69)

Λς = (Σ−1 ⊗ Σ−1)N(Σ−1 ⊗ Σ−1), (A.70)

where N is a (M2 ×M2) matrix whose ((ij), (kr))-th element is

ν(ij)(kr) = σikσjr + σirσjk (i, j, k, r = 1, . . . , M). (A.71)
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The µ-th diagonal element of the matrix Λ% is

lim
T→∞

E(d2(1)ρµ) = 1− ρ2µ, (A.72)

and its (µ, µ′)-th off-diagonal element is

lim
T→∞

E(d(1)ρµd(1)ρµ′ ) =
(1− ρ2µ)(1− ρ2µ′)

(1− ρµρµ′)
, (A.73)

for µ 6= µ′. Further, we have

Λ%ς = 0 and Λς% = 0. (A.74)

For all estimators σ̂I and ς̂I (I = UL, RL, GL, IG, ML), we can compute the

following (M ×M) matrices:

∆UL = 0, ∆GL = ∆IG = ∆ML = KΣ−
[
(tr(GijBji))i,j=1, ..., M

]
,

∆RL =
[[(

tr(B−1
ii BijB

−1
jj Bji)− ni − nj +K

)
σij
]
i,j=1, ..., M

]
. (A.75)

Given them we can calculate κ0 and κς as follows:

κ0 = tr
[
Σ−1(∆GL −∆I)

]
/M + n/M, (A.76)

and

κς = vec
{

(M +K + 1)Σ−1 − Σ−1∆IΣ
−1} . (A.77)

Also, define scalars

c1 = (1− ρ2µ)[(1− ρ2µ)tr(F−1
µµ Θµµ) + tr(F−1

µµ BµµF
−1
µµ Θµµ)], (A.78)

and

c2 = (1− ρ2µ)tr(FµµB
−1
µµ ), (A.79)

where

Fµµ = X ′µXµ/T, Θµµ = X ′µRµµXµ/T (A.80)

are (nµ×nµ) matrices. For all estimators ρ̂Iµ (I = LS,GL, PW,ML, DW ), we calcu-

late the elements κρµ of (M × 1) vector κ% as follows:

κLSρµ = −[(nµ + 3)ρµ + (c1 − 2nµ)/2ρµ], (A.81)
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and

κGLρµ = κPWρµ = κLSρµ +
c1−(1−ρ2µ)(c2+nµ)

2ρµ
,

κML
ρµ = κGLρµ + ρµ, (A.82)

κDWρµ = κLSρµ + 1.

Proof of Lemma A.17. From (33), (A.24), (A.29), and (A.48) we can easily show

that

λ0 = lim
T→∞

E(σ2
0), λρ = lim

T→∞
E(σ0d1ρ) and λς = lim

T→∞
E(σ0d1ς). (A.83)

The results in (A.69) follows immediately since σ0 = 0 (see(A.30)). Equations (33)

and (A.24) imply

Λς = lim
T→∞

E(d1ςd
′
1ς). (A.84)

This result together with (A.25), (A.36) and (A.37) yield (A.70).

Since (33) and (A.48) imply that

Λ% = lim
T→∞

E(d1%d
′
1%) (A.85)

and σ2
uµ = σ2

µµ/(1 − ρ2µ), we can prove that the µ-th diagonal element of the matrix

Λ% is

lim
T→∞

E(d2(1)ρµ) = lim
T→∞

E(u′µR
µµ
2 uµu

′
µR

µµ
2 uµ)/4Tσ2

uµ

= lim
T→∞

[
4Tσ2

µµ

1− ρ2µ
+O(1)

]
/4Tσ2

uµ , (A.86)

by combining the third result in Lemma A.10 with (A.42) and (A.49). The last result

proves (A.72). Working along the same lines for µ 6= µ′, we can prove (A.73), for the

(µ, µ′)-th off-diagonal element of Λ%.

To prove (A.74), first note that (33), (A.24) and (A.48) imply

Λ%ς = lim
T→∞

E(d1%d
′
1ς). (A.87)

Substituting (A.25), (A.45) and (A.42) into (A.87), we can calculate the (µ, (ij))-th

element of (M ×M2) matrix Λ%ς as −d(1)ρµs
(1)

(ij). Following the same steps to that of
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the proof of (A.46) we can show that

lim
T→∞

E
(
−d(1)ρµs

(1)

(ij)

)
= 0. (A.88)

(A.74) can be proved immediately using Λς% = Λ′%ς .

For all estimators σ̂I (I = UL, RL, GL, IG, ML), we can find that

κ0 = lim
T→∞

E
(√

Tσ0 + σ1

)
= lim
T→∞

E (σ1) , (A.89)

by combining (33) with (A.34), (A.29) and (A.30). The last result proves (A.76). For

all estimators ς̂I (I = UL, RL, GL, IG, ML),we can show that

κς = lim
T→∞

E
(√

Td1ς + d2ς
)

= vec
{

lim
T→∞

E
(
SI2

)}
, (A.90)

since E (S1) = 0 and limT→∞ E
(
SI2
)

= MI [see (A.34)], by using (33), (A.24), (A.25)

and (A.34). This result implies (A.77).

Finaly, we can calclulate

κLSρµ = lim
T→∞

E
(√

TdLS(1)ρµ + dLS(2)ρµ

)
, (A.91)

by using (33) and (A.42), Lemmas A.10 and A.13. This yields (A.81). Along the same

lines, we can calculate the following quantities:

κGLρµ = κPWρµ = lim
T→∞

E
(√

TdLS(1)ρµ + dGL(2)ρµ

)
,

κML
ρµ = lim

T→∞
E
(√

TdLS(1)ρµ + dML
(2)ρµ

)
and (A.92)

κDWρµ = lim
T→∞

E
(√

TdLS(1)ρµ + dDW(2)ρµ

)
,

which proves (A.82).

Asymptotic expansions of size corrected tests: Proofs of

theorems

Given the lemmas of the previous subsections, next we give the proofs of the theo-

rems presented in the main text. These are based on known expansions of standard
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normal and chi-square distributed tests. We derive new expansions of the degrees-of-

freedom adjusted versions of these tests, by inverting their characteristic functions.

These degrees-of-freedom adjusted are proved to be locally exact.

Proof of Theorems 1 and 2. Approximation (42) of Theorem 1 can be proved

along the same lines with Rothenberg (1988). To obtain the quantities in (40), we

expand the corresponding quantities given by Rothenberg and we retain the first term

in the expansion. The approximation (44) of Theorem 2 follows from the approxima-

tion (42) and the following asymptotic approximations of the Student-t distribution

and density functions. These are given in terms of the standard normal distribution

and density functions, respectively (see Fisher (1925)):

IT−n(x) = I(x)− (τ2/4)(1 + x2)xi(x) +O(τ4),

(A.93)

iT−n(x) = i(x) +O(τ2).

Note that approximation (44) of Theorem 2 is locally exact. This can be easily

seen as follows: If parameter vector γ = (%′, ς ′)′ is known to belong to a ball of radius

ϑ, then, as ϑ→ 0, γ becomes a fixed known vector. By using (27), (29), (33) and (35)

we can prove that

Λ = 0, λ = κ = 0, λ0 = 2, κ0 = 0. (A.94)

Then, the analytic formulae of p1 and p2, given in (43), become

p1 = p2 = 0. (A.95)

This result implies that, with an error of order O(τ3), approximation (44) becomes

the Student-t distribution function with MT − n degrees of freedom.

Proof of Theorem 3. To prove the theorem, first notice that, under null hypothesis

(36), the t statistic given by (37), admits a stochastic expansion of the form

t = t0 + τt1 + τ2t2 + ω(τ3), (A.96)
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where the first term in the expansion is given as

t0 = e′b/(e′Ge)1/2 = h′b, where b = GX ′Ωu/
√
T .

The result given by equation (A.96) implies that the Cornish-Fisher corrected statistic

t∗, given by (47), admits a stochastic expansion of the form

t∗ = t0 + τt1 + τ2(t2 − t3) + ω(τ3), (A.97)

where

t3 = (p1 + p2t
2
0)t0/2.

given by (37) and a standard normal random variable, respectively. Using (A.97) and

the relationships:

E[exp(st0)t0] = sφ(s) and E[exp(st0)t30] = (3s+ s3)φ(s),

we can show that the characteristic function of the Cornish-Fisher corrected statistic

t∗, denoted as ψ∗(s), can be approximated as follows:

ψ∗(s) = ψ(s)− τ2s E[exp(st0)t3] +O(τ3)

= ψ(s)− τ2

2
s [p1s+ p2(3s+ s3)]φ(s) +O(τ3).

Dividing ψ∗(s) by −s, applying the inverse Fourier transform and using Theorem 2,

we can show that

Pr {t∗ ≤ x} = Pr {t ≤ x}+
τ2

2
(p1 + p2x

2)xiT−n(x) +O(τ3)

= IT−n(x)− τ2

2
(p1 + p2x

2)xiT−n(x)

+
τ2

2
(p1 + p2x

2)xiT−n(x) +O(τ3)

= IT−n(x) +O(τ3). (A.98)

The last result means that the Cornish-Fisher corrected statistic t∗ is distributed as a

Student-t random variable with MT − n degrees of freedom.
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Proof of Theorems 4 and 5. Approximation (58) of Theorem 4 can be proved

along the same lines with Rothenberg (1984b). In order to obtain the quantities in

(56), we expand the corresponding quantities given by Rothenberg and we retain the

first term in the expansion. Approximation (60) of Theorem 5 follows from approxi-

mation (58) and the following asymptotic approximations of the F distribution and

density functions. These are given in terms of the chi-square distribution and density

functions, respectively:

F rT−n(x) = Fr(rx) + (τ2/2)(r − 2− rx)rxfr(rx) +O(τ4),

(A.99)

frT−n(x) = rfr(rx) +O(τ2).

Note that approximation (60) of Theorem 5 can be easily seen to be locally exact.

By using (A.94), (59), and (61), we can show that

ξ1 = −m(m− 2)/2 and ξ2 = m(m+ 2)/2 (A.100)

⇒ q1 = q2 = 0. (A.101)

This result means that, with an error of order O(τ3), approximation (60) becomes the

F distribution function with m and MT − n degrees of freedom.

Proof of Theorem 6. To prove the theorem, first notice that, under null hypothesis

(48), the F statistic given by (50) admits a stochastic expansion of the form

F = F0 + τF1 + τ2F2 + ω(τ3), (A.102)

where the first term in the expansion is

F0 = b′Qb/r, b = GX ′Ωu/
√
T .

Equation (A.102) implies that the Cornish-Fisher corrected statistic F∗, given by (64),

admits a stochastic expansion of the form

F∗ = F0 + τF1 + τ2(F2 − F3) + ω(τ3), (A.103)
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where

F3 = (q1 + q2F0)F0.

Let s be an imaginary number, and ψ(s) and φr(s) now denote the characteristic

functions of the F statistic given by (50) and a chi-square random variable with r

degrees of freedom, respectively. Using (A.103) and the following relationships:

E[exp(sF0)F0] = φr+2(s/r) and E[exp(sF0)F 2
0 ] =

r + 2

r
φr+4(s/r),

we can show that the characteristic function of the Cornish-Fisher corrected statistic

F∗, denoted as ψ∗(s), can be approximated as

ψ∗(s) = ψ(s)− τ2s E[exp(sF0)F3] +O(τ3)

= ψ(s)− τ2s [q1φr+2(s/r) + q2
r + 2

r
φr+4(s/r)] +O(τ3). (A.104)

For the chi-square density fr(x), the following results can be shown:

(rx)fr(rx) = rfr+2(rx) and (rx)2fr(rx) = r(r + 2)fr+4(rx). (A.105)

Dividing (A.104) by −s, applying the inverse Fourier transform, and using Theorem 5

and the results of equations (6) and (A.105), we can show that the following approxi-

mations hold:

Pr {F∗ ≤ x} = Pr {F ≤ x}+ τ2[(q1rfr+2(rx) + q2
r + 2

r
rfr+4(rx)] +O(τ3)

= Pr {F ≤ x}+ τ2[(q1rxfr(rx) + q2rx
2fr(rx)] +O(τ3)

= Pr {F ≤ x}+ τ2(q1 + q2x)rxfr(rx) +O(τ3)

= F rT−n(x)− τ2(q1 + q2x)xfrT−n(x)

+τ2(q1 + q2x)xfrT−n(x) +O(τ3)

= F rT−n(x) +O(τ3). (A.106)

The last result implies that F∗ = F , which means that the Cornish-Fisher corrected

statistic F∗ is distributed as an F random variable with m and MT − n degrees of

freedom.
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