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Abstract

Refined asymptotic methods are used to produce degrees-of-freedom
adjusted Edgeworth and Cornish-Fisher size corrections of the ¢t and F
testing procedures for the parameters of a S.U.R. model with serially
correlated errors. The corrected tests follow the Student-t and F' distri-
butions, respectively, with an approximation error of order 0(7'3), where
7 =1/+/T and T is the number of time observations. Monte Carlo sim-
ulations provide evidence that the size corrections suggested hereby have
better finite sample properties, compared to the asymptotic testing pro-

cedures (either standard or Edgeworth corrected), which do not adjust for
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the degrees of freedom.
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1 Introduction

Refined asymptotic methods can considerably improve the finite-sample perfor-
mance of estimation and testing procedures in applied econometric research (see,
e.g., Ullah (2004), for a survey). These methods involve higher order asymp-
totic approximations of the distributions of well known economertic estima-
tors and/or test statistics which can efficiently approximate their sample dis-
tributions (see Magdalinos and Symeonides (1995), Magee (1985), Rothenberg
(1984b), Symeonides et al. (2007), inter alia). In finite samples, considerable
discrepancies between the true and estimated values of these estimators or nor-
mality of error terms lead to substantial differences between the actual (sample)
and nominal size of standard testing procedures. In the literature, these discrep-
ancies are found to be very severe, especially for the linear regression model with
non-scalar covariance matrix of error terms estimated by the feasible general-
ized least squares (FGLS), or maximum likelihood. Estimation of this model
requires efficient methods of estimating the nuisance parameters of the error
term covariance matrix.

Despite the substantial amount of work on refined asymptotic bias expan-
sions of alternative estimators for the linear regression model or simultaneous
systems of equations (see, e.g., Iglesias and Phillips (2010, 2011), Kiviet and

Phillips (1996), Phillips (2000, 2007), inter alia), there are only a few papers in



the literature of applying these methods to conventional test statistics, like the
F and t ones. Rothenberg (1984b, 1988) used Edgeworth expansions in terms of
the chi-square and normal distributions, respectively, to derive general formu-
lae of corrected critical values of the Wald (or F') and ¢ test statistics. Instead
of using Edgeworth corrections of the critical values, Magdalinos and Syme-
onides (1995) suggested the use of degrees-of-freedom-adjusted Cornish-Fisher
corrected t and F' statistics for the linear regression model with first-order au-
tocorrelated errors. Cornish-Fisher corrected ¢ and F' statistics for the linear
regression model with heteroskedastic error term have been recently suggested
by Symeonides et al (2007).

In this paper, we extend the above testing procedures of Rothemberg, Mag-
dalinos and Symeonides to systems of Seemingly Unrelated Regression (S.U.R.)
equations which allow for first-order autoregressive error terms. This is a multi-
regression model which is frequently used in economics to simultaneously esti-
mate investment functions, arbitrage asset pricing models, demand equations of
different economic units (like industries, assets or countries) allowing for cross-
correlation among them. Panel data models with fixed or random effects can
be seen as special cases of the S.U.R model. Allowing for autoregression in the
error terms, the S.U.R model can capture dynamic effects of the dependent and
independent variables on economic relationships of interest, often considered in
macroeconomic studies.

In particular, the paper derives degrees-of-freedom adjusted Edgeworth cor-
rected critical values and Cornish-Fisher corrected statistics of the ¢t and F
testing procedures, for the above extension of the S.U.R. model, with serially

correlated errors, estimated using FGLS. These corrections follow the Student-¢



and F distributions, respectively, with an approximation error of order O(7?),
where 7 = 1/v/T and T is the number of time observations of the sample. The
use of degree-of-freendom adjusted forms of the above tests lead to approxi-
mations that are ‘locally exact’, i.e., the approximate distributions reduce to
the exact ones, when the model is sufficiently simplified Magdalinos (1985).
These approximations are found to increase the small sample performance of
the tests (see Magdalinos and Symeonides (1995), Symeonides et al. (2007)). To
our knowledge, this is the first paper in the literature which suggests size cor-
rected test statistics for the S.U.R. model with serially correlated errors. The
most closely related to our work is that of Strivastava and Maekawa (1995)
who provided an Edgeworth expansion of the limiting distribution of the FGLS
estimator of the S.U.R. model under the assumption of non-normal error terms.

Since the Cornish-Fisher expansion is the inversion of the Edgeworth cor-
rection of the critical values, the Edgeworth and Cornish-Fisher size corrections
are asymptotically equivalent to the order of the required accuracy. However,
the use of the Cornish-Fisher corrected test statistics, instead of the Edgeworth
corrected critical values, can be recommended, in practice, for the following
two main reasons (see Cornish and Fisher (1937), Fisher and Cornish (1960),
Hill and Davis (1968), Magdalinos (1985), inter alia): First, they are proper
random variables and their distributions have well-behaved tails, whereas the
Edgeworth approximations are not well-defined distribution functions. The lat-
ter may assign negative ‘probabilities’ in the tails of the distributions. Second,
the Cornish-Fisher corrected test statistics can be readily implemented in ap-
plied research based on the tables of standard distributions, which are publicly

available. They do not require the calculation of new critical values.



The paper is organised as follows. Section 2 provides some preliminary no-
tations. Section 3 presents the S.U.R. model and the assumptions needed in
our expansions. Analytic formulae for the locally exact Edgeworth and Cornish-
Fisher second order size corrections of the ¢ and F' test statistics are derived in
Section 4. Section 5 conducts out a Monte Carlo exercise evaluating the perfor-
mance of the suggested corrected tests. Finally, Section 6 concludes the paper.

Proofs of the results of the paper are given in the Appendix.

2 Preliminary notation

Throughout the paper, we use the tr, vec, ®, and matrix differentiation notation
as defined in Dhrymes (1978, pages 518-540), and for any two indices 7 and j, we
denote Kronecker’s delta as ¢;;. Moreover, any (n x m) matrix L with elements

l;; is denoted as

L= [(Zij)izl, amnyg=1, .., m]a

with obvious modifications for vectors and square matrices. If [;; are (n; x m;)
matrices, then L is the (3 n; x ) m;) partitioned matrix with submatrices l;;.

The following matrices:
Px =X(X'X)'X', Pxy=1-Px=I-X(X'X)"'X'

denote the orthogonal projectors into the spaces spanned by the columns of the
matrix X and its orthogonal complement, respectively. Finally, for any stochas-
tic quantity (scalar, vector, or matrix) we use the symbol £(-) to denote the

expectation operator.



3 The model

Consider a S.U.R. system of M contemporaneously correlated regression equa-

tions of the form
Y = XpBu+up (=1, ..., M), (1)

where y,, are (T x 1) vectors of observations on the dependent variables, X, are
(T x n,) matrices of observations on sets of n,, non-stochastic regressors, f3,, are
(n,, x 1) vectors of parameters to be estimated and u,, are (T x 1) vectors of non-
observable serially correlated stochastic error terms of the p-th equation, defined
as uy, (t =1, ..., T). These terms are generated by the following stationary

first-order autoregressive (AR(1)) process:
Uy = Pulit—typ + €ty —1<pu <1 (t=1,...,T;p=1,..., M), (2)

where €;, are normally distributed innovations. For any two indices p, p/ =
1, ..., M, we have E(e¢,) = 0, for all t. Moreover, for t # 1 or t’ # 1, the co-
variance between two innovations e, and ey, is given as E (e ) = S0y

Fort=t'=1landp, /' =1, ..., M, E(e¢pep ) becomes

Elerperw) = opw (1 — Pi)1/2(1 - Pi')l/g/(l — Pubur); (3)

see Parks (1967, pages 507-508). In addition to assumption p, € (—1,1), sta-
tionarity of AR(1) processes (2) implies the following relationships on the initial

conditions of the error terms of the S.U.R. equations:

urp =1 —p2) ey, (t=1p=1,..., M). (4)



These relationships imply that, for all t =1, ..., T and p,u’ =1, ..., M, the

error terms uy, satisfy the following conditions:

E(ury) =0, S(U?M) =0opuu/(1 - Pi), E(upui) = opp /(1 = pupw).- (5)

Let n = Zle ny, and define the (MT x 1) vectors y and u, the (n x 1)

m

vector B and the (MT x n) block diagonal matrix X as follows:

y= [(yu)u=1, ml U= [(uu)u=1, Ml

p= [(/B/A)le, M]’ (6)

Then, the system of equations (1) can be written in a matrix form as follows:

Y1 Xl 0 -+ 0 61 Uy
Y2 0 Xo - 0 B2 U

= + ’ (7)
YM 0 0 - Xy Bm UM

or, more compactly in a vectorized form, as

y=Xp+u. (8)

To derive size corrected significance tests for the elements of the vector 3, the
above representations of the S.U.R. system will be written in an autocorrelation-

free form, after applying appropriate transformations on y, X and u. Following



Parks (1967), define the (T' x T') matrices P, and R as follows:

i 1 ]
(1—pi)_§ 0 0 .o 0
1
C-R) 3 1 0 0
1 4 _ _
Pu=1(0-p)"2p2 pu. 1 o0 | R =RIVPLL(9)
2 -1 T—1 T—2 T—3
ST A

and the following (MT x MT) block diagonal matrix
P = [(6MM'PM)H,M':17 M]~ (10)
Then, (2) implies that the (T x 1) random vectors u,, can be written as
u,=Pue, (n=1,..., M), (11)
where ¢,, are (T' x 1) random vectors with non-autocorrelated elements ;,,, i.e.,

en =€)y, 7y e, o ) (12)

Asin (11), consider the (T x 1) vectors y,. and (T x n,,) matrices X ., with

non-autocorrelated elements, satisfying the following relations:
Yux =P;1yu, X[L* :PJIX;U (13)

and define the (MT x 1) vector y, and (MT x n) block diagonal matrix X, as

follows:
Ys = [(yu*)HZL ..-,M]’ Xy = [(6uu/Xu*)u,u’=1, .--,M}- (14)

Then, premultiplying the u-th equation of (7) by P 1 we can derive the fol-



lowing S.U.R. model with non-autocorrelated error terms:

Y1x X« 0 <o 0 B1 €1
You 0 Xow -+ 0 B2 €2

- + (15)
YM« 0 0 o Xvs Bum eMm

(see Zellner (1962, 1963), Zellner and Huang (1962), Zellner and Theil (1962)).

In more compact form, this model can be written as
Yx :X*6+57 (16)

where 3, = P~ly, X, = P7'X and ¢ = P~!u. The above representation of
the S.U.R. system implies that the (MT x 1) error vector u in (8) is normally

distributed with mean and variance-covariance matrix given as follows:
Eu) =0, E(uu')=Q""1=PE()P =P(E®Ir)P, (17)

where
Y= [(Juu’)u,u’:L o M (18)

The last relationship implies that
Q=P ' 'eIr)P? (19)

is a function of the ((M + M?) x 1) parameter vector v = (¢’,<’)’, where ¢ =
(p1, .-, pam) is the (M x 1) vector of autocorrelation coefficients in (2) and ¢
is the (M? x 1) vector ¢ = vec(X71) € £ = RM* — 15, where U is the subspace

of RM” in which ¥ is not positive definite. After defining the composite index

(:u:u/) =p+ M(:u/ -1) ((:u:ul) =1 ..., M2)7 (20)



for any two indices p,’ = 1, ..., M, it can be easily seen that the (uu')-th
element of vector ¢, denoted as ¢(,,,,/, is actually the (u, u’)-th element of matrix
$1, denoted as o'

The system of equations (16) (or (15)) can be seen as the vectorized repre-

sentation of the following form of the S.U.R. model of M equations:
Y.=ZB+E, (21)
where Y, and E are (T x M) random matrices defined as
y. = vee(Yy), e =wvec(E), (22)

respectively, where the rows of matrix E are N;(0,%) random vectors and B

is a (K x M) matrix whose columns, denoted as b,,, are defined as

bu:\l’uﬁu (MZI,...,M), (23)

where U, are (K x n,) known submatrices of the (MK x n) block diagonal

matrix

= [(0uw V) pw=1, ..., M- (24)

Finally, Z is a (T x K) matrix with non-autocorrelated columns, defined by the

following relationship:

Xe = [(%u’Xu*)u,u’:l, M] - [(5##’2\:[}#)#,#/:17 M]
= [(5#/# Z)/uu’:l, M] [(5##’\IJM)#,#/:1, M]
= (Iy®2)V. (25)

The above representation of the S.U.R. model, given by (21), will facilitate the

expansions needed in our derivations of the size corrected tests suggested in the
paper.

10



3.1 Assumptions

To carry out our expansions, it would be theoretically convenient to introduce

a reparameterization of the error covariance matrix of model (8) as follows:
y=XB+ou, 0>0, u~Nyr(0,Q71), (26)

assuming that parameter o2 can be estimated separately from the rest terms of
the covariance matrix Q! of vector u.!

For the derivation of our size correceted tests, we need to make a number of
assumptions on the elements of matrix €, which is the inverse of the variance-
covariance matrix of the error vector u. To this end, we denote as €2;, £,
etc., the (MT x MT) matrices of first, second and higher-order derivatives,
respectively, of the elements of matrix €2 with respect to the elements of the

((M + M?) x 1) vector of nuisance parameters v = (¢,¢’)’. For any estimator

of v, define the ((1 + M + M?) x 1) vector &, with elements

6% —1 Pu — Pu S(up’) = S(un’)
50 = - s 6p“ = - y 6§(MU) = %, (27)

where p = 1, ..., M, (uu') = 1, ..., M? and 7 = 1/3/T is the ‘asymptotic
scale’ of our second order stochastic expansions. Then, our size corrected tests

can be derived based on the following assumption.

Assumption 1:

IThe nuisance parameters o and v can be simultaneously identified under the restriction
o = 1, which implies that the estimate of matrix ¥, denoted as 3, is accurate, up to a
multiplicative factor. This is not true in samples with small time dimension. A convenient

method to estimate o is through the following feasible GL estimator
N Ay (D=1 51 H—1 5 1/2
bar = [(v- XBY (PG (Sgh @ InPgL) w— XB)/(MT —m)| 7,

where /3’ is the feasible GL estimator based on any consistent estimators of ¥~ and P~1.

11



(i)

(iii)

(iv)

The elements of Q and Q7! are bounded for all T, all vectors o with
elements p, € (—1,1), and all vectors ¢ € £. Moreover, the following
matrices:

A=X'OX)T, F=X'X)T, T =2'Z/T (28)
converge to non-singular limits, as T — oco.

Up to the fourth order, the partial derivatives of the elements of 2 with
respect to the elements of p and ¢, are bounded for all T', all vectors o with

elements in the interval (—1,1), and all vectors ¢ € £.

The estimators ¢ and ¢ are even functions of u, and they are functionally
unrelated to the parameter vector (3, i.e., they can be written as functions

of X, Z, and wu only.

The vector of nuisance parameters ¢ admits a stochastic expansion of the

form

A
6 = [80, [0 umt, o nal's [0 urr=1, o na2] |

= dy + 7dy + w(T?), (29)

where the order of magnitude w(-), defined in the Appendix, has the same

operational properties as order O(-), and the expectations
E(drdy), E(VTdy + dy) (30)

exist and have finite limits, as T" — oo.

The first two conditions of Assumption 1 imply that the following matrices:

A= X'0GX/T, A =X'QX/T, Aj; =X'QQ07'0X/T (31)

12



are bounded. Thus, according to Magdalinos (1992), the Taylor series expansion
of 8 constitutes a stochastic expansion. Since the vectors of nuisance parameters
o and ¢ are functionally unrelated to [, condition (iii) of Assumption 1 is sat-
isfied for a wide class of estimators ¢ and ¢, including the maximum likelihood
estimators and the simple or iterative estimators based on the regression resid-
uals (see Breusch (1980), Rothenberg (1984a)). Note that we need not assume
that estimators ¢ and ¢ are asymptotically efficient.

Moreover, conditions (i)—(iv) of Assumption 1 should be satisfied by all the
estimators of p and ¢, considered in the paper. The estimators of the elements of
0, i.e., py (u=1,..., M) include the following: the least squares (LS), Durbin-

Watson (DW), generalized least squares (GL), Prais-Winsten (PW) and maxi-

13



mum likelihood (ML).? The elements of vector ¢ = vec(X~1) can be estimated
by

¢ =wec |(Y, — ZB)’(Y* — ZB)/T} - ) (32)

where B is any consistent estimator of the matrix of parameters B of regression
model (21). Consistent estimators of B include the unrestricted and restricted
least squares (denoted as UL and RL, respectively), the simple and iterative
generalized least squares (denoted as GL and IG, respectively) and the maximum
likelihood (ML) estimators.?

To present the expansions suggested in the paper, expectations £(d;d}) and

2The closed forms of these estimators of pu, for all p, are given as follows:
(i) LS:
bp = Zj:Q at“a(ifl)u/ Zthl ﬂ?w
where 4y, are the LS residuals of regression model (1).
(i) DW:
A" =1 (DW/2),
where the DW is the Durbin-Watson statistic.
(iii) GL:
Pu = 212 ama<t,1)u/ Zthl a7y,
where ¢, denote the GL estimates of wu¢,, based on the autocorrelation-correction of

regression model (1), for all p, using any asymptotically efficient estimator of p,,.

(iv) PW: This estimator of p,,, denoted as [JLPW), together with the PW estimator of 3, de-

noted as BSLPW), minimize the sum of squared GL residuals (Prais and Winsten (1954)).

(v) ML: This estimator, denoted as [)ELMM, satisfies a cubic equation with coefficients defined

in terms of the ML residuals (Beach and MacKinnon (1978)).

3The closed forms of these estimators of B are given as follows:
(i) UL:

By =(Z'2)"'2'Y..

14



& (\/le + d2) will be defined as follows:

Ao NN Ko
i Edid) =13, A, Ay | and lim VT +d) = gy |0 (3
>\§ Ag< A< K¢

respectively, where \g and k¢ are scalars, A\, and k, are (M x 1) vectors, A; and
ke are (M? x 1) vectors, A, is a (M x M) matrix, A¢ is a (M? x M?) matrix
and A, is a (M? x M) matrix. The following partitions of the above matrix

and vector will be of use in the paper:

)\0 N R0
and , (34)
A A K
where
A, N A K
A= ¢ i R ‘| and k=] ° , (35)
Ape A A R

where A is a (M + M?) x (M + M?)) matrix, and A and & are ((M + M?) x 1)
vectors. The elements of the vectors and matrices in (33), (34) and (35) can be
interpreted as ‘measures’ of the accuracy of the expansions of estimators 62, j,

and ¢,y around the true values of the corresponding parameters.

(ii) RL:
vee(B(rry) = W(XLX.) " Xy
(iif) GL:
vee(Bory) = ¥ [XLS @ I)X.] T X @ In)ye,
where fl;l is the UL or RL estimator of 3.

(iv) IG: This estimator, denoted as B(Ig), is computed by iterative implementation of the

GL estimator.

(v) ML: This estimator, denoted as B(ML)y can be computed by iterating the GL estimation

process up to convergence (Dhrymes (1971)).

15



4 Size corrected test statistics

In this section, we derive size corrected t, Wald and F' test statistics, as well as
the second-order approximations of their distributions based on the conditions
of Assumption 1. The versions of the test statistics which adjust for the degrees
of freedom, namely the Student-t and F', are locally exact. That is, if the vector
of parameters 7 = (¢,¢’)’ is known to belong to a ball of radius ¥, then the

approximate distributions of these test statistics become exact, as ¥ — 0.

4.1 The ¢ test

Let e be a (n x 1) vector of known quantities and ey be a known scalar. To test
null hypothesis

Hy: e'B=¢p (36)

against its one-sided alternatives, the ¢ statistic takes the following form:

}1/ : (37)

t= (B —ep)/ [a%’(X’QX)—le

This statistic takes into account the degrees of freedom of the Student-¢ distri-
bution.
For the derivation of the suggested asymptotic expansions, we define the

((M + M?) x 1) vector [ and the ((M + M?) x (M + M?)) matrix L as follows:

!/

l= [(lp”),uzl,.“,M]/v [(l<<w,>)(,m'):1,...,Mﬂl ’ (38)
[(lpup,/)u,u’:17~~,1V1;] [(lpuc(w/)) #fl, ‘.,,M;Q]

L — (Vl/ ):1,...,]\/1 , (39)
[(ZC(UV/)P;L)(VVI):L . JVI2;] [(IC(MM/)C(V,,/) )(;L/L’):l, o, Mz;]

u=1, ... M (w')=1, ..., M?

16



where the elements of the vector { and the matrix L are defined below:

lpl" - h/GApl"Gh’ lg(wﬂ) - hlGAC(#u’)Gh’
lpup#’ = h/GCPu,PH’Gh7 ZP/L§(V,,/) = h/GCpug(w/)Gh’ (40)
— h . N
l<<w/>l’u =h GC<<uu/>/’uGh’ l<<wﬂ><<w/> =h GO<<uu'><<u:»'>Gh’

where G = A~! = (X'QX/T) " is a (n x n) matrix, h = e/(e/Ge)'/? is a (n x 1)

vector and
_ *
Coup = App, =240, GAy  + Ay, /2,
_ *
C/’u@(u,ﬂ) - Ap;m(w/) - QAPMGAC(W') + Amﬁ(w/>/27 (41)
j— * _ R
C@‘(w'ﬁ(w') o A<<W/)<(W/) 2A€(w'>GA<<w'> + A<<w/><<w/>/27

with obvious modifications for C¢ . ,,-
The next two theorems give Edgeworth approximations of the distribution

functions of the ¢ statistic, given by (37), and its version which adjusts for the

degrees of freedom.

Theorem 1. Under null hypothesis (36), the distribution function of the t
statistic, given by (37), admits the Edgeworth expansion

2

Pr{t <z} = I(z) — % [(p1+2) + (p2 + 1) 2?] wi(z) + O(7),  (42)

where I(-) and i(-) are the standard normal distribution and density functions,

respectively, and

UAL ., A Ao — 2 UAL—2UX+ o — 2
T TUE+S) —rot ——, p2= 1

p1 = tr(AL) + . (43)

Analytic formulae for the computation of scalars Mg, ko, and the elements of A,

k, A, I and L are given in the Appendix (see Lemmas A.15 and A.17).

17



Theorem 2. Under null hypothesis (36), the distribution function of the t

statistic, given by (37), admits the Edgeworth expansion

2

Pr{t < {L‘} = IMT,n(.’L') — % [p1 +p2$2] miMTfn((E) + 0(7—3)7 (44)

where Inr—n(¢) and ipr—n(+) are the Student-t distribution and density func-

tions, respectively, and quantities p1 and pa are defined in (43).

Theorem 1 implies that we can calculate the Edgeworth corrected a% critical

value of ¢ statistic (37) as

2
nh = na+ = [(pr+3) + (p2 + §) 2] o, (45)

based on the a% significant point of the standard normal distribution, denoted
as ng,. Similarly, based on Theorem 2, we can calclulate the Edgeworth corrected

a% critical value of ¢ statistic (37) as

2
* T
th=tat 5 [p1 + patl] ta, (46)

using the a% significant point of the Student-¢ distribution, denoted as t.
The Edgeworth approximation employed by Theorems 1 and 2 to obtain the
size corrected critical values n}, and t}, is not a proper distribution function, as
it can assign negative ‘probabilities’ in the tails of the approximate distribution.
To overcome this problem, we can use a Cornish-Fisher expansion. This corrects
the test statistics of interest, instead of their critical values. The Cornish-Fisher
expansion is simply the inversion of the Edgeworth correction of the critical
values and, thus, it is expected to have very similar properties around the mean
of the approximate distribution. However, at the tails of this distribution, which
are important for inference, the properties of the Cornish-Fisher expansion are

different. In fact, the Cornish-Fisher size corrected statistics constitute random

18



variables with well-behaved tails, and thus they do not assign negative ‘proba-
bilities’ at the tails of their distributions.
The Cornish-Fisher corrected t statistic for testing null hypothesis (36) is

given in the following theorem.

Theorem 3. Under null hypothesis (36), the Cornish-Fisher size corrected t

statistic

2

to=t— o [pr+pat?]t (47)

is distributed, with an approzimation error of order O(73), as a Student-t ran-

dom variable with MT — n degrees of freedom.

The Cornish-Fisher size corrected ¢ statistic t., given by equation (47), can
be readily used, in practice, to test null hypothesis (36) against its one-sided
alternatives. This can be done by using the tables of the Student-t distribution

with MT — n degrees of freedom.

4.2 The Wald and F' tests

Let H be a known (m x n) matrix of rank m and hg be a known (m x 1) vector.
To test null hypothesis

HO : Hﬂ = h07 (48)

against all possible alternatives, we can use the Wald statistic
w=(HB~ hoy [HX'0X) B (HB ~ h)/o> (19)
or the familiar F' statistic
F=(HB — ho) [H(X’QX)”H’} T (HB = ) mé?, (50)
which adjusts for the degrees of freedom.

19



For the derivation of the suggested asymptotic expansions, we define the
(n X n) matrix

Q=H'(HGH') 'H, (51)

and we partition the (n x n) matrices G = A~! = (X’QX/T)~! and = = GQG

and the (n x 1) vector h as follows:

(1]

G =[(Gij)ij=1,..,m], E=[Eij)ij=1,...,mls h=[(hi)i=1,. . M),  (52)

where G;; and Z;; are the (7,7)-th (n; x n;) submatrices of G and Z, respec-
tively, and h; = e;/(¢/Ge)'/? is the i-th (n; x 1) subvector of h, where e; is the
corresponding i-th (n; x 1) subvector of the (n x 1) vector e.

Next, define the ((M + M?) x 1) vector ¢, and the ((M + M?) x (M + M?))

matrices C' and D, as follows:

c= | lep)u=1,....ml', [(quq)(u;ﬂ)zL ozl | (53)
[(Cpup“/ =1, ..., M) [(CPW(W/)) p=1, .., M; ]
C = (wv)=1, ..., M? (54)
[(C%w)ﬂu)(W’):L MQ;] [(Cg(,w/)g(w/) )(#H'):l, MQ;]
L pn=1 ..., M (wv=1, ..., M?
and
[(dpupu/)u,,u/zl, ey M} [(dpug(m,/)) p=1, ..., M; ]
D* _ (vv)=1, ..., M? (55)
[(d‘<vv/>"“)('/l"):1, M2;] [(d%uu’ﬁ(w’) )(w'):L MQ;]
L p=1, ..., M wv)=1, ..., M?
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where the elements of vector ¢, and matrices C and D, are defined as follows:

o =tr(Ap,E)s Cpup, = r(Cpp, E),

=tr(Cpusinr 2)s

Cous(uury
CC(;W’) tT(Amw’)E); Ci(uu’)C(w’) = tT(Cg(MM/)c(VU,)EL (56)
Dpip,r = (Dipup,B)s densinry = 1 (Dosnysiuun =),
Appsinry = tT(D*p,Lc(W,)E),
where
*PuPu! 2 ’ *PuS(uul) 5 7
(57)

Dicyiiry = m

pp’)S(wr’) 5

with obvious modifications for ¢, , p,, d<(,,,p, a0 Dic,  p,.-

The next two theorems give Edgeworth approximations of the distribution

functions of the Wald (w) and F statistics, given by (49) and (50), respectively.

Theorem 4. Under null hypothesis (48), the distribution function of Wald

statistic w, given by (49), admits the Edgeworth expansion
x
Pr{w <z} = F,(z) — 7% [& + (&2/(m + 2)) 2] Efm(x) +0(1?), (58)

where Fp,(+) and f,(-) are the chi-square distribution and density functions,

respectively, and

& =tr[A(C + D,)] — dAc/d+ 'k +m[c'\/2 — ko — (m — 2)\o /4],
(59)

& = tr(AD,) + [¢'Ac — (m +2)(2¢'X — mAo)] /4.
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Analytic formulae for the computation of scalars Ao and kg, and the elements of

A, &, A, ¢, C and D, are given in the Appendiz (see Lemmas A.16 and A.17).

Theorem 5. Under null hypothesis (48), the distribution function of F' statistic,

given by (50), admits the Edgeworth expansion
Pr{F <z} = Fjp_, () = 7° [q1 + qea] & fjp_, () + O(7%),  (60)

where Fiip_. (-) and fiip_, () are the F distribution and density functions,

respectively, and
@ =&/m+(m—2)/2, g =5&/(m+2)—m/2, (61)
where quantities £ and & are defined in (59).

Theorem 4 implies that the Edgeworth corrected a% critical value of the

Wald statistic (49) is given as

* 2 El 52
= %o Sty 82 v, 62
Xe = Xa +7T m+m(m+2)x X (62)

based on the a% significant point of the chi-square distribution, denoted as x4.
Theorem 5 enables us to calclulate the Edgeworth corrected a% critical value

of F statistic (50) as
F;:Fa+72[q1+q2Fa]Fa7 (63)

based on the a% significant point of the F' distribution, denoted as F,.
The Cornish-Fisher size corrected F statistic for testing null hypothesis (48)

is given in the next theorem.

Theorem 6. Under null hypothesis (48), the Cornish-Fisher size corrected F
statistic

F,=F—7%[q1 + @2F| F (64)
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is distributed, with an approzimation error of order O(73), as an F random

variable with m and MT — n degrees of freedom.

Unlike the Edgeworth approximation, the Cornish-Fisher corrected F statis-
tic, denoted as F, in equation (64), is a proper random variable and it does not
assign negative ‘probabilities’ in the tails of its distribution. Thus, the Cornish-
Fisher corrected F statistic can be be readily implemented, in applied research,
to test null hypothesis (48). This can be done by using the tables of the F'

distribution, with MT — n degrees of freedom.

5 Monte-Carlo simulations

In this section, we evaluate the small-sample performance of the size corrected
tests suggested in the previous section, compared to their corresponding stan-
dard (first-order asymptotic approximation) versions. To this end, we rely on
a Monte Carlo simulation exercise based on 5000 iterations and we consider
small-smaples of T' = 15, 20, 40 observations.

In our simulation exercise, we consider the original S.U.R. model of M = 2

unrelated equations (see, e.g., Zellner (1962)), i.e.,

Ye1 = Bo,1 + Bra%e1 + Po1Te21 + Ui
t=1,...,7), (65)

Ye,2 = Bo,2 + Pr.2T1,2 + B22Ti22 + Ut 2
where error terms wu;; and u; o are contemporaneously correlated with covari-
ance o12. Both of these error terms follow AR(1) process (2), with normally
distributed innovations. The autoregressive coefficients of this process p; and ps

are assumed to be equal, i.e., p1 = pa = p € (=1,1). To ensure stationarity of

error terms u; 1 and uy 2, conditions (3) are satisfied. For ¢ = 0, these conditions
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require

Yo1 ~N(0,011/(1 — p?})) 1— p2)1/2(1 — p2)1/2
and 5(?/0,190,2) =U12( pll) ( p2) .
— P1p2

Yo,2 ~ N(0,002/(1 = p3))

In our analysis, we assume 011 = 022 = 1 and we are focused on investigating the
consequences of the different sign and magnitude of covariances 015 on our tests,
for the following cases: 012 = £0.1, 0.5, £0.75, £0.9. Since 011 = 022 = 1, 012
is the correlation coefficient between u, 1 and u; .

According to (15) (or (16)), the above S.U.R. model can be written in terms

of the following transformed equations, with non-autocorrelated errors:

Y1e = X101 + €15 Y2 = XoufB2 + €2,

where y1, and ys. are (T X 1) vectors of observations on the dependent variables,
with Py« = y,, for p = 1,2, where P, is defined by (9), X1, and X, are
(T x 3) matrices of regressors, with P, X, = X,, and f1 = (80,1, B1,1, B2.1),
B2 = (Bo,2, P1,2, Ba,2) are (3 x 1) vectors of parameters, including the constant.
In terms of the S.U.R. representation (21), the above equations can be written
as

Y, = ZB + E,

where Y, is a (T x 2) matrix of observations on vectors yi. and yo., E is a
(T x 2) matrix whose rows are vectors of normally distributed innovations with
variance-covariance ¥ = [(0,u/ )y u/=1,2), B is a (3 x 2)-dimension matrix whose

columns, 5 and f32, are vectors of parameters and Z is a (7' x 6) matrix whose
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columns are vectors of possibly collinear variables defined as

21 = 2 = (1 — p?)1/? (t=1),

21 =z = (1—p) (t=2,3,...,7),

2y = a2+ (1—a) %G, (5 =2,3,4,5),
where ¢;; (j = 2,3,4,5) are N(0,1) random variables and « stands for the
common correlation coefficient between any two non-constant columns of Z
(see also McDonald and Galarneau (1975)). This captures the same degree of
multicollinearity between regressors x41,, and z;2, of S.UR. model (65). In
our simulation exercise, we consider the following two values of the collinearity
coefficient: & = 0.5,0.9. According to (25), submatrices X7, and X, (collected
in matrix X,) can be obtained from Z by assuming that submatrices ¥; and

Wy, of the block diagonal matrix U are given as follows:

1 0 0 0 0 O

01 0 0 0 O

0 0 1 0 0 0
Uy = ; Uy =

0 0 O 0 1 0

0 0 O 0 0 1

0 0 O 1 0 0

In all iterations of our simulation study, the two equations of S.U.R. model
(65) were estimated by LS. The residuals of these equations were used to com-
pute the LS estimates of autoregressive coefficients p; and pa, denoted as p;
and pa. Then, the transformed variables yi , and x}; ,, for j = 0,1,2 (where ‘0’

stands for the constant), are calculated as follows:

yi =1 - 53)1/23/17# 23, =1 - ﬁi)l/lej,u (t=1), (66)

l/ik,u =Yt,u — ﬁuy(tfl),y ‘T:j#t = Ttju — ﬁux(tfl)j”u (t #* 1).
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These variables were then used to compute the feasible GL estimates of §;,
(j=0,1,2; p=1,2), denoted as Bj,u- The columns of matrix Z were obtained
as 21 = Xyq, 22 = Tiq, 23 = Ty, 6 = Tog, 24 = Tig, 25 = T3, while
the unrestricted estimates of matrix B were based on the GL estimates /3’“&.
The unrestricted estimates of the inverse covariance matrix ¥ =1 were estimated
based on (32) and the feasible GL estimate dgy which is calculated by using
the following formula:

b1 = [ XBy (B @ 1P (v - Xyt —m)]

where I denotes any consistent estimators of matrices ! and P~! (see Ap-
pendix), used to obtain a feasible GL estimator of 3.
The results of our simlation exercise are presented in Tables la, 1b and 2.

The actual sizes of our size corrected tests of the following null hypothesis:
HO : 5271 = O7 (67)

against its one-sized alternatives, are reported in Tables la and 1b. In partic-
ular, Table la presents results against alternative H, : 521 > 0, while Table
1b against H, : 821 < 0. The table presents the actual sizes (i.e., the rejection
probabilities) at the 57 significance level of the following: the standard normal
and Student-t tests (denoted as z and ¢, respectively), their finite-sample size
corrected versions based on the Edgeworth corrected critical values of the stan-
dard normal and Student-t distributions (denoted as E-z and E-t, respectively)
and the Cornish-Fisher finite-sample size corrected Student-t test (denoted as
CF-t). Note that we do not examine the performance of the above t tests for
the null hypothesis (67) against its two-sided alternatives, since this is a special

case of the I test examined in Table 2.
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Table 2 presents the actual sizes of our size correceted tests of the following
joint null hypothesis on the slope coefficients of S.U.R. model (65), across its
two equations:

Hy:B11 =021 =P512=02.2=0. (68)

This is done against the alternative hypothesis that at least one of these coefhi-
cients are different from zero, i.e., at least one 3;,, #0 (j =1,2; p = 1,2). The
table presents the actual sizes at the 5/ significance level of the following: the
standard Wald (chi-square) and F tests (denoted as x? and F, respectively),
their finite-sample size corrected versions based on the Edgeworth corrected
critical values of the chi-square and F distributions (denoted by E-x? and E-F,
respectively) and the Cornish-Fisher finite-sample size corrected F test (denoted
as CF-F).

Turning now into the discussion of the results of our simulation study, Ta-
bles la and 1b clearly indicate that the size corrected tests have better size
performance in small samples, like those of T' = 15 or 20, compared to the stan-
dard versions of them based on first order approximations. This is true for both
alternatives considered and across all different values of p, 012 and a examined.

Between the above different categories of size corrected tests, our results
indicate that the CF-t test outperforms the F-z and FE-t ones. This is true for
almost all cases of a and 015 considered, if p takes large values, i.e., p = +0.8.
The same is true when o5 is positive and p = 0.5. The E-t test outperforms
the CF-t test for values of p = +0.5, when o1, is negative.

Regarding the chi-square and F’ tests, the results of Table 2 indicate that, in
most of the cases examined, the size corrected versions of these tests, i.e., E-x?,

E-F and CF-F, perform better in small-samples, compared to their standard
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versions. Between the Edgeworth and Cornish-Fisher size corrected versions of
these tests (i.e., E-F (or E-x?) and CF-F), the latter is found to perform better
than the former in the case that 015 takes moderate values, i.e., 012 = £0.5.
This is true for all cases of p and a considered. On the other hand, the E-F
and E-x? tests tend to perform better than the CF-F test in the case that
o12 takes very large values (i.e., 012 = £0.9), implying a very close to unity
correlation coeflicient between error terms wu¢; and wu; 2. This, however, happens
for moderate values of p, i.e., p = £0.5. For large values of p, i.e., p = £0.9,
the CF-F test has better size performance than E-F (or E-x?), even in the case
that o190 = +0.9.

Summing up, the results of our simulation exercise clearly indicate that
the finite-sample size corrected tests E-x?, E-F and CF-F can considerably im-
prove the performance of the standard (uncorrected) tests in small-samples. This
happens even for very high levels of autocorrelation and/or cross-correlation be-
tween the error terms of the equations of the S.U.R. model. Another interesting
conclusion that can be drawn from the results of this exercise is that the ad-
justed for the degrees of freedom versions of the tests perform better than their
unadjusted ones in most of the cases of our simulation exercise considered. Note

that this is also true for the standard (uncorrected) versions of the tests.

28



6C

Table la: Hy: 2,1 =0 against Hq : B21 >0

(Nominal size: 57)

Actual sizes (/)

Test: z -z t -t -t z -z t -t -t z -2 t -t -t z -z t -t -t
« 012 T p=—0.8 p=—0.5 p=0.5 p=0.8

15 11.2 72 105 7.2 5.3 74 47 6.8 49 43 6.4 38 58 41 3.7 8.2 5.0 7.6 52 44

-0.90 20 10.9 7.4 10.3 75 6.1 6.7 44 6.3 46 4.3 57 35 5.2 3.7 34 72 45 6.6 46 4.0

40 7.5 5.9 74 6.1 56 55 42 53 44 43 44 33 43 35 34 6.6 4.7 6.4 48 45

15 10.8 6.8 10.2 7.0 5.1 77 49 7.0 5.1 4.6 6.8 3.9 6.1 42 3.6 8.6 5.6 8.1 5.8 4.9

-0.75 20 11.2 7.1 106 72 5.8 72 52 6.7 54 49 6.0 38 55 40 3.7 8.8 5.3 82 55 49

40 8.1 5.6 78 58 5.5 6.0 47 58 4.8 438 56 43 54 45 44 6.6 4.7 6.5 49 4.5

15 109 6.6 102 6.7 4.7 7.3 45 6.8 47 4.2 75 48 6.7 51 4.7 10.2 6.6 9.6 6.9 59

-0.50 20 10.1 6.9 9.8 7.1 56 6.8 44 64 45 44 6.6 44 6.3 46 4.3 8.8 5.9 8.3 6.0 5.2

05 40 7.3 5.5 71 56 5.1 6.7 53 65 54 53 6.0 48 58 49 48 7.9 58 7.7 6.0 56

15 9.2 5.9 8.4 6.0 4.0 6.7 41 6.1 42 38 75 53 69 54 5.0 119 81 11.0 83 7.0

0.50 20 8.1 5.0 7.7 5.2 4.0 5.5 3.4 5.1 3.7 33 7.5 5.2 6.9 53 4.9 10.2 7.0 9.7 7.2 6.1

40 6.1 4.1 59 43 39 56 44 55 45 45 6.6 53 64 54 53 8.7 6.6 83 6.8 64

15 8.3 4.8 7.6 4.8 34 6.3 3.7 5.7 3.9 34 7.6 4.9 6.8 5.0 4.6 11.8 7.9 10.9 80 7.0

0.75 20 7.5 44 7.1 45 3.7 57 36 53 37 35 73 49 69 51 438 106 7.4 101 76 6.8

40 6.0 4.1 5.7 4.3 4.0 4.7 3.3 4.5 3.5 34 5.9 4.4 5.8 4.6 4.5 8.3 6.5 8.1 6.6 6.2

15 7.4 4.0 6.7 4.1 3.2 55 3.0 50 31 26 8.1 50 7.2 52 48 11.2 7.7 105 79 6.8

0.90 20 7.0 4.0 6.6 4.2 3.3 5.3 29 4.7 3.1 29 7.5 5.1 7.0 53 5.1 10.2 7.2 9.8 74 6.1

40 5.2 34 50 3.6 3.3 45 33 43 35 34 5.7 44 54 44 43 8.1 6.0 8.0 6.2 59

15 123 7.6 115 7.7 5.5 79 51 73 53 4.7 6.5 39 59 42 338 89 5.5 8.0 58 4.8

-0.90 20 11.5 7.3 10.9 73 59 6.6 44 6.1 46 4.4 6.3 4.4 5.8 4.7 4.3 78 49 7.3 5.1 4.4

40 77 5.6 7.5 58 5.3 58 45 56 4.6 4.5 48 35 46 36 3.6 5.6 4.2 54 42 4.0

15 125 77 11.7 78 54 74 45 6.7 4.7 4.1 72 47 65 49 45 9.5 6.1 87 6.3 5.3

-0.75 20 11.3 7.8 107 79 6.1 80 54 73 56 53 6.4 44 6.1 46 4.2 8.8 5.7 8.3 58 49

40 7.7 5.6 74 59 54 6.2 49 6.0 51 5.0 5.7 41 55 43 4.1 7.0 5.1 6.9 52 49

15 11.1 6.9 10.2 6.9 5.1 74 4.3 6.6 4.5 4.0 7.7 4.8 7.0 51 4.6 9.3 6.0 8.7 6.2 5.3

-0.50 20 106 7.4 101 7.5 5.8 78 51 73 54 5.0 6.5 43 6.1 45 4.2 8.5 5.8 8.1 6.0 5.3

0.9 40 8.0 5.7 7.9 59 5.6 6.2 4.7 6.1 4.9 4.8 6.2 4.6 6.0 4.7 4.6 6.8 4.9 6.7 5.1 4.7

: 15 87 54 8.0 55 39 72 45 6.5 48 4.1 86 56 79 58 53 121 83 11.3 85 7.2

0.50 20 87 5.6 8.3 5.8 4.4 6.0 4.0 5.5 4.2 39 7.8 5.3 7.2 5.6 5.1 10.9 7.6 10.3 79 6.8

40 5.7 4.1 56 4.2 39 52 40 50 4.0 4.0 5.9 46 57 48 4.7 8.1 5.7 78 57 55

15 8.4 5.1 7.8 5.3 3.7 6.3 3.8 5.7 4.0 3.5 8.4 5.3 7.7 5.6 5.1 11.6 8.2 11.0 84 7.1

0.75 20 8.7 5.0 82 52 4.0 6.0 36 54 38 35 78 52 75 54 5.1 109 74 103 7.6 6.7

40 6.4 4.2 6.1 4.3 4.1 5.3 4.1 5.0 42 4.1 6.7 54 6.6 55 5.4 8.6 6.7 8.3 6.8 6.5

15 7.3 4.3 6.8 44 3.3 53 3.0 48 32 28 8.0 52 75 55 49 11.8 7.7 11.0 79 6.8

0.90 20 74 4.3 7.0 45 35 55 34 51 36 33 76 54 70 56 52 106 7.3 100 74 6.6

40 6.3 4.5 6.0 4.7 45 49 36 47 3.7 36 6.4 49 6.0 50 49 8.1 6.3 7.8 64 6.2
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Table 1b: Hy : f2,1 = 0 against Ha : S21 <0

(Nominal size: 5%)

Actual sizes (/)

Test: z -2 t -t -t z -z t -t -t z -2 t -t -t z -z t -t -t
« 012 T p=—0.8 p=—0.5 p=0.5 p=0.8

15 11.2 6.7 102 6.8 5.1 7.0 44 64 46 39 6.7 34 6.0 39 33 8.8 54 8.1 55 4.8

-0.90 20 10.2 6.5 9.8 6.6 5.1 70 45 6.6 4.8 4.3 5.7 3.6 5.3 3.8 34 8.7 53 8.1 5.6 4.7

40 6.9 5.2 6.7 54 49 51 39 49 41 4.0 5.0 3.7 48 38 3.7 59 4.3 5.7 44 4.1

15 11.0 6.6 10.2 6.7 4.7 8.0 5.2 7.4 5.5 4.9 6.4 4.2 5.8 44 4.1 9.1 6.0 8.5 6.2 5.3

-0.75 20 10.2 6.4 9.7 6.5 5.2 6.8 46 6.3 48 4.5 6.3 40 58 42 39 85 5.5 79 57 48

40 7.7 54 7.3 56 5.2 5.7 45 55 4.7 4.6 44 33 42 34 33 7.0 5.0 6.8 52 4.8

15 10.7 6.7 9.8 6.8 5.1 7.8 47 7.0 49 42 75 48 6.8 5.0 4.5 9.5 6.2 8.7 64 54

-0.50 20 10.1 6.4 9.5 6.5 5.0 72 50 6.7 53 50 71 44 6.6 4.7 43 8.6 5.5 79 56 49

0.5 40 7.7 5.7 7.6 5.8 5.4 6.3 49 6.1 51 4.9 5.8 4.7 5.6 4.9 4.7 7.0 5.4 6.8 56 5.3

’ 15 9.4 54 85 56 4.0 6.2 39 54 40 38 9.2 6.1 86 63 59 109 76 10.1 7.7 6.5

0.50 20 7.5 4.5 7.1 4.7 3.5 6.6 3.8 6.2 4.1 3.7 7.5 4.9 6.9 51 4.9 11.1 7.7 10.6 8.0 6.8

40 6.0 4.7 5.9 4.7 45 56 39 54 41 4.0 69 53 65 54 53 79 6.0 76 6.1 5.8

15 8.0 4.9 7.4 4.9 3.7 5.6 3.3 5.0 3.5 3.1 7.9 5.2 7.1 54 4.9 11.8 8.2 11.1 84 7.3

0.75 20 8.0 4.7 74 49 40 52 33 46 34 3.1 77 51 72 53 50 10.5 7.6 99 7.7 6.9

40 5.7 3.8 5.5 4.0 3.6 54 4.1 5.3 4.2 4.2 5.4 4.3 5.3 4.4 44 8.2 6.0 7.8 6.1 5.9

15 6.9 4.1 6.3 42 3.1 50 25 43 26 23 75 48 6.8 49 45 11.3 7.5 105 7.7 6.6

0.90 20 6.4 3.5 5.9 3.6 2.6 5.2 29 4.7 3.2 28 6.8 4.6 6.5 4.9 44 11.2 7.9 10.5 8.1 7.3

40 4.9 2.9 4.7 3.1 2.8 4.4 3.1 4.2 3.2 3.1 5.4 4.1 5.3 4.2 4.1 74 5.5 7.2 5.5 5.2

15 124 81 11.3 82 5.8 7.8 48 7.0 50 44 6.3 38 56 4.0 35 8.8 5.5 8.0 55 4.6

-0.90 20 10.8 7.0 10.2 7.2 5.7 70 4.6 6.5 4.8 4.2 6.4 3.9 5.7 4.1 3.7 8.4 5.6 7.9 5.8 4.6

40 7.3 54 71 56 5.2 56 43 54 45 44 50 38 48 4.0 39 6.4 4.5 6.0 45 44

15 119 72 11.0 74 53 7.0 45 6.1 4.6 4.2 70 46 6.5 49 44 8.8 5.6 8.1 5.7 48

-0.75 20 9.7 6.6 9.2 6.7 54 7.8 50 72 53 49 6.8 49 6.4 52 4.7 8.4 54 79 55 49

40 8.7 6.3 85 64 6.2 59 46 58 48 4.7 49 41 49 41 4.1 71 5.3 6.9 55 5.0

15 11.2 7.0 10.1 7.1 5.1 8.1 4.8 7.3 5.0 4.5 6.8 4.5 6.2 4.6 4.3 10.1 6.2 9.2 6.5 5.5

-0.50 20 9.8 6.1 9.4 6.2 438 6.7 46 6.3 47 45 6.9 45 6.4 46 44 9.0 6.1 8.6 64 55

0.9 40 7.5 5.4 7.4 5.7 5.3 6.7 5.2 6.4 54 5.3 5.5 4.1 5.2 4.2 4.2 7.8 5.6 7.6 5.7 5.5

: 15 9.5 5.7 8.8 5.7 4.2 6.3 3.7 57 39 36 8.1 57 74 59 55 119 83 11.3 85 7.1

0.50 20 8.1 5.0 7.6 52 4.1 6.9 4.3 6.4 4.6 4.3 7.5 5.1 7.0 53 5.0 11.0 7 10.5 7.8 6.8

40 6.4 4.5 6.3 4.7 44 51 40 49 42 41 6.3 52 6.1 53 52 8.7 6.3 85 64 6.1

15 8.6 5.0 8.0 5.0 3.6 5.9 3.2 5.3 3.4 3.0 8.5 5.5 7.7 5.7 5.2 12.0 8.3 11.2 8.5 7.3

0.75 20 7.6 4.2 7.0 43 3.2 57 34 53 36 33 79 56 75 58 54 107 74 102 75 6.8

40 6.1 4.5 5.9 46 4.2 4.4 3.3 4.2 3.5 34 6.9 5.3 6.6 54 5.3 8.9 6.6 8.6 6.7 6.4

15 8.4 4.8 7.8 48 3.6 51 3.0 44 31 28 79 54 72 56 5.2 11.1 76 104 78 6.6

0.90 20 7.1 4.3 6.5 45 3.5 56 35 52 38 33 7.7 55 73 57 54 11.3 80 10.7 82 7.3

40 5.7 3.3 54 35 3.1 45 31 42 32 32 54 44 52 45 44 8.6 6.6 84 6.8 6.5
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Table 2: Hy: f1,1 = P21 = P12 = P22 =0 (Nominal size: 5/)

Actual sizes (/)

Test: x>  E-x? F E-F CF-F x> E-x* F E-F CF-F x> E-x* F E-F CF-F x>  E-X? F  E-F CF-F
« 012 T p=—0.8 p=—05 p=0.5 p=0.8

15 30.5 17.0 24.6 14.1 2.8 12.6 5.2 8.6 4.6 2.7 11.4 5.7 8.4 5.3 3.8 21.7 12.0 170 10.6 5.3

-0.90 20 25.5 143 214 13.0 3.7 11.0 5.1 8.4 4.9 3.7 9.1 4.2 7.1 4.0 2.9 16.6 8.9 13.7 8.4 4.3

40 13.4 7.7 117 7.8 5.6 6.9 3.9 5.9 4.1 3.8 4.5 2.3 3.9 2.4 2.1 8.8 4.7 7.6 4.8 3.4

15 323 185 26.7 153 2.5 14.4 6.6 10.0 6.1 3.8 14.7 74 105 7.0 5.2 25.2 159 208 14.2 7.4
-0.75 20 277 16.2 23.7 148 4.2 12.4 6.2 9.7 6.2 4.6 11.1 5.7 8.8 5.6 4.4 21.0 125 17.8 11.7 6.1
40 13.5 8.2 123 8.3 6.5 6.5 4.0 5.6 4.2 3.9 6.4 3.4 5.4 3.7 3.3 11.3 6.7 10.2 6.8 5.5
15 329 196 274 168 3.1 16.4 8.0 11.7 7.4 4.9 16.9 9.1 126 8.6 6.2 30.0 185 245 168 9.1
-0.50 20 279 15,6 23.7 145 4.5 13.2 6.1 10.3 6.3 4.9 13.0 6.9 9.9 7.0 5.6 23.5 142 202 134 7.3

0.5 40 15.7 9.7 14.1 9.8 7.6 8.2 4.6 7.1 5.1 4.6 8.0 4.2 6.6 4.5 4.2 13.1 7.9 120 8.1 6.3
’ 15 27.0 16.0 220 13.5 2.5 13.4 6.3 9.5 5.8 4.1 18.6 9.7 143 9.1 6.9 33.3 202 266 185 9.8
0.50 20 21.7 126 182 116 3.8 9.8 5.2 7.8 5.2 4.1 14.5 79 114 7.9 6.5 30.8 189 26.1 18.0 10.0

40 11.0 6.3 9.7 6.3 4.7 6.4 3.4 5.4 3.7 3.4 9.2 5.3 7.8 5.7 5.2 18.1 114 162 115 9.4

15 225 124 182 10.5 2.0 10.4 4.8 7.2 4.4 2.9 16.2 8.0 11.9 7.6 5.8 31.0 19.1 25.7 16.9 9.3

0.75 20 17.5 9.8 145 9.1 2.7 8.6 3.8 6.3 3.8 2.9 13.2 7.1 10.2 7.0 5.4 296 179 255 169 9.2

40 9.3 4.9 7.9 5.0 3.6 5.0 2.8 4.2 2.9 2.7 7.8 5.0 6.7 5.2 4.8 15.3 9.4 13.6 9.6 7.7

15 18.2 10.1 143 8.6 1.5 8.1 3.3 5.3 2.8 1.6 14.7 6.7 10.7 6.1 4.6 286 16.1 22.7 14.1 7.1

0.90 20 14.8 7.8 123 6.9 2.0 6.4 3.0 4.8 2.9 2.1 12.1 6.1 9.7 6.1 4.3 26.2 149 215 139 7.3

40 7.9 4.0 7.0 4.1 2.8 3.9 2.0 3.3 2.2 2.0 6.5 3.2 5.5 3.6 3.1 15.1 9.3 135 9.3 7.2

15 25.0 134 199 114 1.8 9.3 4.2 6.2 3.8 2.4 7.9 3.7 5.4 3.5 2.5 16.7 9.5 134 8.5 4.7

-0.90 20 199 114 16.8 104 3.5 7.5 3.2 5.4 3.2 2.4 6.3 3.1 4.9 3.0 2.3 13.2 7.6 11.2 7.1 3.5
40 9.5 5.3 8.5 5.4 4.0 3.8 0.2 3.2 2.3 2.1 2.7 1.8 2.5 1.8 1.7 6.0 3.1 5.6 3.3 2.2

15 29.8 165 242 14.0 2.6 11.4 5.3 8.2 4.9 3.4 12.3 6.8 9.1 6.5 5.0 22.3 138 18.0 12.7 6.6

-0.75 20 245 134 202 125 3.8 10.2 4.6 7.4 4.6 3.5 8.8 4.5 6.8 4.4 3.6 18.7 106 156 10.1 5.0
40 10.2 5.9 9.1 6.0 4.4 5.1 2.9 4.4 3.4 2.9 3.9 2.2 3.3 2.3 2.2 8.9 5.0 7.8 5.2 3.8

15 32.0 183 26.0 15.7 2.7 14.9 7.4 10.8 6.9 5.1 16.5 8.8 122 8.2 6.5 285 175 234 16.2 8.3

-0.50 20 26.5 15.0 22.7 13.3 4.2 12.6 6.2 9.9 6.2 4.8 12.1 6.3 9.6 6.3 5.0 23.2 140 193 13.5 7.7
0.9 40 13.0 7.6 11.6 7.7 5.8 7.6 4.0 6.2 4.3 4.0 7.4 3.9 6.4 4.3 3.8 11.8 6.7 10.4 6.9 5.1
’ 15 25.1 146 20.3 127 2.1 13.8 6.7 9.9 6.3 4.4 17.7 94 134 8.8 6.9 33.7 21.3 275 194 10.0
0.50 20 216 121 184 111 3.1 9.2 4.5 7.1 4.5 3.6 13.5 7.3 105 7.3 5.8 28.8 180 249 17.0 9.2

40 9.8 5.3 8.5 5.4 4.1 5.8 3.2 4.7 3.4 3.2 8.4 5.2 7.4 5.4 4.9 15.9 9.6 14.3 9.8 8.0

15 19.9 115 16.1 9.9 1.7 8.6 3.9 6.0 3.7 2.5 13.7 6.9 10.0 6.4 5.0 29.7 175 238 16.0 8.6

0.75 20 15.9 9.1 134 8.5 2.6 6.7 2.9 4.8 2.9 2.4 11.1 5.7 8.8 5.8 4.5 255 149 212 143 7.7

40 7.1 4.0 6.4 4.0 2.9 4.0 2.2 3.3 2.4 2.1 5.0 2.5 4.2 2.7 2.4 12.6 7.6 11.2 7.8 5.8

15 15.1 8.5 11.9 7.1 1.5 6.5 2.7 4.4 2.4 1.7 10.1 4.4 7.3 4.0 2.9 222 122 172 109 5.6

0.90 20 11.7 6.5 9.6 5.9 1.5 4.9 2.1 3.7 2.0 1.5 8.5 4.0 6.3 3.9 3.1 21.1 120 173 11.1 6.3

40 5.3 2.8 4.7 2.8 2.0 2.4 1.2 2.0 1.3 1.2 3.9 2.3 3.5 2.5 2.3 10.6 6.4 9.4 6.4 5.2




6 Conclusions

In this paper, we have employed Edgeworth expansions of the standard nor-
mal (or Student-t) and chi-square (or F') distributions to derive second-order
size corrected testing procedures for the coefficient of the S.U.R. model with
first-order autocorrelated errors. These procedures include (i) the Edgeworth
corrected critical values of the well-known Wald (or F) and ¢ tests and (ii)
the Cornish-Fisher corrected F' and t test statistics. Since the standard F' and
t tests are adjusted for the degrees of freedom, they are locally exact, which
means that their approximate distributions become exact when the model is
sufficiently simplified.

The Edgeworth and Cornish-Fisher expansions, employed by the paper, are
equivalent to each other, since the latter constitutes an inversion of the former.
However, in practice, the use of the Cornish-Fisher corrected test statistics is
recommended, since they are proper random variables with well-behaved distri-
bution tails. The Edgeworth approximation can assign negative ‘probabilities’
in the tails of the approximate distributions. Furthermore, the Cornish-Fisher
size corrected tests can be easily implemented, in practice, using the tables of
the Student-t and the F' distributions.

To evaluate the small-sample performance of the suggested tests, the paper
has conducted a Monte Carlo study. The results of this exercise indicate that
the size corrected t and F’ tests lead to substantial size improvements upon their
standard versions assuming first-order asymptotic approximations. This is true
even for very small samples of 15 or 20 observations. Between the Edgeworth

and Cornish-Fisher categories of the size corrected tests suggested in the paper,
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the second category is found to perform better than the first, for most cases
of serial and cross-equation correlation of the error terms of the S.U.R. model
examined. This result is also robust across different degrees of multicollinearity
between the independent variables of the model considered. In particular, both
the t and F Cornish-Fisher size corrected tests are found to outperform their
Edgeworth size corrected counterparts, when the degree of serial correlation of
the error terms is very high, as often observed in practice. For the ¢ test, this is
true even for a close-to-unity degree of correlation across the two equations of

the S.U.R. model.

Appendix

In this appendix, we provide proofs of the main results of the paper. To prove these
results, we rely on a number of lemmas. Some of them are given without proof for
reasons of space. These proofs are available upon request. The presentation of our
proofs is scheduled as follows: First, we provide some preliminary matrix-algebra re-
sults, needed for the calculation of the quantities in the stochastic expansions of all
estimators considered and the tests. Then, given these lemmas, we give the proofs of

the theorems.

Matrix-algebra results

Following Magdalinos (1992, page 344), let Z be a given set of indices which, without
loss of generality, can be considered to belong to the open interval (0,1). For any
collection of real-valued stochastic quantities (scalars, vectors, or matrices) Y; (7 € 7),

we write Y; = w(7?), if for any given n > 0, there exists a 0 < € < oo such that

Pr[IIV; /7]l > (—n7)] = o(r™), (A1)
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as 7 — 0, where the || - || is the Euclidean norm. If (A.1) is valid for any n > 0, we
write Y> = 7(c0). The use of this order of magnitude is motivated by the fact that,
if two stochastic quantities differ by a quantity of order w(r?), then, under general
conditions, the distribution function of the one provides an asymptotic approximation
of the distribution function of the other, with an error of order O(r%). Furthermore,
orders w(-) and O(-) have similar operational properties (Magdalinos (1992)).

Define the following (T x T') matrices: D whose (¢,t')-th element is equal to 1 if
[t —t'| =1 and 0 elsewhere, D; whose (t,t')-th element is equal to 1 if t —¢ =1 and 0
elsewhere, D; whose (t,t’')-th element is equal to 1 if t—#' = —1 and 0 elsewhere. Also,
define the following (7" x T') matrices: A with 1 in (1,1)-st and (7, T)-th positions and
0’s elsewhere, A1; with 1 in (1, 1)-st position and 0’s elsewhere, Apr with 1 in (T, T)-
th position and 0’s elsewhere. Moreover, by using matrix P, in (9), we can calculate

(T x T') matrices R;; as follows:

1 Pj p;
R :p.p(:# T—2 (AQ)
ij 4 1— pip; pi 1 P; .
pi b P 1

Matrices R* help us to write the elements of matrix Q analytically. For these

matrices and their derivatives the following two lemmas hold:
Lemma A.1l. For matriz R®, which is the inverse of Ry, the following result holds:
R" =P 'P7 = (14 p))Ir — piD — piA, (A.3)
where R* = R;l (Vi). Moreover, for matriz RY, the following result holds:
RY = P[T'P7Y = (L4 pipj)Ir — piDi — pjDj — pipjArr
(1= o) (1= )Y — 1A (A.4)
Note that R is not the inverse of Rij;, i.e., RV # Ri_j1 (Vi # j).
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Proof of Lemma A.1. The proof is straightforward. O

Define the (M x M) matrix ™! = [(a““l)uyu/:L ..., m) and scalars:

ai; = (1—p) 2 (1= p)'2,

Elyj = 0uij [Opi, (o = 0°ij [0 piy E(ygy = 020z /Opidp;, (A.5)
Ry, = OR7 [0pu, Ry, , =R [0p,dp,.

Lemma A.2. The following results on the partial derivatives of matriz R% hold:

R =2p;Ir — D —2p;A, R), =2(Ir —A) (Vi),
Ry, = Ry, = Ry, =0 (Vi)
R} = piIr — Di — p;Arr + €4y, An (Vi,j), (A.6)
Ry, = &6 A, Rij;pj =1Ir — Arr + £y A (Y4, 5),

Rz’]u = RZJ/‘LP;L = RZJ;LP7 = szl.bpj = O (vl’l’ # 7’ A VN ;é .])7

with obvious modifications for Rg and Rﬁ,ép],. Further,

fEi)j = —pi(l— P§)71/2(1 - P?)l/2 (i),
oy = —=p) 7= (i),
gy = pipi(L—p)) VA= p) TP (W4, g), (A7)
dai; %oy iy vy

= = = =0 (Vu#£iAVuj).
Opu  Opi  OpuOpi  9OpuOp; (s # u#d)

Proof of Lemma A.2. The proof follows using Lemma A.1, after tedious algebra.

O
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Lemma A.3. For the elements of matriz €2 can be analytically written as follows:

M M

ki __ ik -1
oiko . = o ok = 1,
k=1 k=1
M . M .
kj ik . .
E oy TikO = E oy O Ok = 0 (Vi#j3),
M . . M . .
z : ki ki 2 : ik ik
k1 Oik0O RZkR = b1 g O'kiR R[m = IT]\/[, (A8)

M kj kj Mo ik ik C
Zk:l OO0 ]RikR 7 = Zk:l g O‘ij Rk]‘ =0 (Vl 7& _7).

Proof of Lemma A.3. The results of the lemma can be proved by noticing that

that
0= P(X® I7)P = [(04Rij)ije1, ... m] = Q= [(Oinij)i,j:L oy M), (A.9)

since P is block diagonal, S ="' = Iy and QO = Q7Q = I O

To derive the partial derivatives of €2 with respect to nuisance parameters, given
in the next lemma, we need the following definitions. For the composite index (ij) =
1, ..., M?, defined in (20), let g;;) = 0"/ be the elements of the (M? x 1) vector
¢ =wvec(E™1). Also, let A, = [(6,4i05u7 )i j=1,,..., ] be a (M x M) matrix with 1 in

the (u, u')-th position and 0’s elsewhere. Then, for all u, ', v and v/, we have

82
(a1

0
Syt

T @Ir) =A@ Ir, X 'eIr)=0. (A.10)

Lemma A.4. The partial derivatives of 2 with respect to the elements of vectors o

and ¢, can be analytically written as follows:

Q) = [00ibw B )ijmn, o m], Q =0, (A.11)

S(up’)S(vv)

_ BT k] T > YT S MM DR
Qp, = [(Opio Rp,l, + 60 Rp,L + 0pi0jn0 Rp,l,)wzly vy M),

_ KI pH] L pip S 7 5777 o
Qopp = [(0pid™ Ry 5+ 8500 Ry, + 0pibjua™ RYY, Disi=1, ..., M), (A.12)
’ ’ ’ ’
_ s kp ppp S P RpRE Y
oo, = (i o™ Ryl +0uibu0™ "Ry i1, ... m),
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ppsinry = [B0iur S R + 8007 8,1 RYE + 00i811 00, REL )i =1, . ]
(A.13)
= Qo6 =0 (Vv # u AV # ).
Proof of Lemma A.Jj. The proof is straightforward by using Lemmas A.2, A.3 and

equations (A.9), (A.10). O

To derive the elements of the product of matrices 2;27'Q;, needed for the partial

derivatives of matrix A (see Lemmas A.14 — A.17), we define the following matrices:
We: = ip //J'Riu R Ru'j
ij — 0 Opp0 puttup fp
2 :M pk wk B o w'ipu'i
+5y,7; |: k:lg O—klﬂRPuRkH’] + o UH,U/RKMRHH/ o Rp“,
in pip M T“/ Tll«/ H/Hl HI‘L/
+ 0500 B { D27 01 0™ Rur B | + o™ Ry REY )
r=
M M / ,
Y nk T puk T
0y {3 S oo™ REL R Ry,
M ’r ’r
pk pnk Hop ppp
+ [ E - o akM/RP‘LRk#/} o Rpu,

M ’ ’
B D o i
+ oM R[S e ™ R Ry

" O.MNO—MH,UN’“,RZL‘R“H/R;L;‘//} , (A.14)
Q:“pu’ - quﬂlepu” Qz(;m’)q(wﬂ) - Qg(uu’)Qilgg(w/)’
(A.15)
Qs = 2,279, and Qryon = Qe X Q-
Lemma A.5. The elements of matrices Q:mﬂu/’ szuﬁ(ww Q;M§(uu’) and Q:(qum
can be analytically written as follows:
Q;;m“/ = [(Wi)ij=1, ..., M),
Qs = [Oibiur o B )iz, i),
Qe = {((Zkle UikgkyR;ﬁRky) 6]~V/RW’)Z_’J_:L M} ’ (A.16)

Q:@w)m = {(&,iRW, (Zi\il Uu'rUTij/TR;{L))

i,j=1, M,M}
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Proof of Lemma A.5. The results (A.16) can be easily proved by using Lemma A.4

and equations (A.9), (A.14). O

Asymptotic expansions of estimators

For all estimators of matrix B and the nuisance patameters considered in the paper,
in the next lemmas we derive the following asymptotic expansions. In each case, these

estimators are indexed by I (see footnotes 2 and 3).

Lemma A.6. All estimators B (I =UL,RL,GL,IG, ML) of matriz B, defined in

(21), admit a stochastic expansion of the form
B; = B+ 7B{ +w(r?), (A.17)
where
BYY =T(Z2'2)"'Z'E,
vece(Bft") = VTU(X.X.) ' Xle, (A.18)
vece(BYY) = vece(B1Y) = vec(Bi'F)
— VT [X.(S7' @ In)X.] T XU(E @ Ir)e.

Proof of Lemma A.6. The results of the lemma follow immediately by using the

definitions of all estimators By considered (see footnote 3). O

Let E; be the residuals corresponding to the estimators B;. Then, the following
lemma holds for the estimators 37 and 2;1 of matrix ¥ and its inverse, respectively,

based on E T.

Lemma A.7. All estimators 3 (I = UL,RL,GL,IG,ML) of matriz ¥ admit a

stochastic expansion of the form
B =24 7(1 + 788 + w(r?), (A.19)
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where
Y1 =VT(E'E/T - %), %5 =(B{ - B{"YT(B{ — B{") - E'P,E, (A.20)

T is any conformable matrix and Pz is the orthogonal projector spanned by the columns

of matriz Z. Estimator 2;1 admits a stochastic expansion of the form

St =2 1S #7788+ w(r?), (A.21)

where
S =x7'm 7 S =2 (e e —2heTh (A.22)
Proof of Lemma A.7. The proof is straightforward based on Lemma A.6. O

The stochastic expansion of estimator of vector ¢, denoted as <r is given in the

next lemma.

Lemma A.8. All estimators & = vec{[EyEr/T)™'} (I = UL, RL, GL, IG, ML) of
vector ¢ admit a stochastic expansion of the form

& = ¢ — 1vec(S1) + T2vec(S3) + w(r?) (A.23)

and thus, the (M? x 1) vector & = (¢ —<)/7, with elements Oc 0y defined in (27),

)

admits a stochastic expansion of the form

6. = —vec(S1) + Tvec(S3) + w(r?)

= di; + 7dac + w(7?), (A.24)

which implies that

dic = —vec(S1), doc = vec(Ss). (A.25)

Proof of Lemma A.8. The proof follows simply from equations (21), (29), (32) and

(A.21). =
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To derive the stochastic expansion of the estimators of o, denoted as 61, we define
the following (M x M) matrices (indexed by I):
A[ = Th_l;réo TE[(B[ — BUL)/F(B] — BUL)]
= lim £[(B1 - BI")T(Bi - B{'")], (A.26)
— 00

where I' is any conformable matrix.

Lemma A.9. All estimators 67 (I = UL,RL,GL,IG, ML) of 6* (see footnote 1)

satisfy the relation
67 =tr(X7'8y)/(M — 7%n)
= {M +7%tr[(S; — S3)Z]}/ (M — 7°n) + w(r?). (A.27)
The last equation implies that

(67 = 1)/7 = {M/7 + 7tr[(S5 — S3)X]} /(M — 7°n) — 1/7 + w(r?)

= 7{tr[(S5 — S3)E] + n}/M + w(r?), (A.28)
i.e., scalar 8o, defined in (27), admits a stochastic expansion of the form
8o = 0o + To1 + w(7?), (A.29)
which in turn implies that
00 =0 and o1 = {tr[(S5 — S3)%] 4+ n}/M. (A.30)

Proof of Lemma A.9. To prove the lemma we rely on the following results (see
(A.31) and (A.32)): Since the rows &; (t =1, ..., T) of E are independent N/ (0, %)
random vectors, matrix E'E is a Wishart matrix with weight matrix ¥ and 7" degrees

of freedom, i.e., E'E ~ Wy (X,T) and £(E'E) = TX. Then, it is easy to show that
E(E'EX'E'E) =T(M +T + 1)X. (A.31)

Moreover, since E'E ~ Wy (3,T) and Pz is idempotent of rank K, it follows that

matrix E'PzE ~ Wy (3, K) and E(E'PzE) = tr(Pz)X = KX. Further, £(Z1) =0,
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E(Z1X7I%) = (M +1)X and
E(S51) =0, £E(S3) =(M+K+1)2" ' =27 g[(Bf — BY")T(B] — BVM)n ', (A.32)

Let é61 = vec(Egr) be the GL residuals of regression equation (16). Then, the
corresponding estimator of ¥ is 3y = E’GLEGL/T. Also, let Bar be the GL estimator
of 8 in (16). Define the (M x M) matrices M; = limr_,00 £(S3) (I = UL, RL, GL,

IG, ML) and the (M? x M?) matrix N whose ((ij), (kr))-th element is v(;)kr) =

0ik0jr + 0iroji (4,7, k,7 =1, ..., M). Then, (A.26) and (A.32) imply that
Mi=(M+K+1Dx ' —x'ax! (A.33)
= lim TE[(S3 — 59)%] = (M — Mgr)Y =X (Agr — Ap), (A.34)
where
Ayr =0,

AR = [[(tT(B;ilBijB;lej') —n; —nj + K) Jij]i,j:l, - IM] s (A35)

Agr =Arg =Anp = KX - [(tr(GijBﬁ))i,j:I, M} :

Since E'E ~ W (2, T) and £(E'E) = TS, matrix W, = VT%, = E'E — TS, with
elements w;;, is a Wishart matrix in deviations from it expected values. Following

Zellner (1971, page 389, equation (B.58)), we find that
E(Mijwkr) = T(O’ikajy- + O'i,nO'jk) = TV(z‘j)(kr) (A36)

= lim &[(vec(Sh))(vee(Sh))]=(2'@S HNE o). (A.37)

T — o0

The proof of the lemma can be completed using the following relationship:

(M —7n)"' =M1 —=7*n/M)"" = (1 +7°n/M)/M + w(r?). (A.38)
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Before deriving the asymptotic expansion of the estimators of p,, next we define

the following (T x T') matrices:
Ri" = Ryl +ip A (i =1,2),
(A.39)
Vi = [I — Xu(X, R" X)) "' X, Ry ] R*™.
The first assumption in Subsection 3.1 implies that matrices X, R** X, /T and X, X, /T
converge to non-singular matrices, as 7' — oo, and that matrices

X,AX, )T, X,ARuX./T, X, RuAX, /T, XyAR,AX,/T and X, R, X,/T

are of order O(T _1). The above matrices help to derive expectations of products of
quadratic forms of u, needed in the expansions of estimators of p,. These are given in

the next lemma:

Lemma A.10. For quadratic forms of vector u, we have the following results:

2p,0
SRy ) = e
I
, 2Tp.o2
S(u#uuuLR’Q‘“uu) = _#4—0(1),
m
ATo?}
& (up, RE uyuy, RY ) = ﬁ +O(1),
m
7! 4T m
E(up, R upu) Ry " uy) = - i“p“;;;ll‘ +0(1),
"
— o _ _
S(ULPXMRQMPXMV;LRW“#) = % [nu - tr(FuuleFw}@uu)]
i
+0(T™), (A.40)
E(,Px, R Px,uy) = Z12[p2/(1—p2) —n,
pt XAty X, Up P Pu Pu I

+ (1= pp)tr(Fpt ©)
+ tr(F;;BWF;;@W)] +0(T7h),
o _ _
S(ULR““V;LPX“ RY¥ Px, VuR"'w,) = % [ [tr(leBuqu}@w) - nu]
'

+ (1 - Pi) [tT(FuuB;;LI) - tT(F;:uleuM)} }

+0O(T™h).
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Proof of Lemma A.10. The results of the lemma follow based on the result of Mag-
nus and Neudecker (1979) given in page 389, after tedious algebra. Note that in cal-
culating the traces of the lemma, terms of the form T”piT — 0 since 0 < p, <1 and

L’ Hospital’s rule implies that limzr_ .o T"piT =0. O

The stochastic expansion of the LS estimator of p, is given in the next lemma:

Lemma A.11. The LS estimator of p,, denoted as p,., admits a stochastic expansion

of the form
Pu=putT (pﬁf) + Tpf)) +w(r?), (A.41)
where
LR | Px, RU'P L, R
R L I J Ly Xl e (A.42)
2\/?(7”” Oy Ty,

Proof of Lemma A.11. To prove the lemma, we rely on the following results (see
(A.43) — (A.46)): Let €4 be the (¢,i)-th element of matrix E. Then, the (4,j)-th

element of matrix E'E/T is
T /
€ij = E i1 EtiEt]‘/T = Ei&‘j/T, (A43)

where ¢; is the i-th column of matrix E. Since o;; and ¢% are the (4,7)-th ele-

ments of matrices ¥ and Y71, respectively, 7! = 7Y% ! implies that ¢ =

kazr:l Zfil o® oo™ . Thus, the (i,j)-th element of matrix ¥; in Lemma A.7 is
given as

o) = VT (ei; — 04) (A.44)

and the (i5)-th element of (M? x 1) vector vec(S1), where S1 = 7 '%; %71 is given

as
88;) =T {Z:il Zi\il - (E%ET/T)UTJ‘ a Uij} ’ (A-45)
Since u, = Puey = u, Ry u, = €}, P RY" Puey and Ry, = P,Pj,, we can show

that

5(ULR5HU;L) = ouutr(RY" Ryup) =
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/ ! 2 —
= El(cher/ T, RE ] = owrouuy oy +O(T™)
"
1 2p M Mo ik rj_ _ij -
=& (sgi;)uLRgﬂuu) = \/TUW 1 _’;a {Zk:1 Zr:1 copro’? — o J} +O(T 1/2)
. 1
= Jim € (s%i;)uLR’;“uu) =0. (A.46)
The rest of the proof follows using Lemma A.10. O

The stochastic expansions of the rest of the estimators of p,, listed in footnote 2,

are given in the next lemma.

Lemma A.12. The GL, PW, ML and DW estimators of p, admit the following

stochastic expansions, respectively:

2
ﬁEL = ﬁ;}jw = pPu— 7_210-7% [UL?XMRI;HPXM VI‘RMHUH
+uj, RV, Px, RY" Px, V, R"u, /2] + w(7®),
ML ~GL 2 1- Pi 2 2 3
Pu = = Pu T Puﬁ(“lu +ury) —pu| +w(r7),  (AAT)
2
[)fw = putT° ~ Pu (ui, +ut,) +w(r?).

204
Proof of Lemma A.12. The results of the lemma can be easily proved based on
Magee (1985, pages 279-281) for the GL and iterative PW estimators of p,, Beach
and MacKinnon (1978, pages 52-54) and Magee (1985, pages 281-284) for the ML

estimator, and using Lemma A.11 and the definition of the DW estimator of p,. O

The stochastic expansion of the elements of vector d,, are given in the next lemma:

Lemma A.13. The (M x 1) vector 6, = VT (6 — 0)/7, with elements J,, defined in

(27), admits a stochastic expansion of the form

0o = dip + Tdap + w(7?). (A.48)
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For estimators ,6,5 (I =LS,GL,PW,ML,DW), the elements of di, and d1, in (A.48)

are analytically given as follows: dg)LpM = dﬁ‘;‘;u = dfvlf)LpM = dﬁy‘;u = d(LgM and

LS 1
diSe, = P,
LS 2
e, = P
GL _ PW _ LS 1- Pi ' 5 m m
d(Q)PN - d(Q)PM - d(Q)Pu - o [U‘HPXMR2 PXMVHR Up
K
+u, R""V, Px,, RY" Px,, VuR" u, /2] (A.49)
ML o GL - Pi 2 2
d(Q)Pu - d@)/’u + Pu (U’lH + uTH) — Pps
Opp
DW _ LS 1- Pi 2 2
d2)p, = d(2>pu + o0 (uiy +ury).
Opup

Proof of Lemma A.13. The proof is straightforward using Lemmas A.11 and A.12.

O

Next, we provide analytic forms of the elements of vectors [ and ¢, and matrices
L, C and D. employed in the stochastic expansions of the tests statistics given in the
paper. To this end, we first derive the partial derivatives of matrix A, given in (28),
with respect to the elements of ¢ and . Using matrices B;; = X/R" X; /T, matrix A

defined in (28) can be partitioned as follows:
A= [(Uisz‘j)i,jzl, Ml (A.50)

Lemma A.14. The partial derivatives of matriz A with respect to the elements of o
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and s can be analytically written as follows:

O'ij

T

O'ij

Ap, =[5 XiRg), X3)i =1, M)y Apup,s = [

PPy <7

A;W’u’ = [(X{Wi; X;/T)ij=1, .., M), Ac(wl) = [(0ui0ju Bup )iyj=1, ..., M|,

j— * j—
Ac(lw/)g(,w/) =0, A<(u.p./)§(ul//) - U;L’VAQ'(W,/)’
’ ’
Apusinry = (0vidj Xy Ry Xy [T)ij=1, ..., M),

M 6 /O’ika'k . ’
* _ 1% vV~ ik vv
A = <§ o X IRy Riu R X, :
= ij=1, ..., M

* M 5ui0y/ra'rj 1 v’ rj
Ag(W’)p“ - |:<ZT1 #XVR RV/TRP“Xj ii=1 M .
1=

X/RY Xj)ig=1, ..., M),

(A.51)

Proof of Lemma A.14. The proof follows immediately from equation (31), and

Lemmas A.4 and A.5.

O

Analytic formulae of the elements of vector [ and matrix L are given in the following

lemma

Lemma A.15. The elements of vector | and matriz L can be calculated as follows:

M M M M k k
lp, = Zizl > X Zkzl Zm " hiGin Xp Ryl X, Grih /T,

j=

M Mo,
lg(uu/) = Zizl Z]:l hiGi”B”H/G“/jhj’
- M M M M M M ik _Tj
lp“pu/ - Zq:l Zs:l Zi:l Zj:l Zk:l Zr:l g o
xhyGaiX{ Ry, (o1r Rier = 2XiuGir X1/ T)Ry!, X;Gshs /T
M M M M ij
D D 2 2

xhy,Gei XIRY. ,  X;Gjshs /2T,

PPy’

M M
!
lc(}bu')c(uu’) = O—l"/”l<(ptﬂ) -2 Zi:l Zj:1 hiGiuBuu’Gu’quu’GV’jhﬁ

ZM ZM ZM ZM ik I pik
lousur, = g1 Lasmr Lajmy Lagr © heGai Xk,

% (1w Ry — 2XuGru XL /T)R" X,y Gy shs /T

M M ’ / v'
+ Zq:1 > haGaXUR, X, Gyrshs /2T,

46

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)



l

S(vv!)Pu

M M M M . ,
T3y’ ! prv
Zq:l 25:1 Zj:l Zr:l o thql/XVR
X (0 Ryt = 2X,0 G X1/ T) R, X, Gshis /T

M M ’ ! l/l//
+ Zq:l ZS:I hoGaw XL RS X, Gorsh /2T

(A.57)

Proof of Lemma A.15. The results of the lemma follow by using the definitions in

(41), partition of the matrix G in (52) and Lemmas A.1 — A.14.

O

Analytic formulae of the elements of vector ¢ and matrices C' and D, are given in

the following lemma:

Lemma A.16. The elements of vector ¢ and matrices C and D, can be calculated as

follows:

Coup,,r

Cetunry St

CP;LC(VV/)

CC(W’)P/»

M M id i
- ZZ_:I Z]_:I otr(X{Ry X;E:)/T,

c€(u“/) = tT(BHH/EV/M)a

M M M M ik rj
)IIID DAID DD DR A
i=1 =1 k=1 r=1
! pik —_
xtr(X{ Ry, R Ry, X;50) /T
M M M M . .
k
=)D DD DD DI
i=1 j=1 k=1 r=1

xtr(X|{ R XkarXrl‘R;i/ X;E5i)/T*

P
ZZ IZ o tr(XiRy,,, XiZ;0)/T,

= O',u/ucqm,/) - QtT(B#M/GM/VBVU/EU/y.)7

M Mo ik o _
Zi:l Zk:l g o—k’/tr(XiRp“ RkuR XV’—‘V’i)/T
M B
—ZZ, 12 r(X{R) XxGry By Er) [T

+t7”(X RVV XI/EI,/,,)/QT,

Pu

Z Z o Itr(X, R Ror Ry X,25,)/T

2 Z7Ml Zr_ " tr(Byu Gy XLRL X,;25,)/T

—l—t'l“(X RVV X, E,/V)/QT7

P
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(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)



LEEED DD DI I DU
’
PrbPy, i=1 j=1 k=1 r=1

xtr(X{ Ry, XuEr X Ry, X;E50) /2T, (A.64)
dg(uu/)g(uu/) = tr(BuM’Ep’uByu’Eu’u)/27 (A.65)
M M . .
oyisirury = D 2 0t (XIRY XiZh By Euri) /2T, (A.66)
M M rJ —_ / 7 —_
deyyon = ijl ZT:I o™ tr(Buy B X Ry X;E5,) /2T (A.67)

Proof of Lemma A.16. The results of the lemma can be easily calculated by using

the definitions (56) and (57), partition of matrix = in (52) and the following traces:

tr(Ap,B), tr(Ap,,, =), tr(A =), tr(A =),

S(unty = S(un!) S’y =

[1]

tT‘(A )7 tT(A;MPH/E)v tT(A:(HH,)C(WJ,)E), tr(A:M<(yu/)E)7 (A68)

PuSuul)

tr(4,,GA, ,E), tr(A,,GA,,, E), tr(As,,, GAg,,, 2,

Supty Ty =

with obvious modifications for

tr(Ag(W,)puE), tr(A; =), tr(A

S(wu’yPu—

tr(A,, EAPH, E), tr(A,, EAg(W,) =), tr(Ac Sty EAg(W,) =).

By using the above results and Lemmas A.1 — A.14, the proof completes. O

Analytic formulae of the scalars and vectors given in (33) are derived in the fol-

lowing lemma.

Lemma A.17. Scalars Ao and ko, vectors Ay, Ac, Ko and ke, and matrices Ny, A

and Ao can be calculated as follows:
A =0, Ag=0, A =0, (A.69)

A= HhNETex™), (A.70)

where N is a (M? x M?) matriz whose ((ij), (kr))-th element is
V(ij)(kr) = OikOjr + 0irOjk (i,j, kr=1,..., M) (A?l)
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The p-th diagonal element of the matrix A, is
Tli_rygog(d%l)pu) =1- pfu (A72)

and its (u, u')-th off-diagonal element is

(L=pp)(1=p2)

(1= pupyur) (A.78)

Aim E(dqyp,day,) =
for pw# u'. Further, we have

Ao =0 and A, =0. (A.74)

For all estimators 65 and $ (I = UL, RL, GL, IG, ML), we can compute the

following (M x M) matrices:

Ayr =0, Agr =A16 =AM =KX — [(tT(Giiji))i,j:L M] )
ARL = [[(t?‘(B;lB”BJ;IB]Z) —MN; — Ny + K) Uij:li,j:l, - M] . (A75)
Given them we can calculate ko and k¢ as follows:
ko = tr [E7 (AL — A)] /M +n/M, (A.76)
and
ke =vec{(M + K +1)E™' —S7'A/ R (A.77)
Also, define scalars
c=(1- Pi)[(l - Pi)tr(F;:;}@u#) + tr(F;:ulBuuF;;;}@uu)]: (A.78)
and
2= (1- Pi)tr(FuuB;:ul)a (A.79)
where
Fuu = X;LXM/T» Ouu = X;ILR#MXH/T (A.80)

are (nu X ny) matrices. For all estimators p;, (I = LS, GL, PW, ML, DW), we calcu-

late the elements k,, of (M X 1) vector ki, as follows:

“;eus = —[(nu +3)pu + (c1 — 2n4)/2p,], (A.81)
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and

e1—(1-p2)(ca¥nu)

GL _ PW _ LS
K’/Ju — Vo - Hﬂu + 204 )
ML _  GL
Kp, = kg, tpu (A.82)
pw _ LS
Kp, = Ky, +1

Proof of Lemvma A.17. From (33), (A.24), (A.29), and (A.48) we can easily show

that
Ao = lim £(07), A\, = lim E(oodi,) and A = lim E(ood.). (A.83)
T— o0 T— o0 T— o0

The results in (A.69) follows immediately since oo = 0 (see(A.30)). Equations (33)
and (A.24) imply
A = Tliinwg(dlgdig). (A.84)
This result together with (A.25), (A.36) and (A.37) yield (A.70).
Since (33) and (A.48) imply that

Ao = Tlilréog(dlgdllg) (A.85)

and 0'5“ =o02,/(1 — p’), we can prove that the u-th diagonal element of the matrix

A, is
qjiileS(d?1>p“) = Jlim & (uy, RE" wuy, RE ) /AT oy,
. 4To}, )
- Tlﬂﬁo[l—p3+0(1) /ATo?, (A.86)

by combining the third result in Lemma A.10 with (A.42) and (A.49). The last result
proves (A.72). Working along the same lines for p # p’, we can prove (A.73), for the
(1, u')-th off-diagonal element of A,.
To prove (A.74), first note that (33), (A.24) and (A.48) imply
Ape = qlgnoog(dlgdllg). (A.87)
Substituting (A.25), (A.45) and (A.42) into (A.87), we can calculate the (u, (i7))-th

element of (M x M?) matrix Ay as —d(1)pHS$;). Following the same steps to that of
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the proof of (A.46) we can show that

lim € (~di,s())) = 0. (A.88)

T — 00
(A.74) can be proved immediately using Ac, = Al..

For all estimators 67 (I =UL, RL, GL, IG, ML), we can find that
Ko = lim & (ﬁ00+01) = lim & (o), (A.89)
T— o0 T—o0

by combining (33) with (A.34), (A.29) and (A.30). The last result proves (A.76). For

all estimators ¢ (I = UL, RL, GL, IG, M L),we can show that
ro = lim & (\/Tdk T d2<) = vec { Jim & (s;)} , (A.90)
since £ (S1) = 0 and lim7r o0 € (S3) = M; [see (A.34)], by using (33), (A.24), (A.25)
and (A.34). This result implies (A.77).
Finaly, we can calclulate

LS . LS LS
I*’ip“ = 71511005 (\/Td(l)p“ + d(2)p”> ) (Agl)

by using (33) and (A.42), Lemmas A.10 and A.13. This yields (A.81). Along the same

lines, we can calculate the following quantities:

’igf = ’ifuw = Th_Enoo € (ﬁd(Llﬁp,L + d(%?pu) )
ot = Jim € (VTG +di;,) and (A.92)
sl = lim € (VTAES,, +dBlh,).,
which proves (A.82). O

Asymptotic expansions of size corrected tests: Proofs of
theorems

Given the lemmas of the previous subsections, next we give the proofs of the theo-

rems presented in the main text. These are based on known expansions of standard
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normal and chi-square distributed tests. We derive new expansions of the degrees-of-
freedom adjusted versions of these tests, by inverting their characteristic functions.

These degrees-of-freedom adjusted are proved to be locally exact.

Proof of Theorems 1 and 2. Approximation (42) of Theorem 1 can be proved
along the same lines with Rothenberg (1988). To obtain the quantities in (40), we
expand the corresponding quantities given by Rothenberg and we retain the first term
in the expansion. The approximation (44) of Theorem 2 follows from the approxima-
tion (42) and the following asymptotic approximations of the Student-¢ distribution
and density functions. These are given in terms of the standard normal distribution

and density functions, respectively (see Fisher (1925)):
Ir—n(z) = I(x) = (7°/4)(1 + &*)zi(z) + O(7"),
(A.93)
ir—n(x) =i(z) + O(?).

Note that approximation (44) of Theorem 2 is locally exact. This can be easily
seen as follows: If parameter vector v = (¢’,<’)’ is known to belong to a ball of radius
9, then, as ¥ — 0, v becomes a fixed known vector. By using (27), (29), (33) and (35)
we can prove that

A=0, A=xk=0, N=2, ko=0. (A.94)
Then, the analytic formulae of p1 and p2, given in (43), become
p1=p2=0. (A.95)

This result implies that, with an error of order O(7®), approximation (44) becomes

the Student-t distribution function with MT — n degrees of freedom. O

Proof of Theorem 3. To prove the theorem, first notice that, under null hypothesis

(36), the t statistic given by (37), admits a stochastic expansion of the form

=t + Tt + T2 + w(7°), (A.96)
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where the first term in the expansion is given as
to = €'b/(e'Ge)'/* = h'b, where b= GX'Qu/VT.

The result given by equation (A.96) implies that the Cornish-Fisher corrected statistic

t., given by (47), admits a stochastic expansion of the form
te = to + Tt + 72 (t2 — t3) + w(T?), (A.97)

where
ts = (p1 + patd)to/2.

given by (37) and a standard normal random variable, respectively. Using (A.97) and

the relationships:
Elexp(sto)to] = sp(s) and Elexp(sto)ty] = (35 + 5°)o(s),

we can show that the characteristic function of the Cornish-Fisher corrected statistic

t., denoted as 1.(s), can be approximated as follows:

VYu(s) = (s) —7°s Elexp(sto)ts] + O(r°)

-2
— —s

-5 [p1s + pa(3s + 57)]6(s) + O(r").

= (s)

Dividing 9. (s) by —s, applying the inverse Fourier transform and using Theorem 2,
we can show that

2

Pr{t. <z} Pr{t<z}+ 7-?(pl + pox?)zir_n(z) + O(1%)

2

= Ir—a(@) = (1 + pea’ iz —n(c)

M)

T

+§(p1 + poa®)wir—n(x) + O(%)

= Ir_n(z) + O(T°). (A.98)

The last result means that the Cornish-Fisher corrected statistic t. is distributed as a

Student-t random variable with MT — n degrees of freedom. O
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Proof of Theorems 4 and 5. Approximation (58) of Theorem 4 can be proved
along the same lines with Rothenberg (1984b). In order to obtain the quantities in
(56), we expand the corresponding quantities given by Rothenberg and we retain the
first term in the expansion. Approximation (60) of Theorem 5 follows from approxi-
mation (58) and the following asymptotic approximations of the F' distribution and
density functions. These are given in terms of the chi-square distribution and density

functions, respectively:
Fi_n(z) = Fr(ra) + (77 /2)(r — 2 — ra)ra f,(rz) + O(r™),
(A.99)
fron(@) = rfr(rz) + O(7%).

Note that approximation (60) of Theorem 5 can be easily seen to be locally exact.

By using (A.94), (59), and (61), we can show that
& =—-m(m—2)/2 and & =m(m+2)/2 (A.100)

This result means that, with an error of order O(7?), approximation (60) becomes the

F distribution function with m and MT — n degrees of freedom. (I

Proof of Theorem 6. To prove the theorem, first notice that, under null hypothesis

(48), the F statistic given by (50) admits a stochastic expansion of the form
F=Fo+7F 4+ 72 F +w(r®), (A.102)
where the first term in the expansion is
Fo=b'Qb/r, b=GX'Qu/VT.

Equation (A.102) implies that the Cornish-Fisher corrected statistic F, given by (64),

admits a stochastic expansion of the form
F.=Fy+71F + 72 (Fy — F3) +w(r?), (A.103)
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where
F3 = (q1 + q2Fo) Fo.
Let s be an imaginary number, and 1(s) and ¢.(s) now denote the characteristic
functions of the F' statistic given by (50) and a chi-square random variable with r
degrees of freedom, respectively. Using (A.103) and the following relationships:

r+
T

Elexp(sFo)Fo) = dor2(s/r) and Elexp(sFo)F2] = Z2 2,1 4(s/r),

we can show that the characteristic function of the Cornish-Fisher corrected statistic

F., denoted as 1.(s), can be approximated as

Y (s) U(s) = 7°s Elexp(sFo) Fs] + O(7°)

r+2

T

= (s) =775 [@drra(s/r) + @2 bria(s/T)] +0O(T). (A.104)

For the chi-square density f,(z), the following results can be shown:
(rz) fr(rz) = rfria(re) and (rz)fr(rz) = r(r + 2) froa(rz). (A.105)

Dividing (A.104) by —s, applying the inverse Fourier transform, and using Theorem 5
and the results of equations (6) and (A.105), we can show that the following approxi-
mations hold:

r+

2 fratra)] + 0()

Pr{F. <z} = Pr{F<z}+7°[(qrfriz2(re)+ ¢

= Pr{F <z} + 7 [(qraf(rz) + gora’ fr(rz)] + O(7°)
= Pr{F <z} +7°(q + gz)raf.(rz) + O(r%)
= Fi_,(2) =7 (q1 + @)z fi_,(2)

+7%(q1 + @)z fr_n(z) + O(7°)

Fi_,(z) + O(7%). (A.106)

The last result implies that Fi, = F, which means that the Cornish-Fisher corrected
statistic F\ is distributed as an F' random variable with m and MT — n degrees of

freedom. O
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