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Abstract Morphological relationships change with
overall body size and body size often varies among
populations. Therefore, quantitative analyses of indi-
vidual traits from organisms in different populations or
environments (e.g., in studies of phenotypic plasticity)
often adjust for differences in body size to isolate
changes in allometry. Most studies of among population
variation in morphology either (1) use analysis of
covariance (ANCOVA) with a univariate measure of
body size as the covariate, or (2) compare residuals from
ordinary least squares regression of each trait against
body size or the first principal component of the pooled
data (shearing). However, both approaches are prob-
lematic. ANCOVA depends on assumptions (small
variance in the covariate) that are frequently violated in
this context. Residuals analysis assumes that scaling
relationships within groups are equal, but this assump-
tion is rarely tested. Furthermore, scaling relationships
obtained from pooled data typically mischaracterize
within-group scaling relationships. We discuss potential
biases imposed by the application of ANCOVA and
residuals analysis for quantifying morphological differ-

ences, and elaborate and demonstrate a more effective
alternative: common principal components analysis
combined with Burnaby’s back-projection method.

Keywords Analysis of covariance Æ Common principal
components Æ Residuals Æ Size correction Æ Shearing

Introduction

Individuals can differ markedly in morphology within
and between populations, due (for example) to genetic
variation, environmental effects on development, or
sexual dimorphism. Whether we are interested in
developmental mechanisms, their ecological implica-
tions, or the evolution of morphological variation, we
must be able to reliably estimate the magnitude of
phenotypic differences among populations. Most devel-
opmental processes and morphological traits increase
with body size, but researchers often want to separate
differences in shape from differences in body size, and
must therefore perform some kind of size-corrected
analysis. Unfortunately, many of the statistical tech-
niques currently used for size correction in ecological
studies have serious flaws that appear to be unappreci-
ated by many investigators. In this paper, we discuss
traditional techniques for size correction and introduce
an alternative approach.

The issues we discuss apply to many topics in ecology
where size correction (or correction for any set of mul-
tivariate covariates) is required. Differences in pheno-
typic traits within or among populations can change the
rate and direction of evolution, influence population
dynamics, and determine the outcome of ecological
interactions (Tollrian and Harvell 1999; Bolker et al.
2003; Werner and Peacor 2003), but we must measure
phenotypic differences appropriately in order to
determine their causes and effects. For example, sea
urchin larvae increase the size of their feeding structures
when reared at low food concentrations compared
to larvae reared with higher food concentrations
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(Boidron-Mètarion 1988; Miner 2005). These differences
may result either from overall differences in body size or
from disproportionately longer arms relative to the
expected scaling with body size. Because these two
hypotheses lead to different conclusions about sea
urchin ecology and evolution, it is critical to separate
differences in body size per se from differences in size-
corrected morphology.

Three approaches are routinely used to control for
the effects of size in ecological research: residuals anal-
ysis, shearing (a multivariate analogue of residuals
analysis), and analysis of covariance (ANCOVA). Be-
cause most developmental and physiological processes
increase as a power of body size, these analyses are
typically performed on log transformed data. In resid-
uals analysis, data for traits of interest are first regressed
against a univariate description of body size (e.g., mass).
The residuals from the regression are then compared
across treatment groups using, for example, analysis of
variance (ANOVA; e.g., Relyea and Hoverman 2003;
Relyea 2004). Shearing is a specific form of residuals
analysis that uses a multivariate description of body size.
Measurements of multiple traits (typically all increasing
with body size) are pooled across treatment groups and
analyzed with a principal components analysis (PCA) to
yield the first principal component, PC1, which is as-
sumed to represent ‘‘body size’’ (i.e., a common allom-
etry shared among groups: Somers 1986; Jolicoeur 1963;
Humphries et al. 1981; Bookstein 1991). As in residuals
analysis, traits are then regressed against this (multi-
variate) measure and the residuals compared using
ANOVA (e.g., Van Buskirk and Relyea 1998; Relyea
2001). ANCOVA uses a univariate descriptor of body
size as a covariate (e.g., Dahl and Peckarsky 2002), but
differs from residuals analysis in using a pooled within-
group regression coefficient (i.e., estimating a common
slope for multiple groups) instead of using a regression
coefficient obtained from pooled data (i.e., ignoring
group structure by aggregating data: Winer et al. 1991;
Sokal and Rohlf 1995; Garcia-Berthou 2001). Unfortu-
nately, all three techniques have flaws that limit their use
in analyses of size-corrected morphology. Despite these
limitations, all three approaches are frequently applied
in analyses of morphometric data. For example, the
majority of papers published in Ecology, Oecologia, and
Oikos between 1993 and 2004 that used body size cor-
rection to analyze morphological responses to environ-
mental conditions used either residuals analysis (10/82,
12.2%), shearing (20/82, 24.4%), or ANCOVA (42/82,
51.2%: Table 1).

In the first part of this paper, we review the flaws
implicit in standard approaches to size correction in
ecology. We then develop an approach described by
Klingenberg (1996) that combines common principal
components analysis (CPCA) with Burnaby’s back-
projection method (BBPM). In addition, we develop
and evaluate appropriate error propagation techniques
that overcome the problems of both pooled regression
approaches (such as residuals analysis and shearing)

and Model I regression approaches (including AN-
COVA).

Shortcomings of standard methods

By characterizing the (assumed) shared allometry of
multiple groups using pooled data, residuals analyses
confound within- and between-group patterns and
underestimate effect sizes when the dependent and con-
founding variables are correlated, which is typically true
in studies where size correction is needed (Darlington
and Smulders 2001). Although it has not previously been
noted, shearing (a multivariate residuals approach)
similarly underestimates effect sizes (see below). PCA
provides a multivariate description of allometry for a
single group, not multiple groups; when data from
multiple groups are pooled, PC1 does not necessarily
reflect the underlying scaling relationships within any of
the original groups (Fig. 1b, c). In studies that use size-
corrected data, researchers are typically looking for
changes in allometry (characterized by between-group
differences) over and above those related to size (often
characterized by within-group variation), and thus the
working hypothesis is that within- and between-group
principal components are different. Shearing (one of the
most commonly used multivariate size-correction tech-
niques) fails under these circumstances, and the only
situation in which the within-group relationship (PC1I)
will be the same as the pooled relationship (PC1p) is
when groups are only displaced along a single axis of
allometric variation (Fig. 1a). In such cases, traits differ
between groups only because organisms differ in overall
size. Therefore, shearing is only appropriate in the case
where size-correction cannot reveal any other differences
among groups.

Analysis of covariance resolves some of the problems
associated with residuals analysis (and shearing). Al-
though ANCOVA also requires an estimate of a shared
allometric axis, it tests for differences in allometry by
testing for heterogeneity of slopes and it estimates this
slope by pooling within-group regression coefficients
rather than by obtaining a single regression coefficient
from pooled data. ANCOVA also reduces the associated
degrees of freedom by one because the slopes of the
within-group regression lines are estimated from the
data (Garcia-Berthou 2001). Size correction is a partic-
ularly interesting application of ANCOVA because size
(the covariate) is an inherent part of the morphological
measurements (which comprise the response variables).
However, in all applications, ANCOVA assumes the
covariate is measured without error and that its distri-
bution is similar among groups (Huitema 1980; Sokal
and Rohlf 1995). When the distribution varies among
groups and the covariate is measured with error, which
is presumably true in most studies of size correction,
ANCOVA may produce biased estimates of effect sizes
(Huitema 1980; Sokal and Rohlf 1995). This bias occurs
because ANCOVA is based on Model I regression,
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which attributes all error to the dependent variable (for
a detailed discussion of the effects of violating ANCO-
VA assumptions, see Appendix I). Sokal and Rohlf
(1995, p. 519) have warned that ANCOVA’s assump-
tions are frequently violated in biological applications
and they did not recommend its use in situations where
the covariate cannot be measured exactly until Model II
regression techniques (which allow for error in both the
dependent and independent variables) are developed.
We present such methods here.

We advocate a size-correction approach that over-
comes these three shortcomings of prior methods: it (1)
uses a multivariate measure of body size; (2) avoids
pooling (and residual analysis); and (3) uses a Model II
approach that incorporates error in the measurement of
body size. In particular, we describe CPCA as a method
to test assumptions of shared allometry and estimate
allometric axes common to multiple groups (Flury 1988;
Klingenberg 1996; Phillips and Arnold 1999) and BBPM
as a tool for size correction (sensu Burnaby 1966;
Klingenberg 1996). We also provide improved estima-
tion procedures using back-projection that account for
error in the estimation of the allometric patterns de-
scribed using CPCA. We compare results obtained from
simulated datasets using shearing (the most common
multivariate approach to date), ANCOVA, and CPCA/
BBPM.

Although some of the techniques presented here have
been recognized and widely used in morphometric and
evolutionary genetic studies to compare variance–
covariance matrices, they have rarely been used to esti-
mate magnitudes of change and are apparently un-
known to ecologists quantifying differences in
morphological traits (e.g., Klingenberg and Spence
1993; Klingenberg 1996). We hope this discussion and
subsequent applications of CPCA/BBPM will improve
ecologists’ approaches to size correction and estimation
of morphological differences among groups: e.g., in
studies of phenotypic plasticity where the use of poten-
tially problematic approaches is the norm (Table 1).

Estimating an allometric axis

Common principal components analysis

Common principal components analysis is a general-
ization of PCA to applications involving more than one
group. It can be used to test multivariate relationships
among groups (i.e., to determine if covariance matrices
are similar and to what degree) and can thus be used to
infer if groups share common patterns of allometry.
CPCA provides a test analogous to the test for homo-
geneity of slopes in ANCOVA—checking whether a
common scaling relationship exists. CPCA has become
popular in evolutionary biology for comparing pheno-
typic and genotypic covariance matrices (Steppan 1997a,
b; Arnold and Phillips 1999; Phillips and Arnold 1999)
and has also been applied to problems in multivariate
allometry, although less frequently (Klingenberg and
Spence 1993; Klingenberg and Zimmerman 1992).

Common principal components analysis defines
levels of similarity among covariance matrices (Flury
1988; Phillips and Arnold 1999). For most studies of
morphological plasticity and size correction, it is only
the first CPC (CPC1) that is of interest because it
describes the general scaling of traits with body size.
For our purposes, Flury’s (1988) hierarchical test of
similarities can be reduced to three cases: (1) equality
or proportionality of all principal components (i.e., all
principal components are identical among groups,
although the variances of the data in any particular
dimension may differ among groups); (2) equality or
proportionality of eigenvectors for CPC1, but not
necessarily other components; and (3) dissimilarity
among covariance matrices (covariance matrices do not
share CPC1).

If the first principal components are not shared
(Fig. 1c), then the patterns of morphological variation
are so fundamentally different that there can be no
globally applied size correction because ‘‘size’’ does not

Table 1 Summary of the quantitative techniques used to analyze morphological response variables and perform size correction in studies
of phenotypic plasticity

Method Pooled dataa Sizeb Error modelc No. of
studies

Percentage of
univariate studies

Percentage of
multivariate studies

Residuals analysis Yes Univariate Type I 10 18 –
ANCOVA No Univariate Type I 41 73 –
Otherd Yes Univariate Type I 5 9 –
Shearing Yes Multivariate Type I 19 – 73
ANCOVA No Multivariate Type I 1 – 4
CPC/BBPM No Multivariate Type II 0 – 0
Othere Yes/No Multivariate – 6 – 23

We focused on phenotypic plasticity because it is a common ecological context in which morphology is compared among different groups.
Data were obtained from a review of 82 papers published in Ecology, Oecologia, and Oikos between 1993 and 2004
aIndicates whether analyses were based on pooled data without respect to group identity
bSize was either a univariate measure (e.g., mass) or multivariate (e.g., from PCA)
cType I error (no error in the size measure); Type II (assumes error in X and Y)
dIncludes ratio and regression analyses
eIncludes use of PCA and thin spline multiple warp analyses

549



have a common meaning across groups. On the other
hand, if all principal components are common to all
groups (Fig. 1a), then the groups show identical patterns
of within-group covariation, indicating the same all-
ometries of traits with size in all groups. As long as the
groups to be compared share CPC1 (Fig. 1a, b) and all
the traits have strong loadings on CPC1, then it can be
interpreted as a common body size dimension: i.e., a
‘‘size axis’’ that can be used to evaluate between-group
differences in morphology that go beyond simple (iso-
metric) changes in size (Klingenberg and Spence 1993;

Klingenberg and Zimmerman 1992; Klingenberg 1996).
Thus, CPCA provides an initial test of a common body
size (growth) dimension and a quantitative means to
describe the growth axis and thus achieve body size
corrections.

As with tests of heterogeneity of slopes in ANCOVA,
CPCA may fail to detect between-group differences in
CPC1 even when they exist. In reality, CPC1 will always
differ to some degree among groups (as do the slopes of
traits with respect to covariates in ANCOVA), but the
hope is that any real differences are so small that the
assumption of a common growth axis can still be used to
draw robust inferences about size-corrected traits. Ulti-
mately, this depends on the power of the analysis to
detect problematic levels of heterogeneity. Houle et al.
(2002) have raised concerns about the statistical power
of CPCA. Our analyses (Appendix II) suggest that in
size-correction contexts, where the main goal is to cor-
rect for the effects of a growth axis that explains a large
fraction of the total variation (e.g., >90%), plausible
sample sizes as small as 20 individuals per group provide
sufficient power to detect small differences in CPC1.

Size correction

Burnaby’s back-projection method

Burnaby (1966) proposed a general procedure for
removing the effect of growth from multivariate mor-
phometric data sets for multiple populations. BBPM
involves projecting data points onto a plane (if the data
set has more than two dimensions (variables), or a line
for two dimensions) orthogonal to the size axis common
to all groups (Fig. 1b; Klingenberg 1996). Because
CPC1 can be interpreted as an allometric pattern shared
by all groups, the size invariant plane can be calculated
by setting CPC1 equal to zero, which is equivalent to
calculating the perpendicular residuals around CPC1
(Fig. 1b; Burnaby 1966; Klingenberg 1996). The per-
pendicular residuals are then projected back into the
original units and treated as growth-adjusted or growth-

Fig. 1 Simulated two-variable data sets for two groups (open
triangles and open circle) depicting three possible patterns. a The
two groups share all of their principal components in common but
are offset along the allometric or size axis. Thus, the within-group
PC1s, pooled PC1 and CPC1 are the same (i.e., groups differ in size
but not in shape). b Groups share CPC1 but have different
allometry, so the within-group PC1s and CPC1 are parallel but
pooled PC1 is not. The data are size adjusted by projecting them
onto the size invariant plane (i.e., setting CPC1 equal to zero) and
then projecting back into their original units. In other words, the
size adjusted data are the perpendicular residuals expressed in
terms of the original axes. c The groups have arbitrary covariance
structure. Therefore, only within-group PC1s and pooled PC1 are
shown because the groups do not have a first common principal
component. Solid lines CPC1. Dashed-dotted lines PC1 from pooled
data. Dotted lines within-group PC1. Ellipses demarcate 95%
confidence limits of the two groups
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invariant data (Klingenberg 1996) and can be analyzed
via standard MANOVA or ANOVA techniques.

These growth-adjusted data can be calculated using
the method developed by Burnaby (1966):

X I� lðl0lÞ�1l0
� �

; ð1Þ

where X is an n·p data matrix (n is the number of
observations and p the number of traits/variables mea-
sured), I is a p·p identity matrix and l is a p-element
vector representing the growth axis (i.e., CPC1). Because
CPCA components are normalized vectors with l0l ¼ 1;
this equation can be simplified to XðI� ll0Þ (Klingen-
berg 1996). We can break up this equation to see that the
first multiplication Xl projects X onto the first principal
direction (calculating a scalar that is the score for CPC1)
and the second multiplication (multiplying by l0)
translates principal component scores back into the
original coordinate system (Burnaby 1966).

Materials and methods

To investigate how CPCA/BBPM may change analyses
of morphological differences among groups, we simu-
lated 300 three-dimensional data sets and analyzed them
using (1) PCA and shearing, (2) ANCOVA, and (3)
CPCA/BBPM. Because ANCOVA is a univariate anal-
ysis we illustrate the comparison for the second and
third traits using trait one as the covariate (i.e., the
measure of body size) because trait one had the highest
correlation with the true size axis (Appendix I provides a
detailed discussion of the conditions under which the use
of ANCOVA may be inappropriate).

Simulated data sets illustrate scenarios that might be
expected in empirical studies: (1) two groups that share
all of their principal components in common (identical
covariance matrices) but are offset (10·) along the al-
lometric axis (i.e., the groups differ in overall size but not
in size-corrected shape: Fig. 1a); (2) data from two
groups with common covariance structure but with one
group offset along the CPC2 axis (20·; note-the data
depicted in Fig. 1b are only offset by 10 along the CPC2
axis) (i.e., the groups differ in size-corrected shape:
Fig. 1b); and (3) data from two groups with arbitrary
covariance structure (i.e., the groups share no common
allometry: Fig. 1c).

Data were randomly drawn from a multivariate
normal distribution using specified covariance matrices
(Appendix III). Therefore, true differences in our simu-
lated data were known, permitting us to compare the
estimates of effect size in our analyses with true differ-
ences. For each of 300 simulations per scenario, we drew
200 values per group and applied shearing and CPC/
BBPM. We repeated simulations for a wide set of con-
ditions [e.g., up to eight traits, and varying offsets along
CPC1 (overall size differences) and perpendicular to
CPC1 (size-corrected differences in morphology)]. For
simulations where there was no difference in shape

(scenario 1 above), we determined Type I error rates by
performing a one-way ANOVA on the back-projected
data values for a particular trait (variable), but replacing
the uncorrected sum of squares in the denominator of
the F-ratio with the sum of the uncorrected and back-
projection sums of squares (Appendix IV). Under all
cases CPC/BBPM yielded Type I error rates close to the
nominal value of 5%.

All analyses were performed using the R statistical
programming environment (R Development Core Team
2004; http://www.R-project.org). Our program code (as
an R library), which includes BBPM, the CPCA pro-
gram developed by Patrick Phillips (Phillips and Arnold
1999) and a variety of other functions is available at
http://www.zoo.ufl.edu/bolker/R/windows/ (see Appen-
dix III).

Error propagation

Error in estimates of the magnitude of morphological
divergence using CPCA incorporates both among-indi-
vidual variation within groups (standard errors of group
means) and additional variation caused by error in the
estimated value of CPC1 used to size-correct the data.
Both sources of error should be included in confidence
intervals of back-projected trait values (Appendix IV);
ignoring error in CPC1 will lead to inappropriately
narrow confidence intervals (the depictions of CPCA in
Fig. 1 ignore this second source of variation, but the
confidence intervals presented in Fig. 2 incorporate it).

Results

Differences in body size only

When groups shared the same primary axis of variation
(Fig. 1a), pooled PCA and CPCA both provided the
same estimate of the allometric axis, as expected. Fur-
thermore, analysis of size-corrected data using both
PCA/shearing and CPCA/BBPM found no difference in
size-corrected traits for the two groups (Fig. 2a). In this
scenario, both PCA/shearing and CPCA/BBPM led to
the correct conclusion that the groups differed only in
overall size and not in shape (Fig. 2a). In contrast,
ANCOVA incorrectly identified differences in traits 2
and 3. These differences stemmed from the error in the
covariate that resulted from the lack of perfect correla-
tion between the covariate and the true size axis (the
observed bias would decrease if the groups were more
broadly overlapping in size or if we used a covariate
more correlated with true size: Appendix I).

Differences in size-corrected shape

When groups shared a common size axis, but were offset
from this primary axis of variation (Fig. 1b), all three
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techniques detected significant differences in size-cor-
rected morphology between groups. However, the ap-
proaches gave grossly different estimates of these
differences. Only CPCA/BBPM provided estimates of
between-group differences that were accurate and unbi-
ased. In contrast, shearing severely underestimated the
true effect sizes (Fig. 2b: although very small (<1),
the differences were significantly different from zero).
ANCOVA performed better than shearing, but under-
estimated the magnitude of differences in trait 2 while
over-estimating the differences in trait 3. These biases
stemmed from the imperfect correlation between the
covariate and the true size (Appendix I, Fig. A1).

No common body size axis

When the groups did not share a common growth axis,
the inferences based on shearing were qualitatively
inconsistent with those of CPCA/BBPM (and ANCO-
VA) and quantitatively biased with respect to the true
differences between the groups. Although the differences
in Fig. 2c are significant, shearing generated the spuri-
ous conclusion that the groups were not very different
morphologically. Conversely, analyzing these data using
CPCA/BBPM or ANCOVA resulted in the correct
conclusion that the two groups did not share a common
size axis and therefore no further analysis of size-cor-
rected morphological traits was possible—there was no
single way to adjust for size that is applicable to both
groups, so such an attempt would be invalid (Fig. 1c). In
this scenario, one would conclude that the groups are
divergent in the allometric relationships among traits,
and that the scaling of traits (e.g., the exponents in
power functions that relate two traits) and not their
offset (i.e., coefficients in the power functions) is heter-
ogeneous among populations. CPCA/BBPM (and AN-
COVA to a lesser degree) allows investigators to
separately evaluate these two different forms of mor-
phological divergence. For example, if CPC1 differs
among groups (i.e., there is no common, single measure
of ‘‘body size’’), then further analysis should focus on
the heterogeneity of the scaling relationships themselves
(e.g., how the exponents in the power functions vary
among groups). For these cases, one could apply an
approach described by Krzanowski (1979, 1988) and
Blows et al. (2004) to quantify the degree to which
groups differ and to what extent individual traits con-
tribute to differences in allometry.

Discussion

Pooled PCA and shearing (or other forms of residuals
analysis) are frequently used to estimate and correct for
size in groups of organisms. For example, in our review
of recent papers on phenotypic plasticity, 76% that used
a multivariate estimate of body size used pooled data,
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while only one used CPCA and none used CPCA/
BBPM. Because the application of PCA to multiple
groups (and residuals analysis in general) tacitly assumes
that groups have identical allometries, results derived
from PCA/shearing or residuals analyses will often be
biased (e.g., Fig. 1b, 2b). ANCOVA was used in 73% of
the studies that used a univariate estimate of body size.
This technique is preferable to shearing/residuals anal-
ysis; however, it can also lead to considerable bias and
elevated Type I and Type II error rates (Fig. 2a, b,
Appendix I).

The problems with PCA and shearing that we have
identified result from the basic mathematical assump-
tions of these techniques. PC1 describes the axis that
incorporates the greatest amount of variance in the data.
Therefore, when calculated for pooled data, it is influ-
enced by variation both within and among groups and
thus may confound interpretation of allometry with
among-group variation (Klingenberg 1996). The prob-
lem of confounding within and among group variance is
most severe when groups have arbitrary covariance
structure (Fig. 1c). Similar problems arise in residuals
analyses in which univariate measures of body size are
used to represent the allometric axis (Smith 1999; Dar-
lington and Smulders 2001; Garcia-Berthou 2001).

Common principal components analysis is clearly
more powerful, and appropriate, than PCA for sum-
marizing common allometry for multiple groups and as
a mechanism for testing assumptions of similarity of
covariance matrices. In addition, the use of CPCA in
conjunction with BBPM provides an effective tool for
comparing the size of specific traits among groups and
for quantifying differences in shape. As more studies are
added to the literature, it also becomes possible to use
meta-analysis (Osenberg et al. 1999) to compare the
magnitude of variation in morphology among different
taxa, cues, or environments (e.g., Van Buskirk 2002).
However, our results raise cautions about using existing
studies that have used residuals or shearing analyses for
quantitative syntheses of the literature. Additionally, the
use of different analytic tools (PCA/shearing vs CPCA/
BBPM) is likely to introduce significant variation to the
literature that is unrelated to the biology being investi-
gated (see Osenberg et al. 1997, 1999 for related cau-
tions). Furthermore, restricting meta-analyses to the
most common approaches (e.g., shearing) will give se-
verely biased results that may obscure real patterns.
Indeed, some recent studies have demonstrated sub-
stantial survival and growth consequences resulting
from (apparently) very small differences in morphology
(e.g., Relyea and Hoverman 2003; Van Buskirk and
McCollum 2000). However, these studies typically used
shearing or residuals analysis and therefore it is likely
that the true morphological differences among groups
were far greater than was originally estimated (e.g.,
Fig. 2b). More accurate estimates of effect size in studies
of morphology (through the application of CPC/BBPM)
will allow us to better compare variation among studies
and link functional responses with fitness consequences.
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APPENDIX I 
CONSEQUENCES OF VIOLATING 
ASSUMPTIONS OF ANALYSIS OF 

COVARIANCe 
 Analysis of Covariance (ANCOVA), 
when applied as a method of size correction, 
uses a univariate descriptor of body size as a 
covariate to compare the sizes of 
morphological traits of different groups.  
ANCOVA uses a pooled within-group 
regression coefficient (i.e., estimating a 
common slope for multiple groups), and 
corrects the degrees of freedom used for 
comparisons because the slopes of the 
within-group regression lines are estimated 
from the same data. ANCOVA tests for 
differences in allometry by testing for 
heterogeneity of slopes.  In principle, this 
approach should overcome the most obvious 
criticism of residuals analysis and shearing 
(which are predicated on pooled 
regressions). 
 The standard ANCOVA model is: 

( ) ijijiij XXY εβαµ +−++= ,             
where the jth observation in group i of the 
independent variable Y, is a function of four 
primary components: 1) the grand mean of 
all observations of the dependent variableµ ; 
2) the effect of treatments iα ; 3) the effect of 
the covariate ( )XX ij −β ; and 4) the error ijε  
(Huitema 1980).  Applications of this model 
require a number of assumptions (Huitema 
1980 and Sokal and Rohlf 1995), but here 
we deal explicitly with two assumptions 
unique to ANCOVA that are important for 
its application in size correction: 1) the 
covariate and the effect of the treatment are 
independent, and 2) the covariate is fixed 
and measured without error.  Although we 
discuss these two assumptions separately 
they are intimately linked and the potential 
for introducing bias in ANCOVA is greatest 
when they are both violated. 

When the covariate and the effect of 
treatment are correlated (e.g., if treatments 

affect body size as well as size-corrected 
morphology) the interpretation of ANCOVA 
results can be ambiguous.  In such cases, the 
within-group covariate means will be 
different from the grand covariate mean and 
when averaged may generate a grand 
covariate mean that is not (and potentially 
cannot be modified to be) shared by the 
treatment groups (Huitema 1980, Sokal and 
Rohlf 1995).  Therefore, comparing adjusted 
means may be problematic because the 
covariate may either add or mask differences 
between treatment groups that may be 
misinterpreted as real treatment effects.  
Fortunately, the assumption of independence 
of covariate and treatments in ANCOVA 
can be tested by performing an analysis of 
variance (ANOVA) on the covariate; 
however it is difficult to know the degree of 
bias (if any) that is introduced by a 
significant result (Huitema 1980) 

 The second important assumption is 
that the covariate is fixed and measured 
without error (Huitema 1980, Sokal and 
Rohlf 1995).  If the covariate is in fact 
measured with error, which is presumably 
true in morphological studies, then 
ANCOVA may lead either to positive or 
negative bias or to an inflated Type I error 
rate.  The problem is that ANCOVA is 
based on Model I regression, which 
attributes all error to the independent 
variable.  However there are three potential 
sources of error (the third is specific to 
applications for size correction): 

1. error in the dependent variable; 
2. measurement error in the covariate; 
3. imperfect correlation between the 

variable being used as the covariate 
and the true size growth axis;  

We investigated these potential sources 
of bias in ANCOVA for two different 
scenarios.  First, we tested for bias when two 
groups were offset along the covariate but 
did not differ once the covariate was 
incorporated.  Second, we tested for bias 

 2



Electronic appendices for M.W. McCoy et al 2006 (Oecologia): DOI 10.1007/s00442-006-0403-6 

when two groups were offset along the 
covariate dimension and in trait space.  For 
each scenario we generated 500 3 
dimensional data sets for each of two 
groups.  Each data set consisted of 200 
points randomly drawn from a multivariate 
normal distribution (see appendix III) (these 
data were generated using the same 
parameters as the data used for figures 1 and 
2).   For each set of simulated data we ran an 
ANCOVA and saved estimates of effect 
size.  We repeated this procedure 10 times 
for each scenario but added error to the 
covariate for each successive run (the error  

 
Figure A1: Results from 
simulations of ANCOVA 
analyses.  Data represent 
means and 95% 
confidence intervals for 
estimates of effect size 
from 500 runs.  Inset 
figures illustrate 
schematically how adding 
error (“Noise”) to the 
covariate re-sults in a 
particular direction of 
bias. In panels a, b, and c 
there is no true difference 
in the two groups.  In 
panels d, e, and f the true 
diff-erences are indicated 
by the solid horizontal 
line.  Panels a and d 
illustrate the estimates for 
trait 1, b and e illustrate 
trait 2 and c and f 
illustrate the results for 
trait 3.  For each trait we 
see that non-negligible 
bias occurs when the 
error in the covariate is 1 
to 10% of the error in the 
response variable. 

 
 
 
 
 
 
 
 

added to the covariate incorporates sources 2 
and 3 from above).   

We found that adding measurement error 
to the covariate increased the probability of 
finding a difference between the two groups 
when there was no difference (i.e. Type I 
error rate was increased) (Figure A1a-c).  
When there was a true difference between 
two groups, we found that adding error to 
the covariate could result in 
underestimation, overestimation, and even a 
shift in the direction of effect (Figure A1d-
f). These results stem from the problems 
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associated with using a Model I regression 
(error only in the dependent variable) to 
analyze data with error in both the 
dependent and independent variables.  
Adding error to the covariate spreads the 
data horizontally, which reduces the slope of 
the within-group regression lines. For the 
null case this results in an inability to accept 
the null and in all other cases it makes 
interpretation of ANCOVA results 
ambiguous.  ANCOVA does not always 
give misleading results, even when the 
covariate is measured with error.  For 
example, when the range in the covariate 
was the same for both groups, we found no 
effects of error in the covariate (results not 
illustrated).  For the scenarios used here 
(where the groups are offset along the 
covariate axis) it appears that ANCOVA 
performs well until the error in the covariate 
is more than 60% of the error in the 

response variable. Furthermore, in some 
systems, body size measured in mass may 
involve less error than linear traits.  
However, the problem of accurately 
representing the true size growth axis is not 
solved by precise measurement.  Lack of 
correlation between a chosen covariate and 
the true body size/growth axis can also lead 
to biased results (source 3 above). We urge 
researchers who use ANCOVA as a method 
of size-correction to be aware of the 
potential biases imposed and to interpret 
their results cautiously. 
Literature Cited 
Huitema B (1980) The Analysis of 

Covariance and Alternatives. John 
Wiley and Sons, New York. 

Sokal, RR, Rohlf FJ (1995). Biometry: The 
Principles and Practice of Statistics in 
Biological Research.  3rd edition. 
Freeman, NewYork.
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APPENDIX II 
ESTIMATING POWER OF CPCA FOR 
IDENTIFYING SHARED ALLOMETRY 

 Houle et al. (2002) expressed concern 
that CPCA (as implemented by Phillips and 
Arnold 1999) might lack power and therefore 
lead to the conclusion that there are common 
PCs when none actually exist.  For example, 
Houle et al. (2002) found that relatively large 
sample sizes were required to detect differences 
in the orientation of first principal components.  
However, the correlation structure of the data 
affects the validity and power of CPCA. Houle 
et al.'s data sets had approximately 75% of the 
variance explained by within-group PC1s.  In 
contrast, in studies of multivariate allometry, 
within-group PC1s should explain >85% of the 
variance in the data to be considered a good 
estimate of size (Jolicoeur 1963).  Indeed, in 
most morphological datasets, within-group PC1 
often explains over 95% of the variance.  If 
high loadings on CPC1 increase the power of 
CPCA to detect differences in CPC1, then 
Houle et al.'s concerns may not be relevant to 
most studies using size-correction. 
 Therefore, we determined how the 
proportion of the variance explained by PC1 
affected the power of CPCA to detect a fixed 
divergence of two groups in PC1 with a given 
sample size.  We constructed 3-variable 
variance-covariance matrices for two groups 
where the variance associated with each 
principal component decreased geometrically 
(e.g. 1, 0.2, 0.04) and where the first and 
second principal components of the second 
group were rotated by a specified angle relative 
to those of the first group. We varied the 
fraction of variance explained by PC1 on a log 
series between 0.72 and 0.98, and varied 
sample sizes per group in a log series between 
10 and 200 (both ranges are typical for studies 
of morphological plasticity).  For each fraction 
of variance/sample size combination we tested 
10 angles (evenly spaced between 0 and 45 
degrees), and each angle was run 500 times to 
determine power: we interpolated the power 
curve to calculate the angle between true PC1 
for which we had 80% power to detect a 

difference in the PC1s between groups (Figure 
A2). 

Figure A2.  Contour of the critical angle (angle for which 
there is 80% power to detect a difference in PC1 between 
groups) for α=0.05 and the specified combination of 
sample size and fraction of variance in PC1. 
 

Power increased with sample size and 
angle (i.e., the difference in the body size 
dimension).  If 75% of the variance was 
associated with PC1, a 15o angle required a 
sample size of ~150 per group, and a sample of 
20/group could not even detect a 45o 
displacement 80% of the time.  These results 
confirm the results of Houle et al. (2002), who 
used a dataset with 75% of the variance 
associated with PC1.  However, most 
morphometric studies have >90% (often >95%) 
of the variance loading on PC1.  For 95%, a 15o 
angle can be reliably detected with a sample 
size of only 20/group.  Samples of 50/group 
can detect displacements of <10o.  Thus, we 
conclude that CPC is a powerful tool in 
morphometric analyses and that failure to 
detect substantial violation of common 
allometry is likely to be rare in morphometric 
studies using CPCA/BBMP for size-correction. 
 
Literature Cited 
Jolicoeur P, (1963) The multivariate 

generalization of the allometry equation. 
Biometrics 19:497-9.  

Houle D, Mezey J, Galpern P, (2002) 
Interpretation of the results of common 
principal components analyses.  Evolution 
56:433-440.  
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APPENDIX III 
PARAMETER VALUES AND THE “R” PACKAGE 
 We simulated data that represented a 
multivariate set of morphological measure-
ments for two groups of individuals (e.g. prey 
exposed to predators and prey not exposed to 
predators). We assumed that there was some 
underlying allometry that determined how 
individuals that change in size also changed in 
shape as a result.  We also assumed that the 
data have been appropriately transformed (e.g. 
by logging all trait values) to make them 
multivariate normally distributed with constant 
variance-covariance matrices, independent of 
size.  To generate these data we wrote a 
function that created identically shaped but 
offset multivariate normal groups.  We used the 
variance matrix 

,
1032
3108
2810
















 

with principal directions (eigenvectors)            
(-0.65, -0.67, -0.35) [eigenvalue=19.3]; (0.32, 
0.18, -0.93) [eigenvalue=8.7]; and (0.68,  -0.72, 
0.09) [eigenvalue=1.93]. 

  

 We used standard algorithms coded in 
the MASS package of R to draw 200 points for 
each group and shifted the mean of group 2 
(group 1’s mean was located at the origin, 
(0,0,0)) by specifying distances (offsets) along 

the first and second principal directions.  For 
our null cases (difference only in size but not 
size-corrected shape), the offset was 10 along 
PC1 and 0 along PC2, leading to a group 2 
mean of 10 e1 = (-6.5,-6.7,-3.5). For cases 
where there were differences in size but not 
shape, the offset was 10 along PC1 and 20 
along PC2, leading to a group 2 mean of 10 e1 
+ 20 e2 = (-0.11,-3.08,-22.14). 
 
The R Environment and Package cpcbp 
 Source or binary versions of the latest 
version of R, which is a free and open source 
program, can be downloaded from the R 
website along with documentation 
(http://www.r-project.org).  The binary or 
source code for R Package “cpcbp” is available 
for download via the Internet at 
                   

ttp://www.zoo.ufl.edu/bolker/R/windows/cbpbp_0.1.2.zip  h 
o r  
http://www.zoo.ufl.edu/bolker/R/src/cpcbp_0.1.2.tgz  

R includes instructions for installing add-on 
packages across an Internet connection or from 
a local ZIP file.  Below is a list of the functions 
that are available in our CPC/BBMP package 
(this list can be obtained during an R session by 
typing “package (help=cpcbp)”). 
 

 
Description of package: 

Package: cpcbp 

Title: Common principal components and back-projection analysis 
 
Author: Ben Bolker 
 
Maintainer: Ben Bolker  

Depends: R (>= 2.0.0) 

Description: Auxiliary functions for 
CPC and Flury back-projection analysis 
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License: GPL, except phillips-cpc binary from Patrick Phillips: "Copyright © 1994-97 Patrick C. 
Phillips Permission to use, copy, and distribute this software and its documentation for any 
purpose with or without fee is hereby granted, provided that the above copyright notice appear in 
all copies and that both that copyright notice and this permission notice appear in supporting 
documentation.  This software is provided "as is" without express or implied warranty.  Built: R 
2.0.1; ; 2005-02-23 11:11:33; windows 
 
Index (function names and descriptions): 

bp.anova Analysis of variance incorporating back-projection error 

bp.error Calculate back-projection errors 

bpmat Burnaby’s back-projection matrix 

bp.means Estimate back-projected means and standard deviations 

calc.cpcerr Calculate errors of CPC eigenvectors 

coverfun Calculate error coverage 

covmat Construct variance-covariance matrix 

cpc.options Set CPC calculation options 

meancorrect Mean-correct a data matrix 

phillips.cpc Run Phillips's CPC program from R 

phillips.getpmat Utility functions for reading output from Phillips' CPC program 

plot.dat.theor Plot multigroup data along with theoretical predictions 

plot.multigrp Plot grouped data 

pooled.cpc Compute CPC by mean-correcting each group 

simdata Simulate data for back-projection exercises 

sim.theor Generate theoretical values for back-projection exercises 

strip.blanks String utility functions 
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APPENDIX IV 
ESTIMATING ERROR IN CPC1 
To quantify and account for the error 

arising from estimation of the size axis 
(CPC1) we generated a multivariate dataset 
that represented morphological measure-
ments on individuals from two groups of 
individuals (e.g. prey exposed to predators 
and prey unexposed to predators).  We 
assume that there is some underlying 
allometry by which individuals that change 
in size will also change in shape (on an 
appropriate scale, e.g. log-transformed trait 
values). We aim to separate changes in 
shape caused by phenotypic plasticity from 
changes that are simply due to changes in 
size. 

To do this, we calculate common 
principal components (CPCA) for within-
group variation, back-project to eliminate 
the effects of the first CPC (CPC1), and 
perform univariate analyses of the resulting 
size-standardized traits separated by group.  
We make two assumptions here (1) within-
group allometric variation in size-related 
traits is a good proxy for between-group 
variation in size, and (2) CPC1 characterizes 
effects of size (e.g. CPC1 has positive 
loadings for all traits).   

The back-projection equation is: 
)ββΧ(I 11 ′−                                                 (1) (6) 

2
1

1

21








= ∑

=

p

j
mjjhmh β

n
)s(β                          (4) 

where X is an n x p data matrix, I is a p x p 
identity matrix (n is the total number of 
observations and p is the number of 
traits/variables measured) and  (following 
Flury’s (1988) notation,  is the j

1β

jβ
th 

eigenvector, treated as a column vector 
andβ is the iij

th element of the jth 
eigenvector) is the estimated first principal 
direction (eigenvector), scaled so that β 11β′ = 
1.  To understand this formula, break up 
equation 6 to see that the first multiplication 

 projects X onto the first principal 
direction (calculating a scalar that is the 
score for CPC1).  The second multiplication 

(multiplying byβ

1Xβ

1′ ) translates this score back 
into the original coordinate system 
(Klingenberg 1996, Burnaby 1966).  Given 
this back projection process, any error 
present in CPC1 is propagated into the back 
projected data (i.e. size-corrected trait 
values) (Fig. 2; main text).   

ih

ih

λ̂

λ̂

1
−






β

ˆ
≠h,j
θ

1β

 To account for this error we compute 
the errors on the elements of the eigenvector 

 (see Flury 1988: the following discussion 
up to equation 5 recapitulates pp. 74-85 and 
equation numbers 2.12 – 4.8). We start by 
computing 

1β

( )2ij

ij1
i

i
jh

λ̂

λ̂λ̂
rθ̂

−
= −                                  (2) 

where ri = ni/n (fraction of total data points 
in group i) and and are estimates of 
the j

ij ihλ̂
th and hth eigenvalues of group i's 

variance-covariance matrix.  Given θ we 
can calculate a harmonic mean across k 
groups 

i
jh

ˆ

( )
1

1

ˆˆ
=

−




= ∑

k

i

i
jhjh θθ                                     (3) 

and find the large-sample estimate of the 
standard error of  to be  mh

where  is the mmhβ th element of the hth 
principal component.  More generally we 
know that the variance-covariance matrix of 
the elements in is: 

∑
=

′
p

h
hθn 2

1
ˆ1

hhββ                                               (5) 

Suppose we have calculated the error 
variances for each component of the 
first eigenvector.  Then the ij

2
1 jβσ

th element of 
the outer-product matrix  is b11ββ ′ jiij ββ 11= .  
In general, the errors for two quantities can 
be combined by (Lyons 1991) 
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( )( ) ( ) ( ) ( ) 







∂
∂

∂
∂

+






∂
∂

+






∂
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f

a
fbaC

b
fbV
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faVbafV ,2,

22  (6) 

which for  reduces to babaf ⋅=),(

( ) ( ) ( ) ( ) ( ) ( )abb,aC2
b

bV
a

aVbaabb,aC2abVbaV 22
2222 +






 +=++

 (7) 
 
The approximation in (6) is based on a 
Taylor series expansion; when 

 the only missing term is babaf ⋅=),(

( ) (
 −⋅− 2 bbaaΕ ) 

2
 which in turn is equal to 

( )22 ,b)()( CbVaV +⋅ a ; we found this term 
to be generally negligible, as shown by our 
good type I error results based on (7). 
Therefore the error variance of  is 
approximately

ji ββ 11

( ) ji ββ 11ββ
j

β

i

β
jiββb β

σ

β

σ
ββσσ

ji

ji
jiij ,2

1

2

2
1

2
2

11
22

11

11
11

2σ+












+==   (8) 

where  denotes the covariance between 
a and b.  The covariances of the elements of 
the back-projection matrix ( ) 
with each other must also be calculated.  We 
derive these covariances by expanding 

 and assuming all 

third and fourth central moments are zero: 

baσ ,

=
 Ε

jiij β= β b 11





 ⋅


kβiβjβiβikbijbE 1111

( ) i
(9) 

kj,ijikiikij
βkjββ,ββki,ββji,bb σββσβσββσββσ 11111111

2
11

2
11112 +++=

 
Now, we calculate the error variance 
introduced into the mean of the ith variable 
by 

∑
≠

+=
jk

bbkjiii,BP jkij
xxxσσ σ22

1
2                       (10)   

and combine the back projection error and 
the within group variance. 

2222
xii,BPx σxσσ

i
⋅+=                                     (12) 

This now provides us with an estimate of the 
combined variances of each group.  These 
combined variances can then be used as the 
variance terms in a t-test.  Alternatively, 
back-projection error can be incorporated 
into an analysis of variance by adding the 
back projection sums of squares to the error 
sum of squares. In order to calculate the 
overall back-projection sum of squares for 

use in a corrected ANOVA we substitute the 
sum of the absolute deviations of the trait 
means of each group ( jix , for trait i in group 
j) from the overall mean of each trait ( ix ), or 

∑ −
j

iji xx , , for the mean trait values in the 

calculations above.  This procedure is 
necessary because the back-projection error 
affects the back-projected data in every 
group in the same direction, not 
independently. (An R package that 
implements this algorithm is available via  
http://www.zoo.ufl.edu/bolker/R/windows/). 
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