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The ultrasonic attenuation is evaluated at 300 K along [100], [110], and

[111] directions for the characterization of bcc metal Ta. The size of the

metal is considered in nanorange. Ultrasonic velocity, Grüneisen parame-

ter and acoustic coupling constant that depend on second and third order

elastic constants are calculated for determination of ultrasonic attenuation

coefficient. Second and third order elastic constants of the bcc metal Ta at

nanoscale at 300 K are also calculated starting with only two basic param-

eters. For the information about defects at nanoscale, the dislocation drag

coefficients are calculated for the metal at different size along [100] orienta-

tion. The ultrasonic attenuation increases with the size of material as the

size variation of the thermal conductivity and the thermal relaxation time.

There is significant increase in the attenuation up to 150 nm.

PACS numbers: 62.20.Dc, 62.65.+k, 63.20.Kr

1. Introduction

Nanostructured materials have attracted much attention in the past decades
due to their size dependent unique mechanical, physical, and chemical proper-
ties [1]. One of the principal differences between nanostructured materials and
bulk ones is that more defects such as vacancies, voids, grain boundaries, and
dislocations exist in nanostructured materials. The materials microstructure and
associated physical properties are well related to the ultrasonic attenuation, ve-
locity, and their related parameters [2–5] that can be used to give insight into
material.
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The bcc structured metal Ta has many applications such as that it can be
used as replacement for platinum for laboratory apparatus, which has to give good
corrosion resistance. The fluids in the human body do not react with the metal
and hence it is used for surgical implants without rejection. Other applications
include the use of tantalum carbide in cemented carbides that are used as cutting
tools. The pure metal is used in the electronic industry in the manufacture of
various types of electronic equipment as rectifiers, capacitors, lamp filaments etc.
It is also used in vacuum systems as it has high absorption rate for residual gases
and it forms alloys with nickel, molybdenum, which have good corrosion resistance,
strength, and ductility.

Many of the thermophysical, microstructural properties of bcc metal Ta
were studied. But so far ultrasonic properties at nanoscale are not reported in
the literature. Therefore in the present investigation ultrasonic properties of this
metal are determined at the nanoscale. We have calculated the second and third
order elastic constants, non-linearity parameters and thermal relaxation time at
nanoscale and at room temperature for the determination of ultrasonic attenuation
and velocity. Dislocation parameters are calculated using their relation to different
physical properties for the study of imperfection.

2. Theory

2.1. Theory of elastic constants

The elastic constant of the n-th order is defined as [6]:

Cijklmn = (∂nF/∂ηij∂ηkl∂ηmn). (1)

Here F is the free energy density of undeformed material and ηij is La-
grangian strain components tensor. The Voigt notation (which has been adopted
in the present investigation) CIJK... has been used instead of tensor notation
Cijklmn... for notation of elastic constants, for using (ij) → I, according to the
scheme (11) → 1 etc. and (23) → 4 etc. for cubic crystals; due to symmetry
only three independent second-order elastic constants (SOEC) and six third-order
elastic constants (TOEC) exist. The total free energy density F is expanded in
terms of strain η and can be written (using Taylor’s series expansion) as

F =
∞∑

n=0

Fn =
∞∑

n=0

1
n!

(∂nF/∂ηij∂ηkl∂ηmn)ηijηklηmn.

Hence free energy density in square and cubic terms of strain can be written [6, 7]
as

F2 + F3 =
1
2!

Cijklηijηkl +
1
3!

Cijklmnηijηklηmn,

F2 + F3 = (1/2)C11(η2
11 + η2

22 + η2
33) + C12(η11η22 + η11η33 + η22η33)



Size Dependent Acoustical Properties of bcc Metal 935

+2C44(η2
12 + η2

23 + η2
31) + (1/6)C111(η3

11 + η3
22 + η3

33)

+(1/2)C112[η2
11(η22 + η33) + η2

22(η33 + η11) + η2
33(η11 + η22)]

+C123η11η22η33 + 2C144(η11η
2
23 + η22η

2
31 + η33η

2
12)

+2C166[η2
12(η11 + η22) + η2

23(η22 + η33) + η2
31(η33 + η11)]

+8C456η12η23η31, (2)

where CIJ are SOEC and CIJK are TOEC.
The free energy of a crystal containing N cells at a finite temperature T is

given as [7]:

F = V CNU + FVib,

where VC is the volume of the elementary cell, U is the internal energy density of
the crystal when all ions are in rest on their lattice point and FVib is the vibration
free energy. Thus an elastic constant can be separated into two pairs

CIJK... = C0
IJK... + CVib

IJK... (3)

The first and second ones are strain derivative of U and FVib and they
represent the static and vibrational elastic constants.

The expression of U is expressed as

U = (2V C)−1
2∑

ν=1

∑
(

m
µ

)
6=
(

0
ν

) φµν(Rm0
µν ) ∼= (2V C)−1

∑
φµν(R). (4)

Here Rm0
µν is the distance between ν-th ion in 0-th cell and µ-th ion in m-th cell

and φµν(R) is the interaction potential formed by Coulombic and non-Coulombic
parts

φµν(R) = φC
µν(R) + φNC

µν (R),

where φC
µν(R) = ±e2/R and φNC

µν (R) = A exp(−R/b). Here e is electronic charge,
± sign indicates for like and unlike charges, A is constant and b is hardness pa-
rameter.

When the crystal is deformed homogeneously the distances between the (ν, 0)
ion and the (µ,m) ion in the deformed (Rm0

µν ) and the undeformed states (rm0
µν )

are related to the Lagrangian strain component as

(Rm0
µν )2 − (rm0

µν )2 = 2ξm0
µνiξ

m0
µνjηij = 2ρm0

µν ,

where ξm0
µνi is the i-th Cartesian component of the wector rm0

µν . This equation also
defines the quantity ρm0

µν . The energy U given by Eq. (4) can be expanded in terms
of ρ up to cubic terms as
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U2 + U3 = (2V C)−1
∑ [(ρ2

2!

)
D2φ(R)

]
R=r

+ (2V C)−1
∑[(ρ3

3!

)
D3φ(R)

]
R=r

= (4V C)−1[ηijηkl

∑
ξiξjξkξlD2φ(R)]R=r

+(12V C)−1[ηijηklηmn

∑
ξiξjξkξlξmξnD3φ(R)]R=r (5)

with abbreviation D = 1
R

d
dR . Comparing Eq. (5) with Eq. (2) in reference to

Eq. (3), the static component of elastic constants can be written as

C0
11 = (2V C)−1[

∑
ξ4
1D2φ(R)]R=r,

C0
12 = C0

44 = (2V C)−1[
∑

ξ2
1ξ2

2D2φ(R)]R=r,

C0
111 = (2V C)−1[

∑
ξ6
1D3φ(R)]R=r,

C0
112 = C0

166 = (2V C)−1[
∑

ξ4
1ξ2

2D3φ(R)]R=r,

C0
123 = C0

144 = C0
456 = (2V C)−1[

∑
ξ2
1ξ2

2ξ2
3D3φ(R)]R=r.

The elementary cell is supposed to have a cube edge of 2r0, hence the
volume becomes as 4(r0)3. The nearest neighbour distance is r1 =

√
3r0.

The summation is done up to second neighbourhood whose coordinates are
(±1,±1,±1)r0, (±2, 0, 0)r0, (0,±2, 0)r0 and (0,0,±2)r0. The obtained expres-
sion for second and third order elastic constants at 0 K using above equations are
as

C0
11 =

3
8

e2

r4
0

S
(2)
5 +

3φ(r1)
br0

(√
3

3r0
+

1
b

)
+

2φ(r2)
br0

(
1

2r0
+

1
b

)
,

C0
12 = C0

44 =
3
8

e2

r4
0

S1,1
5 +

φ(r2)
br0

(
1

2r0
+

1
b

)
,

C0
111 = −15

8
e2

r4
0

S
(3)
7 − φ(r1)

9b

(√
3

r2
0

+
3

br0
+
√

3
b2

)
− φ(r2)

2b

(
3
r2
0

+
6

br0
+

4
b2

)
,

C0
112 = C0

166 = −15
8

e2

r4
0

S
(2,1)
7 − φ(r1)

9b

(√
3

r2
0

+
3

br0
+
√

3
b2

)
,

C0
123 = C0

456 = C0
144 = −15

8
e2

r4
0

S
(1,1,1)
7 − φ(r1)

9b

(√
3

r2
0

+
3

br0
+
√

3
b2

)
,

where lattice sums are
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S0
1 = −Z0 = −1.017678, S

(2)
5 = 0.354190, S

(1,1)
5 = 0.346708,

S
(3)
7 = 0.540901, S

(2,1)
7 = −0.093356, S

(1,1,1)
7 = −0.159996

and φ(r1) = A exp(−r1/b), φ(r2) = A exp(−r2/b), r1 =
√

3r0, r2 = 2r0. The value
of A is obtained from the equilibrium condition, given as

A = (bZ0e
2/r2

0)[8
√

3 exp(−r1/b) + 12 exp(−r2/b)].

The elastic constants due to vibrational free energy component is given by [8]:

CVib
IJK... = aIJK...T. (6)

Here

aIJK... = l1kB

∣∣∣∣
∂C0

IJK...

∂r

∣∣∣∣
r=r0

+
fVib

IJK...

TVC
,

l1 = −r0

[
8
3

(
2ρ1 + 2ρ2

1 − ρ3
1

)
φ(r1) +

3
2

(
2ρ2 + 2ρ2

2 − ρ3
2

)
φ(r2)

]
Y −1,

Y =
[
8
3

(
ρ2
1 − 2ρ1

)
φ(r1) +

3
2

(
ρ2
2 − 2ρ2

)
φ(r2)

]

×
[
8
3

(
ρ2
1 − 2ρ1

)
φ(r1) + 2

(
ρ2
2 − 2ρ2

)
φ(r2)

]
,

where ρ1 = r1/b, ρ2 = r2/b, kB is the Boltzmann constant and fVib
IJK... is vibra-

tional free energy per unit cell that is given by the following expressions:

fVib
11 =

kBT

4

(
G2 − G2

1

6

)
, fVib

12 =
kBT

4

(
G1,1 − G2

1

6

)
,

fVib
44 =

kBT

4
G1,1, fVib

111 =
kBT

4

(
G3 − 1

2
G1G2 +

G3
1

18

)
,

fVib
112 =

kBT

4

(
G2,1 − 1

3
G1,1G1 − 1

6
G2G1 +

G3
1

18

)
,

fVib
123 =

kBT

4

(
G1,1,1 − 1

2
G1,1G1 +

G3
1

18

)
, fVib

144 =
kBT

4

(
G1,1,1 − 1

2
G1,1G1

)
,

fVib
166 =

kBT

4

(
G1,1,1 − 1

2
G1,1G1

)
, fVib

456 =
kBT

4
G1,1,1,

G1 =
[
8
9
φ(r1)

(
2ρ1 + 2ρ2

1 − ρ3
1

)
+

1
2
φ(r2)

(
2ρ2 + 2ρ2

2 − ρ3
2

)]
Z,

G2 =
[

8
27

φ(r1)
(−6ρ1 − 6ρ2

1 − ρ3
1 + ρ4

1

)
+

1
2
φ(r2)

(−6ρ2 − 6ρ2
2 − ρ3

2 + ρ4
3

)]
Z,
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G1,1 =
[

8
27

φ(r1)
(−6ρ1 − 6ρ2

1 − ρ3
1 + ρ4

1

)]
Z,

G3 =
[ 8
81

φ(r1)
(
30ρ1 + 30ρ2

1 + 9ρ3
1 − ρ4

1 − ρ5
1

)

+
1
2
φ(r2)

(
30ρ2 + 30ρ2

2 + 9ρ3
2 − ρ4

2 − ρ5
2

) ]
Z,

G2,1 = G1,1,1 =
[

8
81

φ(r1)
(
30ρ1 + 30ρ2

1 + 9ρ3
1 − ρ4

1 − ρ5
1

)]
Z,

Z =
[
4
9
φ(r1)

(
ρ2
1 − 2ρ1

)
+

1
4
φ(r2)

(
ρ2
2 − ρ2

)]−1

.

Using above expressions, the vibrational part of elastic components have
been calculated by Eq. (6), whose addition to static part of elastic constants gives
the elastic constants at a particular temperature. All the calculations are done
with the help of programming in C++.

2.2. Theory of attenuation

For the evaluation of ultrasonic attenuation coefficient, we have used the
phonon–phonon interaction mechanism given by Mason and Bateman [9, 10]. It
is more genuine theory for studying the anharmonicity of crystals as it directly
involves elastic constants through non-linearity parameters D in the evaluation
of ultrasonic attenuation coefficient α. The ultrasonic attenuation over frequency
square (α/f2)Akh (Akhieser type loss) due to phonon–phonon interaction mecha-
nism at ωτ ¿ 1 [11] is expressed as

(α/f2)Akh =
E0(D/3)4π2τ

2dV 3
, (7)

where

D = 9
〈
(γj

i )2
〉
−

3
〈
γj

i

〉2

CV T

E0
. (8)

Here D and V is the non-linearity parameter and velocity of ultrasonic wave for
longitudinal and shear wave. E0 and CV are thermal energy density and the

specific heat per unit volume, respectively. The
〈
γj

i

〉
is the average Grüneisen

number, j is the direction of propagation and i is the mode of propagation.
〈
γj

i

〉

is related to SOEC/TOEC [9]. d is density of material and f is frequency of the
wave. The thermal relaxation time (τ), which is equal to thermal relaxation time
for shear wave (τS) and is half of thermal relaxation time for longitudinal wave
(τL) is twice that of shear wave and is written as
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τ = τS =
1
2
τL =

3K

CV (V )2
, (9)

where K is thermal conductivity and V is the Debye average velocity of ultrasonic
wave as

3
(V )3

=
1

V 3
L

+
2

V 3
S

, (10)

V L =

√
C11

d
and VS =

√
C44

d
,

where VL and VS are the velocity of longitudinal and shear wave, respectively.
The thermal conductivity (K) depends on the size of material [12]:

1
K

=
2

nkBu

(
1
l∞

+
4
L

)
. (11)

Here n — the number density of the atoms, kB — the Boltzmann constant,
u — the group velocity of acoustic band, l∞ — the phonon mean free path in an
infinite system and L is the system size. The number density n in an fcc system
is 4/d3

0 and in the bcc system 2/d3
0, where d0 is the lattice constant.

The propagation of longitudinal ultrasonic wave creates compression and
rarefaction throughout the lattice. The rarefied regions are colder than that of
compressed regions. Thus there is flow of heat between these two regions. Hence,
thermoelastic loss (α/f2)th occurs and is obtained by expression [11]:

(α/f2)th =
4π2〈γj

i 〉2KT

2dV 5
L

. (12)

2.3. Theory of imperfection

Dislocation drag is a parameter for which the phonon–phonon interaction
can produce appreciable effect on the motion of linear imperfections in a lattice
through the phenomenon of drag. The thermal losses due to such a motion can
be computed by multiplying the following drag coefficients by the square of the
dislocation velocity:

Bscrew = 0.071ε, (13)

Bedge =
0.053ε

1− σ2
+

0.0079
1− σ2

( µ

B

)
χ, (14)

where

χ = εL − 4
3
εS, εL =

E0DLτL

3
, εS =

E0DSτS

3
, B =

1
3
(C11 + 2C12),

µ =
1
3
(C11 − C12 + C44) and σ =

C12

C11 + C12
.
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µ, ε, σ, B, and χ are the shear modulus, phonon viscosity, Poisson’s ratio, bulk
modulus, and compressional viscosity, respectively. C11, C12 and C44 are the
SOEC for cubic metals.

3. Results
3.1. Second and third order elastic constants at 300 K

Calculated values of SOEC and TOEC for Ta metal at 300 K and at
nanoscale are presented in Table I.

TABLE I

SOEC and TOEC (1011 N/m2) of metal Ta at 300 K and at nanoscale.

Metal C11 C12 C44 C111 C112 C123 C144 C166 C456

Ta 2.711 0.318 0.319 –20.301 –10.727 –8.898 –6.469 –6.988 –8.676

Ultrasonic longitudinal and shear wave velocities are calculated using the
values of second order elastic constants and the Debye average velocity (V )) is
calculated using Eq. (10). The thermal energy density (E0), density (ρ), and
specific heat per unit volume (CV ) are calculated using physical constant table
and the Debye temperature. The value of d, V , E0, and CV are presented in
Table II.

TABLE II

Density (d), specific heat per unit volume (CV ), energy density (E0),

Debye average velocity (V ) of Ta metal at 300 K.

Metal d [103 kg/m3] CV [106 J/(m3 K)] E0 [108 J/m3] V [103 m/s]

Ta 16.66 2.24 5.118 1.555

3.2. Thermal relaxation time, Grüneisen numbers and non-linearity parameters

The thermal conductivity data (K) in size range 10–300 nm are taken from
the literature [12]. The thermal relaxation time are determined using thermal
conductivity with Eq. (9). The size dependent value of K and τ are presented in
Table III. The size variation of τ with fitted curve is shown in Fig. 1.

The Grüneisen parameters are calculated using SOEC and TOEC and acous-
tic coupling constants (DL and DS) for longitudinal and shear wave are estimated
along different orientations [100], [110] and [111] at 300 K for Ta metal at the
nanoscale using Eq. (8). The calculated values of the Grüneisen parameters and
acoustic coupling constants for Ta at 300 K along different directions are presented
in Table IV.
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TABLE III

Thermal conductivity (K), thermal relaxation time (τ) of Ta

metal at 300 K in size range 10–300 nm.

Size [nm] 10 20 40 80 160 300

K [W/(m K)] 2.43 4.17 5.88 9.89 14.29 16.67

τ [10−12 s] 1.345 2.308 3.255 5.475 7.910 9.228

Fig. 1. Relaxation time vs. size of metal Ta.

TABLE IV

Average Grüneisen number 〈γj
i 〉L for longitudinal wave, av-

erage square Grüneisen number 〈(γj
i )2〉L and 〈(γj

i )2〉S for

longitudinal and shear wave, non-linearity parameters DL,

DS for longitudinal and shear wave of metal Ta at 300 K.

Direction 〈γj
i 〉L 〈(γj

i )2〉L 〈(γj
i )2〉S DL DS

[100] 1.936 20.396 11.637 168.799 104.737

[110]∗ –2.416 22.930 4.180 183.377 37.622

[110]∗∗ –2.416 22.930 0.907 183.377 8.161

[111]∗∗∗ –1.523 7.276 3.513 146.344 31.618
∗polarized along [001] direction,
∗∗polarized along [110] direction,
∗∗∗polarized along [110] direction.

3.3. Ultrasonic attenuation coefficient

Ultrasonic attenuation coefficient over frequency square (α/f2)AkhLong for
longitudinal wave, (α/f2)AkhShear for shear wave and thermoelastic loss (α/f2)th
have been calculated using Eqs. (7) and (12) along different orientations for dif-
ferent nanosizes of metal Ta and are shown in Figs. 2–4.
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Fig. 2. (α/f2)th vs. size of metal Ta.

Fig. 3. (α/f2)Akh.long vs. size of metal Ta.

Fig. 4. (α/f2)Akh.shear vs. size of metal Ta. Designations of ∗, ∗∗, ∗ ∗ ∗ as in Table IV.
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3.4. Size dependence of dislocation drag coefficient

Dislocation parameters Bscrew and Bedge are calculated using Eqs. (13) and
(14) for longitudinal and shear waves along [100] orientation for different nanosizes
of Ta metal and are presented in Table V.

TABLE V

Bscrew and Bedge for longitudinal and shear wave along [100]

orientation for the metal Ta from size 10–300 nm.

Size [nm] (Bscrew)long (Bscrew)shear (Bedge)long (Bedge)shear

[mP] [mP] [mP] [mP]

10 55.00 17.06 54.89 19.54

20 94.38 29.28 94.19 33.53

40 133.10 41.29 132.84 47.28

80 223.88 69.46 223.43 79.53

160 323.46 100.35 322.80 114.90

300 377.35 117.07 376.59 134.04

4. Discussion

We have made the calculations of SOEC and TOEC starting with only two
basic parameters — lattice parameter and hardness parameter. Lattice parameter
(nearest neighbour distance) decreases with size of the metal [13]. Lattice contrac-
tion leads to shift of X-ray diffraction peaks to higher diffraction angles. Therefore
we have taken the smaller values of nearest neighbour distance for Ta metal at the
nanoscale in comparison to normal crystalline size of the metal. The size varia-
tion of the lattice parameter is significant only from 10 to 30 nm [13]. There is
only 0.02% change in the lattice parameter in the range. This small variation in
the lattice parameter does not reflect any significant change in SOEC/TOEC and
finally in the ultrasonic parameters of the metal at different nanosizes. Thus it is
justified to suppose that the size variation of the lattice parameter is insignificant
with respect to our calculations from 10 to 300 nm size of the metal.

The values of C11, C12, and C44 at 5 K evaluated by present theory are
2.678× 1011 N/m2, 0.317× 1011 N/m2, and 0.259× 1011 N/m2, respectively. The
values of C11, C12, and C44 at 4.2 K in the work of Seraphim and Marcus [14] are
2.68 × 1011 N/m2, 1.6 × 1011 N/m2 and 0.865 × 1011 N/m2, respectively. If we
compare the value of C11, then there is good agreement in present work and work
of Seraphim and Marcus. However, there is small variation in magnitude of C12

and C44 values, while the order is the same. The present values of C11, C12, and
C44 at 300 K are 2.711× 1011 N/m2, 0.318× 1011 N/m2, and 0.319× 1011 N/m2.
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The values given by Sigalas and Papaconstantopoulos are 2.650 × 1011 N/m2,
1.590×1011 N/m2, and 0.82×1011 N/m2 [15]. The slight discrepancy in the values
is obvious because our calculations are made at the nanoscale. On comparison of
the methods, our present method of calculation is so simple. It involves only one
basic parameter (lattice parameter) for bcc/fcc structure for the determination of
SOEC and TOEC at different temperatures. On the other hand, the method by
Sigalas and Papaconstantopoulos describes the determination of SOEC at room
temperature and involves so many coefficients and parameters to be determined
for the materials. Thus the present formulation for calculation of higher order
elastic constants for bcc structured material is well justified.

A perusal of Figs. 2–4 shows that the ultrasonic attenuation normally in-
creases with size of the metal. The variation of attenuation in Ta is significant
from 10 nm to 150 nm and it is insignificant from 150 nm to 300 nm. Now it is
important to describe the behaviour of the physical properties, which are mainly
contributing to the size dependence of the total ultrasonic attenuation.

As discussed, there is insignificant variation in lattice parameter and con-
sequently in second and third order elastic constants from size 10–300 nm of the
metal. Therefore, the ultrasonic attenuation is not much affected by the second
and third order elastic constants of the metal at the nanoscale.

The Grüneisen parameters and acoustic coupling constants are the direct
consequence of second and third order elastic constants, therefore these parame-
ters also do not much affect the size dependence of ultrasonic attenuation in Ta
at the nanoscale size. The values of these parameters are different for different
propagating directions of the wave.

Another important property in the evaluation of ultrasonic attenuation is
thermal relaxation time, which is computed with the help of size dependent ther-
mal conductivity data. It is the time taken for the re-establishment of the thermal
equilibrium after the interaction of thermal phonons and acoustical phonons. The
variation of thermal relaxation time (τ) with the size of Ta metal is presented in
Table III. A perusal of Fig. 1 shows that τ increases with size and its size depen-
dence can be given by the relation τ = τ0(1− e−x/λ), where x is the value of size of
the metals and τ0 and λ are some constants. In our evaluation, the thermoelastic
loss over frequency square (α/f2)th is proportional to thermal conductivity as in
Eq. (11) and the ultrasonic attenuation coefficient over frequency square (α/f2)Akh

for longitudinal and shear wave is proportional to thermal relaxation time as in
Eq. (7). Thus the size variation of ultrasonic attenuation coefficient and thermoe-
lastic loss follow the same nature as the size variation of thermal relaxation and
thermal conductivity.

On quantitative comparison between the ultrasonic attenuation (α/f2) at
normal crystalline size [16] and the ultrasonic attenuation (α/f2) in Ta at the
nanoscale size, it is observed that the values of ultrasonic attenuation (α/f2)
in Ta at the nanoscale size are higher than the values at normal size, but the
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order of the values remains the same. The ratio of ultrasonic attenuation for
shear to that for longitudinal wave are 4.3 (experimental) and 5.02 (theoretical)
at normal size in the work of Levy et al. [17], while in our investigation this ratio
at nanoscale is ≈ 7.68. The comparison of the both investigations also implies the
larger attenuation at nanoscale. Thus, in general some sort of imperfections are
predicted on the basis of larger attenuation at nanoscale of the metal in comparison
to the normal crystalline metal.

The dislocation drag coefficients Bscrew and Bedge depend on phonon viscos-
ity (ε) as in Eq. (13) and (14) and phonon viscosity depends on relaxation time,
which depends on size of the metal. Thus dislocation drag coefficients at differ-
ent nanosizes of the metal are predominantly affected by thermal relaxation time.
Therefore these coefficients increase with the size of metal. The values of these
coefficients are higher than those at normal crystalline size. Thus more defects
like dislocation movements may be predicted in the nanoscale size of the metal.

5. Conclusions

On the basis of above discussion, the present theory for the evaluation of
second and third order elastic constants of bcc structured metal Ta is valid. Elastic
constants (SOEC and TOEC) are not very important for size dependence of the
ultrasonic attenuation in Ta at the nanoscale at 300 K. The size dependence of
ultrasonic attenuation coefficients and dislocation coefficient are predominantly
affected by thermal relaxation time and thermal conductivity. The larger values
of ultrasonic attenuation coefficients and dislocation coefficients at nanoscale reveal
the fact that more imperfections exist at the nanosized material.
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