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A new analytical expression for the size-dependent bandgap of colloidal semiconductor nanocrystals is

proposed within the framework of the finite-depth square-well effective mass approximation in order to

provide a quantitative description of the quantum confinement effect. This allows one to convert optical

spectroscopic data (photoluminescence spectrum and absorbance edge) into accurate estimates for the

particle size distributions of colloidal systems even if the traditional effective mass model is expected to

fail, which occurs typically for very small particles belonging to the so-called strong confinement limit.

By applying the reported theoretical methodologies to CdTe nanocrystals synthesized through wet

chemical routes, size distributions are inferred and compared directly to those obtained from atomic

force microscopy and transmission electron microscopy. This analysis can be used as a complementary

tool for the characterization of nanocrystal samples of many other systems such as the II-VI and III-V

semiconductor materials. Published by AIP Publishing. https://doi.org/10.1063/1.4999093

I. INTRODUCTION

Motivated by Ekimov’s first experimental observation

of the size dependence of nanocrystal optical properties in

semiconductor-doped glasses,1,2 Efros and Efros conducted

pioneering theoretical investigations of quantum confinement

effects in semiconductor spherical microcrystallites.3 In the

framework of the effective mass approximation for the con-

fined charge carriers, interband optical absorption coefficients

were calculated in two limiting cases or the so-called quantum

confinement regimes, depending on the ratio of the crystallite

radius (R) to the effective Bohr radius of the electron-hole pair

(aB): the strong confinement limit (R/aB ≪ 1, individual parti-

cle confinement regime) and the weak confinement limit (R/aB

≫ 1, exciton confinement regime). An intermediate confine-

ment regime was also introduced for ah ≪ R≪ ae (ah and ae

are the Bohr radii of the hole and the electron, respectively).

Expressions for the energy of the first excited electronic state

were derived for each case so that the bandgap enlargement

due to size quantization effects (the bandgap of the semi-

conductor particle relative to the bulk value) could be first

estimated.

Since Efros and Efros seminal contribution,3 several mod-

els have been proposed to understand the size-dependent

bandgap of low dimensional semiconductor structures espe-

cially in the size range of small particles corresponding

to the strong confinement regime (R/aB≪ 1). However,

development of a theoretical analytical model suitable for

quantitative predictions is still a partially solved problem.

a)Email: diegolourenconi@gmail.com

One of the most used theoretical models that allows a rela-

tively simple analytical relationship between the bandgap and

particle size is the much quoted Brus model.4–6 In its simplest

form, the widely known Brus equation results from an effective

mass model for spherical particles in the case of strong size

quantization. As an improvement to Efros and Efros treatment3

of the strong confinement regime, the Coulomb interaction

between the electron and hole was included by means of first

order perturbation theory. Quantum confinement effects on

ionization potentials, electron affinities, and redox potentials

were then analyzed in detail in the sense of the Brus model.

The blue shift of the absorption spectrum was also obtained

in reasonable agreement with experiment for large clusters.7

However, experimental observations carried out extensively

have revealed that in a system composed of extremely small

nanocrystals (R as small as 1–2 nm), near the so-called strong

confinement limit, the observed bandgap shift with respect to

the bulk value is much smaller than the theoretical predic-

tion.8–10 Consequently, in the size range corresponding to the

strong confinement regime, the Brus equation fails to fit the

empirical sizing curves (nanocrystal bandgap vs size) pub-

lished by several groups by combining experimental data for

different materials.11–13 In the specific case of the size dis-

tributions analyzed in Ref. 13 for various samples of ZnO

nanocrystals, the particle size obtained from the absorption

onset measurement and Brus sizing curve deviates roughly by

25% from the maximum of the corresponding transmission

electron microscopy (TEM) histogram. Such discrepancy has

been attributed mainly to the boundary constraint of the infinite

barrier model, which constitutes the underlying assumption for

the main results of Efros and Efros3 and Brus.5 In this context,
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Kayanuma and Momiji14 introduced variational calculations

of the ground state energy of an electron-hole pair system con-

fined in a microsphere by finite potential barriers. It was shown

that the effect of relaxation of the boundary constraint is quite

significant and must be taken into account to analyze the exper-

imental data properly. Other researchers15–17 adopted a more

refined method based on the finite-depth square-well effective

mass approximation and suitable for quantitative predictions.

Assuming a spherical finite potential well, electron and hole

energies can be estimated numerically by solving appropri-

ate nonlinear algebraic eigenvalue equations. Nanda et al.15

and Pellegrini et al.16 investigated systematically the applica-

tion of this approach to several semiconductor nanocrystals

embedded in different matrices and the model predictions for

wide-bandgap semiconductors turned out to be quantitatively

accurate.

In addition to the reported theoretical investigations,

empirical calibration curves have also been proposed for CdS,

CdSe, and CdTe colloidal nanocrystals providing useful rela-

tionships between the mean size of the nanocrystals and the

position of the first excitonic absorption peak.11 Such empir-

ical functions agree very well with the calculated absorp-

tion spectra using time-dependent density functional methods

for similar cadmium chalcogenides.18 A good agreement is

also found when an atomistic semiempirical pseudopotential

approach is used for calculating the size dependent exciton

transition energies of small CdSe nanocrystals.19

In this paper, a new analytical relationship between the

bandgap of a spherical semiconductor nanocrystal and its char-

acteristic size is presented as an alternative to the referred

numerical approaches and also to the Brus equation in a spe-

cific size range (R/aB≪ 1) where this asymptotic formula fails

to describe experimental observations (the strong confinement

limit). Relevant corrections to the lowest excited state of these

quantum confined systems were compiled in order to pro-

vide realistic sizing curves (nanocrystal bandgap vs radius).

From a simple spectroscopic analysis based on optical absorp-

tion and photoluminescence measurements and applied to

CdTe colloidal nanocrystals, particle size distributions (PSDs)

were estimated and compared directly to those obtained from

atomic force microscopy (AFM) and transmission electron

microscopy (TEM).

II. THEORY

A. Size-dependent bandgap of colloidal
semiconductor nanocrystals

Leyronas and Combescot20 derived analytical expressions

for the single particle confinement energies in a spherical

nanocrystal with finite potential barriers in order to reproduce

impressively well the numerical solutions of the characteris-

tic transcendental eigenvalue equation for any level, barrier

height, and confinement size. From them, we can propose in

the present paper the exact ground-state wave function for the

charge carriers in a spherically symmetric finite potential well

with radius R,

φvi
(xi) =

1√
2πR

1

πf (vi)j1[πf (vi)]

sin[ π
R

f (vi)xi]

xi

, (1)

where xi is the radial coordinate for the electron (i = e) and

the hole (i = h), j1[πf (vi)] is a first-order spherical Bessel

function with argument πf (vi), and f (vi)=

[
1 + 1

vi
+

( π

2
−1)2

vi(vi−1)

]−1

is a quantity defined in terms of the dimensionless parame-

ter vi = ( V
~2/2miR2 )1/2. This finite confining parameter relates

the barrier height V and the confinement energy of the

charge carrier i, characterized by the effective mass mi. The

infinite potential limit is reached when vi→∞. Assuming

that the individual motions of the electron and the hole are

strongly quantized in all spatial directions, in accordance

with the regime of sufficiently small nanocrystals (R/aB≪ 1),

the exciton ground-state wave function ψve,vh
(xe, xh) can

be factorized into a simple product of the 1S single-

particle wave functions φvi
(xi) so that ψve,vh

(xe, xh) � φve
(xe)

× φvh
(xh). The energy corresponding to the first excitonic

transition or, equivalently, the bandgap of a semiconduc-

tor nanocrystal [Eg(R)] relative to the bulk value (Ebulk
g )

becomes

Eg(R) = Ebulk
g +

~
2

2meR2


π

1 + 1
ve

+
( π

2
−1)2

ve(ve−1)


2

+
~

2

2mhR2


π

1 + 1
vh

+
( π

2
−1)2

vh(vh−1)


2

+ ∆Ee−h(R, ve, vh, εs)

+∆Epol(R, ve, vh, ε), (2)

where the second and the third terms correspond to the con-

finement energies of the electron and of the hole, respectively,

in a finite spherical potential well. The fourth term is due to

the screened Coulomb interaction between the electron and the

hole. It depends explicitly on the nanocrystal radius (R), the

finite confining parameters for the charge carriers (ve, vh), and

the dielectric constant of the bulk semiconductor material (εs).

Treating the Coulomb interaction as a first order perturbation

to the dominant kinetic energy contribution for small radii and

making use of the Legendre polynomial addition theorem for

the 1���−→xe−−→xh
��� term, we obtain

∆Ee−h(R, ve, vh, εs)

�

〈

ψve,vh
(xe, xh)

�������−
e2

εs
���−→xe − −→xh

���
�������ψve,vh

(xe, xh)

〉

= −e2

εs

(I1 + I2), (3)

where

I1 =

∫
d3xh

��φvh
(xh)��2

∫
dxex2

e
��φve

(xe)��2
×

∑∞
n=0

1

xh

(

xe

xh

)n

Θ(xh − xe)

∫
dΩePn(cosγ) (4)

and

I2 =

∫
d3xe

��φve
(xe)��2

∫
dxhx2

h
��φvh

(xh)��2
×

∑∞
n=0

1

xe

(

xh

xe

)n

Θ(xe − xh)

∫
dΩhPn(cosγ). (5)
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In Eqs. (4) and (5), Θ is the usual Heaviside unit step func-

tion, Pn is the n-th order Legendre polynomial, and γ is

the angle between the position vectors −→xe and −→xh. The inte-

gral of Pn(cosγ) with respect to the solid angle element

dΩi for the electron (i = e) and the hole (i = h) van-

ishes for all n , 0: ∫ dΩiPn(cosγ) = 4πδn,0. The subse-

quent integration over the Heaviside function Θ(xi − xj) is

performed making use of the identity ∫ ∞0 Θ(xi − xj)g(xj)dxj

= ∫ xi

0
g(xj)dxj, where the subscripts i and j are used here

to represent different charge carriers and their correspond-

ing radial coordinates, and g(xj) is a general function of

the coordinate xj. All these considerations lead to the

following expression for the Coulomb interaction energy

[Eq. (3)]:

∆Ee−h(R, ve, vh, εs) � − e2

εsR
*,

2π−
5
2 f (vh)−1f (ve)−

3
2

j1[πf (ve)] j1[πf (vh)]
+-

2 {

−1

4
Si

[

2πf (ve)
] − 1

8
Si

[

2π(f (vh) − f (ve))
]

+
1

8
Si

[

2π(f (vh) + f (ve))
]

+
1

2

f (ve)

f (vh)

[

πf (vh) − cos(πf (vh))sin(πf (vh))
]

}

. (6)

The expression between braces is written in terms of the Si(x)

sine integral.

The last term in Eq. (2), ∆Epol(R, ve, vh, ε), is the surface

polarization energy that arises from the difference in dielec-

tric constants between the nanocrystal semiconductor material

(εs) and the surrounding medium (εm). As a consequence of

this dielectric mismatch, the effective Coulomb interaction

between the electron and the hole in a spherical semiconduc-

tor nanocrystal embedded in a dielectric medium exhibits an

additional term caused by the induced surface charge of the

sphere.21,22 From classical electrostatics, Brus derived a polar-

ization potential for a dielectric sphere in the field of a single

point charge within it.5 For one electron-hole pair system, such

a potential [Vpol(
−→xe,−→xh)] was expressed as a sum of the self-

energy of an electron and a hole due its own image charge

[Vs(
−→xi )] and a mutual polarization contribution coming from

the interaction of a carrier with the charge induced by the other

one [VM (−→xe,−→xh)]. Indeed,

Vpol(
−→xe,−→xh) = Vs(

−→xe) + Vs(
−→xh) + VM (−→xe,−→xh)

=

∑∞
n=0

e2αn

2R

(

xe

R

)2n

+
∑∞

n=0

e2αn

2R

(

xh

R

)2n

−
∑∞

n=0

e2αn

R

(

xexh

R2

)n

Pn(cosγ), (7)

where αn is defined by αn ≡ (ε−1)(n+1)
εs(nε+n+1)

and ε = εs/εm is the

relative dielectric constant. By assuming infinitely high confin-

ing potentials, the dielectric mismatch corrections on excitonic

energies in spherical nanocrystals almost cancel each other

out and are greatly reduced [in this situation, the contributions

from Vs(
−→xe) + Vs(

−→xh) and VM (−→xe,−→xh) to the potential energy

of the electron-hole system have close absolute values and

opposite signs]. To the best of our knowledge, the combined

effect of finite potential barriers and dielectric mismatch on

electronic and optical properties of semiconductor nanocrys-

tals has been investigated only in a few studies.23–25 In a very

recent publication,25 the dielectric correction for cubic geom-

etry and the eigenstates of the corresponding finite square

well were computed for CdTe nanocrystals considering dif-

ferent values of dielectric mismatches and barrier heights.

In the present work, in order to account for both dielec-

tric corrections and finite confining potentials in spherically

symmetric nanosystems, the electron and hole self-energies

and the mutual polarization term from the Brus polarization

potential [Eq. (7)] were averaged with the proposed exci-

ton ground-state wave function, ψve,vh
(xe, xh), for a spherical

semiconductor nanocrystal with finite potential barriers, yield-

ing the following analytical expression for the energy shift

∆Epol:

∆Epol(R, ve, vh, ε) �
〈

ψve,vh
(xe, xh)

���Vpol(
−→xe,−→xh)

���ψve,vh
(xe, xh)

〉

= − e2

εsR

{

1

π2f (ve)f (vh)j1[πf (ve)]j1[πf (vh)]

}2

×
{(

1 − sin
[

2πf (ve)
]

2πf (ve)

)

g(ε, vh) +

(

1 − sin
[

2πf (vh)
]

2πf (vh)

)

g(ε, ve)

}

, (8)

where g(ε, vi)=−∑∞
n=1

(ε−1)(n+1)
(nε+n+1) ∫ 1

0 dx x2nsin2 [

πf (vi)x
]

. A

sufficiently high number of terms must be considered in this

expansion in order to ensure convergence (n = 14 000 in our

calculations).

Once∆Ee−h(R, ve, vh, εs) and∆Epol(R, ve, vh, ε) have been

determined from Eqs. (6) and (8), respectively, the bandgap

Eg(R) of a semiconductor nanocrystal with respect to the bulk

value Ebulk
g can be calculated from Eq. (2). For a given system,

according to Pellegrini16 and Nanda,15 the barrier height V

entering in the definition of the confining parameters ve and vh

can be approximated by the difference between the bandgaps

of the nanocrystal semiconductor material Ebulk
g and of the
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surrounding medium Emedium
g so that V =

[
Emedium

g − Ebulk
g

]
/2.

The confining potentials for the electron and the hole are

assumed to be identical.

At this point, it is worth noting that in the limit of infi-

nite confining potentials (ve,h →∞ and f (ve,h)→ 1), Eqs. (6)

and (8) return ∆Ee−h → − 4
π

{
− 1

4
Si(2π) + 1

8
Si(4π) + π

2

}
e2

εsR

= −1.786 e2

εsR
and ∆Epol → − 2e2

εsR
g(ε, vi → ∞), respectively. In

this limit, the confinement energies [second and third terms

in Eq. (2)] exhibit an inverse quadratic dependence on the

nanocrystal radius. Therefore, the main result of the well-

known Brus model5 is recovered from the asymptotic form

of Eq. (2),

Eg � Ebulk
g +

~
2π2

2µR2
− 1.786

e2

εsR
+ β

e2

εsR
, (9)

where β = −2g(ε, vi → ∞) = −2
∑∞

n=1
(ε−1)(n+1)
(nε+n+1) ∫ 1

0 dx x2n

sin2(πx) and µ is the reduced electron-hole mass.

B. Determination of the particle size distribution
of colloidal semiconductor nanocrystals

In real systems, regardless the adopted synthesis meth-

ods, one has to take into account that there is always a certain

distribution of nanocrystal sizes P(R) around a certain mean

value. In this context, well established colloidal chemistry

approaches combined with post-preparative size-selective pre-

cipitation techniques have been able to furnish high quality

nanocrystals with size dispersions as narrow as 5%.26,27 Since

the bandgap of a single semiconductor nanocrystal depends

strongly on its radius [see Eqs. (2) and (9)], a certain size dis-

tribution leads necessarily to a distribution of bandgaps and

introduces a pronounced inhomogeneous broadening of the

originally discrete resonances in the observed optical spectra.

Considering specifically the effect of size nonuniformity on the

photoluminescence spectra of semiconductor nanocrystals, the

ensemble emission intensity (on the λ-wavelength scale) can

be simulated as13,28–30

IPL(λ) =

∫ ∞
0

Nc(R)α
(R)

ABS
(λexc)I

(R)

PL
(λ)P(R)dR, (10)

where Nc(R) is the size-dependent number of carriers available

to take part in optical transitions, α
(R)

ABS
(λexc) and I

(R)

PL
(λ) are the

linear absorption coefficient at the excitation wavelength λexc

and the emission intensity for a single nanocrystal of radius

R, respectively, P(R) is the probability distribution function

of radii. Assuming that P(R) can be represented either by a

normal or by a log-normal dispersion, Eq. (10) has furnished a

good fit to experimental photoluminescence data especially for

silicon nanoclusters over the size range 2–8 nm.28,29 Since Nc

scales with the nanocrystal volume V (the number of carriers

increases as the size increases) and α is determined by the total

interband oscillator strength per unit volume
fosc(R)

V
, Eq. (10)

can be approximated by

IPL(λ) �

∫ ∞
0

fosc(R)I
(R)

PL
(λ)P(R)dR

= fosc(R)P(R)
1

λ ′(R)

∫
I

(R)

PL
(λ)dλ. (11)

In Eq. (11), the fluorescence line shape for a fixed radius,

I
(R)

PL
(λ), relates the distributions IPL(λ) and P(R) whose abscis-

sas are connected by the relation λ(R)= hc
Eg(R)

so that dλ

= d

[
hc

Eg(R)

]
= λ ′(R)dR, thus allowing the change in the vari-

able of integration. h is the Planck’s constant, c is the speed

of light, and Eg(R) is the nanocrystal bandgap written explic-

itly as a function of the radius R, for a given set of descriptive

parameters, as defined in Eqs. (2) and (9). Considering a nor-

malized spectral line shape (typically, a Gaussian profile),

∫ I
(R)

PL
(λ)dλ = 1, the experimentally measured IPL(λ) can be

converted into a size distribution P(R) through the relation

P(R) �
1

fosc(R)

[
dλ

dR
× IPL(λ)

]
λ= hc

Eg(R)

�
1

V

[
dλ

dR
× IPL(λ)

]
λ= hc

Eg(R)

. (12)

In Eq. (12), the total interband oscillator strength, f osc(R), is

obtained by integrating over all the optically allowed exci-

ton states. As discussed in Refs. 12 and 31, the magnitude of

f osc(R) is determined by the total interband matrix element

pcv between the valence-band top and the conduction-band

bottom and also by the number of unit cells contained in the

nanocrystal. Since pcv is defined in terms of the Bloch wave

functions of the bulk material, accounting for semiconductor’s

composition and crystal lattice, which do not depend on the

nanocrystal size, it can be expected that f osc(R) scales linearly

with the nanocrystal volume V. It is worth pointing out that for

small nanocrystals where confinement effects are significant

and at relatively low temperatures, the first excited eigenstate

is situated at much higher energies than the thermal energy

kBT. In this picture, the oscillator strengths of all
(

R
aB

)3
levels

are mainly concentrated on the lowest exciton state32,33 so that

the overall f osc(R) is essentially determined by f 1(R). In such

a situation, the major contribution to luminescence is from

radiative recombination of confined ground-state excitons, the

thermal broadening (<50 meV at room temperature) being

negligible in comparison to the observed spectral linewidths.33

As a consequence, photons emitted at a given energy arise

basically from nanocrystals whose lowest excited state corre-

sponds to that energy. Therefore, according to Eq. (12), for a

given experimental photoluminescence spectrum,
IPL(λ= hc

Eg(R)
)

V

represents approximately the volume fraction of nanocrystals

with energy bandgap Eg(R) that is converted into a particle

size distribution P(R) through the factor
[

dλ
dR

]
λ= hc

Eg(R)

.

Alternatively, the size distribution can also be obtained

from analysis of the inhomogeneous broadening observed in

the optical absorption spectra of semiconductor nanocrystals.

Pesika et al.34,35 estimated P(R) from the local slope of the

absorption spectrum A(λ) in the vicinity of the onset through

the relation

P(R) � − 1

V

dA

dR
= − 1

V

[
dA

dλ
× dλ

dR

]
λ= hc

Eg(R)

. (13)

Using the proposed bandgap equation [Eq. (2)], the results

from Eq. (13) will be compared to those obtained from the



154102-5 Ferreira et al. J. Chem. Phys. 147, 154102 (2017)

photoluminescence-based size distribution model [Eq. (12)].

As will be shown in Sec. IV, our analytical expression for the

nanocrystal bandgap can be used to improve dramatically the

size distribution predictions resulting from the Brus model

[Eq. (9)], enabling a direct comparison with experimental

data.

The here presented theoretical models are suitable for

describing systems composed of very small semiconductor

nanocrystals belonging to the strong confinement limit. As

discussed in Sec. II A, in this situation, the nanocrystal

radius is much smaller than the exciton Bohr radius (R≪ aB),

which allows one to treat the effective electrostatic interac-

tion between charge carriers as a perturbation of the dominant

kinetic energy contribution.21 The bandgap relation [Eq. (2)]

required for the size distribution computation [Eqs. (12) and

(13)] was obtained in this specific size range, thus establish-

ing a limit for the applicability of the developed analysis.

In particular for cadmium telluride (CdTe), the semiconduc-

tor material we are interested in, the exciton Bohr radius is

aB = 7.5 nm.36

III. EXPERIMENT

A. Preparation of the nanocrystals

The nanocrystals were synthesized using the colloidal

chemistry approach in which the particle growth occurs in a

solution of chemical reagents containing the metallic cation

and the anion sources such as a cadmium salt and a suit-

able chalcogenide precursor. In this wet chemical preparation,

organic stabilizing agents are used in order to inhibit the

excessive growth of the evolving particles to a bulk macro-

crystalline phase. In the present work, two synthetic routes

were adopted. Initially, CdTe nanocrystals were produced fol-

lowing a two-step procedure in accordance with Refs. 37 and

38. In the first step, NaBH4 (3.56 mmol) and tellurium pow-

der (0.59 mmol) were mixed with 10 ml of deionized water in

a 25 ml three-necked flask sealed with rubber plugs. Under

intense argon flow, the mixture was stirred gently at room

temperature and about 3 h later, a clear purple solution was

observed. The generated NaHTe precursor was then trans-

ferred carefully into a closed reaction vessel with 100 ml of

degassed water. The inert atmosphere was again necessary to

store the fresh NaHTe properly and to avoid oxidation. In

the second step, 40 ml of the freshly prepared NaHTe solu-

tion was injected, under an intense argon flow and vigorous

stirring, in a three-necked flask fitted with rubber septa and

containing CdCl2 (1.11 mmol), deionized water (125 ml), and

thioglycolic acid (TGA) (2.88 mmol). The pH value of the cad-

mium precursor solution was adjusted to 11.1 with 1M NaOH

solution before injection of NaHTe. Then, the reaction mix-

ture was heated to 100 ◦C (reflux temperature) for 1 h, and a

sample was taken for further characterization and theoretical

analysis.

Concerning the characterization procedure, all opti-

cal measurements were performed at room temperature.

Ultraviolet-visible (UV-vis) spectroscopy was carried out with

a Shimadzu UV-Vis-1501 spectrophotometer. Photolumines-

cence was measured using a modular system consisting of a

378 nm light-emitting diode laser (COHERENT CUBE) as the

excitation source and an Ocean Optics USB 4000 spectrome-

ter for collecting the PL emission. Atomic force microscopy

(AFM) analysis for the determination of particle size distri-

bution was conducted using an NT-MDT-NTEGRA Prima

multifunctional scanning probe microscope in a tapping mode.

Noncontact “golden” silicon cantilevers (NSG10 series/NT-

MDT) with a typical resonance frequency of 240 kHz and

a spring constant of 11.8 N/m were used. Once the sample

was scanned, the particle height distribution was assessed

using SPIPTM—analytical software for microscopy.39 For a

nearly spherical shape, which is a reasonable assumption for

nanocrystals prepared by the described colloidal chemistry

methods, the height measurement corresponds to the size or

diameter of the nanocrystal.40 With respect to sample prepara-

tion, a micropipette was used to disperse two droplets (≈10 µl,

each one) of the undiluted nanocrystal solution on a freshly

cleaved mica substrate. After 15 min, the substrate containing

the deposited nanocrystal solution was placed in a Petri dish

where a careful immersion in deionized water at room tem-

perature took place for 10 min. Then, the water was removed

and the Petri dish/sample system was slowly dried in a muffle

furnace at 80 ◦C for about one day. After that, the sample was

ready for AFM imaging.

CdTe nanocrystals were also produced following a one-

pot approach in accordance with Ref. 41. Briefly, 0.43 mmol

CdCl2.H2O was diluted in 80 ml of ultrapure water in a 100 ml

beaker. L-glutathione (GSH) (0.52 mmol) was added while

stirring, followed by adjusting the pH to 10.0 with a solution

of 1.0 mol l☞1 of NaOH. Next, this solution was added to a

100 ml three-neck flask with a reflux column and a thermo-

couple coupled with a thermal heater (Cole & Parmer➤) in

order to control the temperature. Then, 0.04 mmol Na2TeO3

and 1.0 mmol NaBH4 were added to the solution, followed by

reflux at 100 ◦C for 1 h. After that, the sample was purified by

adding acetone for precipitation of the nanoparticles.

Ultraviolet-visible (UV-vis) spectrum was registered on

a diode array UV-2550 Shimadzu spectrometer. Fluorescence

spectrum (PL) was obtained at room temperature, using a Shi-

madzu RF-5301 PC spectrofluorophotometer equipped with

a xenon lamp of 150 W. Transmission electron microscopy

(TEM) was performed on a JEM 2100 FEG-TEM operating at

200 kV (LNNano- Brazilian Nanotechnology National Lab-

oratory). Suspensions of CdTe QDs samples were dispersed

in 300-mesh Lacey Formvar with an ultrathin carbon film,

which was previously treated by argon plasma to make it

hydrophilic. Several images were registered and the size of

the nanoparticles was measured using the ImageJ software.

The characterization procedures were described sepa-

rately for each sample since the reported syntheses were

performed in two different research groups.

IV. RESULTS AND DISCUSSION

Figure 1 displays typical room temperature absorp-

tion and photoluminescence spectra of two colloidal CdTe

nanocrystal samples obtained from different synthetic meth-

ods as described in Sec. III: a two-step procedure that uses

thioglycolic acid as a stabilizer agent (TGA-capped CdTe

nanocrystals) and a one-pot approach based on L-glutathione
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FIG. 1. UV-visible absorption and pho-

toluminescence spectra of as-prepared

CdTe colloidal nanocrystals capped

with (a) thioglycolic acid (TGA) and

(b) L-glutathione (GSH). Circles and

squares represent fits to absorbance

(dashed curves) and PL (solid lines)

experimental data, respectively.

(GSH-capped CdTe nanocrystals). In Figs. 1(a) and 1(b), the

solid and dashed curves correspond to the measured emission

and absorption intensities, respectively, for both CdTe/TGA

and CdTe/GSH nanocrystal samples. The fits to experimental

data comprise, for each sample, the entire PL band (squares)

and also the absorption edge (circles), that is, the region

extracted from the absorbance spectrum (A(λ)) ranging from

the onset to the point where d2A/dλ2
= 0. The energy cor-

responding to the absorption onset can be obtained by plot-

ting the linear function (Ahν)2
=C(hν − Eonset) and finding its

intercept (A is the absorbance, hν is the photon energy, and

C is a constant). Appropriate fitting functions were chosen

in order to reproduce accurately the available experimen-

tal data. The data enclosed in the absorbance edge regions

were then fitted to four-parameter log-normal functions. PL

experimental points were, in turn, fitted to an exponentially

modified Gaussian function (CdTe/TGA sample) and to an

asymmetric double sigmoidal function (CdTe/GSH sample).

From these fitting functions, the measured photoluminescence

and absorption intensities (IPL(λ) and A(λ) in Eqs. (12) and

(13), respectively) are written explicitly as functions of λ.

Once the theoretical sizing curve λ = λ(R)= hc
Eg(R)

is deter-

mined, the size distribution curves P(R) can be estimated for

the analyzed samples. The two different approaches used for

the nanocrystal bandgap Eg(R) are represented by Eqs. (2)

and (9).

In what follows, our theoretical results are presented and

compared to the predictions of the Brus model [Eq. (9)].

Figure 2(a) shows the size dependent bandgap Eg(R) esti-

mated from Eqs. (2), (6), and (8) for CdTe colloidal

nanocrystals in aqueous solution (solid line). The calcula-

tions were performed with the parameters Ebulk
g = 1.475 eV,

me = 0.135m0, mh = 1.139m0 (m0 is the free electron mass),

and εs = εCdTe = 10.4. Since the analyzed nanocrystal sam-

ples were produced by means of purely aqueous medium

routes (Sec. III), the following values of dielectric mismatch

and potential barrier height were used: ε = εCdTe/εwater = 0.13

and V =
[
E

(water)
g − E

(CdTe)
g

]
/2= 2.7125 eV; E

(water)
g = 6.9 eV

is the experimental bandgap of liquid water. With the the-

oretical considerations proposed here, a strong reduction of

the nanocrystal bandgap values predicted by the Brus model

[Eq. (9), dashed curve] is observed in a small size range

(R < 2.5 nm). Furthermore, as a consequence of the incom-

plete confinement of the carriers (due to a finite V ), a clearly

noticeable inflexion point in the Eg(R) continuous curve indi-

cates an onset for the vanishing of the bound states in the

finite spherically symmetric well (for R ≤ 0.72 nm, the exciton

is no longer confined). In Fig. 2(b), the individual contribu-

tions of the expectation values of the kinetic energy [〈K〉,
second and third terms in Eq. (2)], the Coulomb energy

[〈C〉, Eq. (6)], and the polarization energy [〈P〉, Eq. (8)] to

the total Eg(R) curve are presented separately (solid lines,

our results) and compared to the corresponding predictions

of the Brus model (dashed lines). The arrows indicate how

〈K〉, 〈C〉, and 〈P〉 change after the implementation of the ana-

lytical corrections derived in Sec. II. The reduction in the

dominant kinetic energy contribution becomes quite large in

the strong confinement region, and an attenuated size depen-

dence is verified for 〈K〉: as the nanocrystal size decreases,

〈K〉 increases as R☞1.4 instead of R☞2.0 (the typical quantum

localization term in Eq. (9) scales with the square of the

inverse radius). On the other hand, the contribution of 〈P〉
to Eg(R) is greatly enhanced for small sizes (inset), which

is mainly attributed to a significant spreading of the electron

FIG. 2. (a) Calculated bandgap Eg(R)

for a CdTe colloidal nanocrystal in aque-

ous solution through Eq. (2) (solid line)

and from the Brus model [Eq. (9),

dashed line]. (b) Decomposition of both

Eg(R) curves into 〈K〉, 〈C〉, and 〈P〉 con-

tributions (kinetic, Coulomb, and polar-

ization energies). The arrows connect

the quantities calculated in the infinite

barrier model [Eq. (9), dashed lines] and

in our theoretical approach [Eqs. (2),

(6), and (8), solid lines].



154102-7 Ferreira et al. J. Chem. Phys. 147, 154102 (2017)

and hole probability densities outside the nanocrystal by relax-

ing the hard-wall boundary condition, as discussed in Ref. 24.

In fact, while polarization energy is supposed to shift Eg(R)

to lower energies as R☞1.0 [see Eq. (9)], a stronger size depen-

dence was obtained: in our calculations, 〈P〉 scales with R☞2.6.

Therefore, at small values of R, 〈P〉 becomes much more

negative than expected from the infinite barrier model in

which polarization effects seem to be almost suppressed. It

can also be observed that the magnitude of the Coulomb

energy 〈C〉 in the observed size range is not significantly

affected by the existence of a finite confinement potential

(inset), which is partly due to the long-range character of

the Coulomb interaction. In particular for R = 0.72 nm, 〈K〉
changes from 6.01 eV to 2.55 eV, 〈C〉 changes from ☞0.34 eV

to ☞0.37 eV, 〈P〉 changes from ☞0.09 eV to ☞1.23 eV, and

the calculated bandgap is drastically reduced from 7.14 eV to

2.43 eV.

In Fig. 3(a), the particle size distributions (PSDs) obtained

from the analysis of both the emission and the absorption

spectra for the produced CdTe/TGA nanocrystal sample [Fig.

1(a)] are superimposed on the distribution obtained from

the analysis of the displayed AFM image [Fig. 3(b)]. The

photoluminescence-based PSD (solid line) calculated directly

from Eq. (12) and the proposed relation for Eg(R) [Eq. (2)]

exhibits a clear asymmetric shape with a most probable radius

of 0.82 nm in close agreement with the AFM histogram (white

bars with a maximum height centered at 0.81 nm). Such agree-

ment arises from the theoretical considerations that led to a

general expression for the nanocrystal bandgap in the form of

Eq. (2). Even for nanocrystals embedded in liquid mixtures,

the incompleteness of the confinement must be considered as

a relevant aspect that affects the different energetic contri-

butions (kinetic, Coulomb, and polarization energies) to the

effective bandgap which, in turn, is greatly reduced in very

small nanocrystals. For example, the bandgap correspond-

ing to R = 0.82 nm is reduced from 5.8 eV to 2.4 eV when

the corrections enclosed in each term of Eq. (2) are imple-

mented. As discussed in Sec. II, in a situation in which the

dimensionless confining parameters vi=e,h are considered ide-

ally high, all terms of the Brus equation are asymptotically

recovered. Consequently, the mechanism of bandgap reduc-

tion presented in Fig. 2 is no longer assessed, and the PSD will

be dislocated to larger radii. The inset of Fig. 3(a) shows the

photoluminescence-based PSD [Eq. (12)], using now the Brus

approximation to Eg(R) [see Eq. (9)]. The most probable radius

is, in fact, strongly overestimated (PSD maximum centered at

1.64 nm). Making use of our bandgap relation again [Eq. (2)],

the PSD corresponding to the dashed curve was calculated

from Eq. (12), as before, but a different approach was used

for the oscillator strength of the lowest exciton state, f 1(R).

Since we are dealing with extremely small particles, R/aB

� 0.1 for the most probable radius, it seems reasonable that

f 1(R) can also be represented by an asymptotic limit analogous

to that proposed by Kayanuma:31 for R/aB→ 0, the normalized

oscillator strength of the ground state per nanocrystal tends

to f n
1

(R) = π |θ(ve, vh)|2, where θ(ve, vh) = ∫ φve
(x)φvh

(x)d3x

is the overlap integral calculated from wave function (1)

(see Sec. II). For infinite confining potentials (ve,h→∞), the

classical Kayanuma result for the strong confinement limit is

recovered, that is, f n
1

(R) → π. As before, the calculated PSD

presents an accurate estimate for the most probable radius.

Furthermore, the observed asymmetric shape becomes notice-

ably broader to the right of the maximum in clear agreement

with the AFM statistical data. Finally, the PSD obtained from

the analysis of the absorbance spectrum in Fig. 1(a) is rep-

resented by the gray filled curve. This is the result from the

implementation of the Pesika model34,35 [Eq. (13)] combined

with our bandgap equation [Eq. (2)]. Although the absorption-

based PSD furnishes a good estimate for the most probable

radius (0.79 nm), the distribution is highly symmetrical and

much sharper than those obtained from the analysis of both

the AFM image and the photoluminescence spectrum. Such

discrepancy is inherent to the basic assumption underlying

Eq. (13). If the particle size distribution is sufficiently large,

then the shape of the absorbance spectrum near the onset is

dominated by the particle size distribution. In this situation, the

analysis of the absorption edge led to better results for CdSe

colloidal nanocrystals produced at prolonged reaction times

after a natural broadening of the absorption bands with time.42

In an opposite situation, our CdTe/TGA nanocrystal sample

(corresponding to a short reaction time) exhibits a relatively

narrow well-resolved absorption peak, which limits the analy-

sis of size distributions from the absorption spectrum through

Eq. (13).

In Fig. 4(a), similar analyses were performed for the pro-

duced CdTe/GSH nanocrystal sample using the emission and

the absorption spectra displayed in Fig. 1(b). The PL-based

PSD (solid line) calculated from Eqs. (2) and (12) exhibits an

FIG. 3. (a) Size distributions of

CdTe/TGA nanocrystals obtained

from AFM histogram (white bars),

absorption edge with Eg(R) given

by Eq. (2) (gray filled curve), PL

spectrum with Eg(R) given by Eq. (2)

(solid line), PL spectrum with Eg(R)

given by Eq. (2) and making use

of an asymptotic oscillator strength

term (dashed curve) and PL spectrum

with the Brus approximation to Eg(R)

[Eq. (9), inset]. (b) AFM image of the

CdTe/TGA nanocrystal sample (height

distribution).
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FIG. 4. (a) Size distributions of

CdTe/GSH nanocrystals obtained

from TEM histogram (white bars),

absorption edge with Eg(R) given by

Eq. (2) (gray filled curve), PL spectrum

with Eg(R) given by Eq. (2) (solid

line), and PL spectrum with the Brus

approximation to Eg(R) [Eq. (9), inset].

(b) TEM image of the CdTe/GSH

nanocrystal sample.

asymmetric shape in close agreement with the size distribu-

tion histogram (white bars) obtained from the corresponding

TEM image [Fig. 4(b)] except for the region in the vicinity of

R = 1.0 nm where experimental results are noticeably under-

estimated. This may be the result of the difficulty in obtain-

ing precise measurements of smaller particles from TEM

images.42 Since we are dealing with a system characterized

by a considerable size dispersion (27%), this may also indi-

cate that a post-preparative procedure such as the size selective

precipitation technique26,27 should be used conveniently to

produce new samples with narrower size distributions before

the PSD computation. In the infinite potential limit vi → ∞,

the calculated distribution centered at 1.25 nm (solid line)

shifts to 1.98 nm (inset, the Brus model) far from the TEM

statistical data, as a consequence of the use of the asymp-

totic formula (9) for the nanocrystal bandgap. The gray filled

curve represents an absorbance-based PSD with an approx-

imately symmetric shape computed from Eq. (13) and our

expression for Eg(R) [Eq. (2)]. This distribution (centered at

1.21 nm) is much sharper than that obtained from the anal-

ysis of the photoluminescence spectrum and TEM data for

the same reasons discussed previously. Since the size distribu-

tion of the CdTe/GSH sample is dislocated substantially to the

right of the distribution of the CdTe/TGA sample, the previ-

ously investigated asymptotic limit for the oscillator strength

turned out to be unsuitable to describe the larger particles in

the GSH-capped nanocrystal sample. In fact, the CdTe/GSH

sample exhibits broader absorption and emission bands situ-

ated at much longer wavelengths than the CdTe/TGA sample

(Fig. 1).

The influence of different effective mass values on PSD

computation was analyzed in terms of the anisotropy effect in

zinc-blende (bulk) semiconductor materials. Such an effect is

more pronounced for the heavy-hole band which has a strongly

directional-dependent effective mass, with a larger mass along

the [111] direction than along the [110] and [100] directions.43

Using a theoretical methodology developed for the first author

of the present paper44 and applied here to the binary semicon-

ductor CdTe, the electron and the heavy-hole effective masses

along these three directions were determined from ab initio

total energy calculations based on the density functional the-

ory.45 Then, mean effective masses were obtained by averaging

over the directions. In Figs. 2–4, all calculations were per-

formed with the [111] effective masses that led to the most

accurate descriptions of the measured distributions. It is worth

pointing out that in the observed size range of the analyzed

samples, corresponding to the strong confinement regime, the

agreement between theoretical predictions and experimental

data was little affected when the mean effective masses were

used in the calculations. Indeed, the PSDs estimated from these

two sets of parameters ([111] effective masses and mean effec-

tive masses) are quite similar and exhibit very close values for

the most probable sizes. However, when the effective masses

along the [110] and [100] directions were used, the most prob-

able sizes increased significantly with respect to the values cor-

responding to the first two sets of parameters, compromising

the comparison with experimental data. These considerations

are equally valid for several zinc-blende binary semiconduc-

tor materials (CdS, CdSe, ZnS, ZnTe, ZnTe, and others) and

must be taken into account in order to determine the size distri-

bution of ensembles of nanocrystals properly. For the sake of

completeness, the calculated electron and heavy-hole effective

masses are listed here: m
[100]
e = 0.131m0, m

[100]

hh
= 0.506m0,

m
[110]
e = 0.133m0, m

[110]

hh
= 0.520m0, m

[111]
e = 0.135m0, m

[111]

hh

= 1.139m0, mMean
e = 0.133m0, mMean

hh
= 0.825m0.

In order to summarize the main ideas proposed in this

paper, a schematic diagram showing our general approach to

size distribution determination is presented in Fig. 5 (steps 1

FIG. 5. Schematic diagram showing in a few steps (1 to 7) the method

employed to determine the particle size distribution through spectroscopic

data.
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to 7). For a particular system of semiconductor nanocrystals

embedded in a specific medium, a set of descriptive parame-

ters is initially defined (1): bandgap values of the bulk semi-

conductor material (Ebulk
g ) and of the surrounding medium

(Emedium
g ), dielectric mismatch (ε), effective masses of the con-

fined charge carriers (me, mh), and barrier height (V). These

initial parameters are used to calculate the nanocrystal bandgap

(2) which, in turn, allows one to convert PL [IPL(λ)] and

absorbance [A(λ)] data into size distribution curves (3). IPL(λ)

and A(λ) are obtained from optical measurements previously

performed on suspensions of as-prepared colloidal nanocrys-

tals (4 and 5). Subsequent AFM/TEM characterization (6)

yields the particle size distribution histogram, enabling a direct

comparison with theoretical predictions (7).

V. CONCLUSIONS

In the present work, we have calculated the size-dependent

bandgap of colloidal semiconductor nanocrystals from an

extensive revision of the main theoretical contributions to the

understanding of this well-known quantum confinement effect.

By considering the exact wave function for the charge carri-

ers confined in a finite spherical potential well, the relevance

of the incompleteness of the confinement can be quantified.

Once finite confining potentials are considered, the expecta-

tion values of the kinetic energy, the electron-hole Coulomb

interaction, and the polarization energy are calculated properly

leading to a dramatic reduction of the nanocrystal bandgap.

Consequently, the so-called inadequacy of the effective mass

approximation for small nanocrystal sizes is overcome. In fact,

the size distributions obtained from the analysis of the photo-

luminescence spectrum together with the proposed bandgap

equation are directly comparable to the presented AFM and

TEM data. Precise estimates for the most probable radius were

provided as well as relatively broad and asymmetric shapes

in close resemblance to the measured distributions. On the

other hand, the particle size distributions obtained from the

most common analysis of the absorbance edge turned out to

be almost symmetrical and much narrower than the measured

distributions as already discussed in other publications. The

methodology presented is this paper for bandgap calculation

and particle size determination can be easily implemented and

extended to other systems of semiconductor nanocrystals. It

can be used as a complementary tool for the characterization

of ensembles of nanocrystals produced from different syn-

thetic approaches. Finally, the possibility of recovering the

size distribution from spectroscopic experiments can be used

to clarify the growth kinetics of colloidal nanocrystals since

the temporal evolution of optical spectra is easily monitored

during a typical growth experiment. The growth kinetics of

TGA-capped CdTe nanocrystals was completely described by

the present authors in the sense of the classical crystallization

theories by employing this methodology. These new results

will be shown in a forthcoming publication.
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