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Abstract: This paper combines third-order shear deformation theory (TSDT) and modified couple
stress theory (MCST) with the principle of total potential energy to analyze the size-dependent
buckling behavior of a functionally graded carbon nanotube-reinforced composite (FG-CNTRC)
rectangular microplate of variable thickness subject to non-uniform biaxial compression when resting
on an elastic medium. To determine the thickness qualities of the material, the extended rule of
mixture was applied. In the context of microplate buckling in the presence of small length scale effects,
the three kinds of Carbon Nanotube (CNT) distribution—(a) UD, (b) FG-O, and (c) FG-X—were used
and compared. The equations governing various combinations of simply supported or clamped
boundary conditions have been solved using the differential quadrature method (DQM). The correct-
ness and precision of the solutions have been compared to another study. A numerical study was
conducted to examine the dependence of buckling load on several parameters, including percentage
change of thickness, length scale parameter, nonuniform edge loads, boundary conditions, volume
percentage of the CNTs, CNT distribution, and elastic medium parameter. The results of their effects
are presented in this paper.

Keywords: modified couple stress theory; FG-CNTRC microplate; biaxial buckling; nonuniform edge
compression; nonuniform cross-section

1. Introduction

Both uniform and non-uniform plates are used in a wide variety of engineering con-
texts. Designers can accomplish this by using structures of varying thicknesses. Such plates
are optimal when minimizing mass is crucial, as is the case with space-based construction.
Compressive pressures cause plates to buckle, and knowing how devices behave under
stress is crucial to making good design decisions [1]. Most buckling research investigates
evenly distributed uniaxial and biaxial in-plane loads and is based on several plate theo-
ries [2–6]. Hamedani and Ranji [7] investigated the buckling analysis of stiffened plates
exposed to varied biaxial edge compressions under different boundary conditions using
super and conventional elements. Ruocco and Reddy [8] proposed an innovative discrete
differential geometry-based computational method for buckling and vibration studies of
non-uniformly thick rectangular plates. The bending, buckling, stress, and failure strength
in inter-ply hybrid laminated composite have been investigated [9] using an isogeometric
analysis based on non-uniform rational B-spline (NURBS) basis functions.

Structures of micron and submicron scales are widely used in many modern contexts,
particularly in microelectromechanical systems (MEMS). Due to their small size, low power
requirements, and reliable batch manufacture, these systems offer a wide range of possible
engineering applications [10,11]. Lacking an intrinsic material length scale characteristic,
classical continuum models are unable to account for size effects. Various size-dependent
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theories have been established in recent years, including the couple stress theory (CST) [12],
the nonlocal elasticity theory [13,14], the strain gradient theory (SGT) [15,16], the modified
strain gradient theory (MSGT) [17], the nonlocal strain gradient theory (NSGT) [18–23],
and the modified couple stress theory (MCST) [24]. Among these size-dependent theories,
MCST requires only a material length scale parameter, making it easy to implement. By
eliminating the dilatation gradient tensor and the deviatoric stretch gradient tensor from
SGT, as shown by MSCT, the size effect is shown to be a function of an internal length
scale parameter. A variety of size-dependent beam and plate models, including the Timo-
shenko beam model [25,26], Kirchhoff plate model [27,28], Mindlin plate model [29–31],
size-dependent Euler–Bernoulli beam model [32,33], and higher order shear deformable
plate model [34,35] have recently been developed using MCST. Based on MCST in con-
junction with TSDT, Thanh et al. [36] developed a numerical model to analyze the thermal
bending and thermal buckling of composite laminate microplates while taking into account
the effects of scale. Lou et al. [37] applied MSCT and first shear deformation theory (FSDT)
to evaluate the vibrational dynamics of a buckled FG microplate supported by a nonlinear
elastic medium. Zhang et al. [38] examined the mechanical buckling of a microplate consist-
ing of two piezoelectric face sheets and one honeycomb structure considering MCST and
sinusoidal shear deformation theory (SSDT). The effective mechanical characteristics of the
honeycomb core were calculated using the Minghui and Jiuren relationships. Afshari and
Adab [39] performed size-dependent mechanical buckling and free vibration calculations
on simply supported microplates reinforced by FG graphene nanoplatelets using MCST
SSDT. It was assumed that the composite microplate was made up of epoxy reinforced by
GNPs, which were then arranged in a variety of symmetric and non-symmetric patterns
along the thickness axis. By combining the Halpin–Tsai model and the rule of mixtures,
they were able to make an educated assessment of the effective material qualities of the
composite microplate.

Carbon nanotubes (CNTs) are a class of unique materials that exhibit remarkable
electro-thermo-mechanical properties, and they have been receiving more and more atten-
tion in recent years [40–43]. CNTs are an attractive option for composite matrix reinforce-
ment. The CNTs can be employed in a variety of technical applications when combined
with a polymer composite material to create carbon nanotube reinforced composites (CN-
TRCs). Because of the uniform or random distribution of reinforcements within the system,
the mechanical, physical, and thermal properties of conventional composites do not change
spatially at the visible level. Functionally graded materials (FGMs) [44–46] have been
created to improve this property. They have two or more elements with spatially variable
characteristics and a non-uniform reinforcement distribution. Vaishali et al. [47] aligned
between first-order shear deformation theory and higher-order zigzag theory using data
and machine learning. This enabled uncertainty to be measured with a high degree of
accuracy for laminated composite and sandwich plates. The reanalysis algorithm is a quick
and precise solution that Li [48] applied to the vibration problem and incorporated to
increase the effectiveness of metaheuristic optimization of composite laminates instead of
a surrogate model. Savran and Aydin [49] used stochastic optimization on a laminated
composite made of graphite, flax, and epoxy to obtain the highest fundamental frequency
and lowest cost. Engineers can use this method to create materials better than homoge-
nous ones. Shen [50] demonstrated that CNTRCs with nonuniform dispersion of CNTs
through the media can be created by a powder metallurgy production process. Functionally
graded carbon nanotube-reinforced composite is the name given to this type of reinforced
composite media (FG-CNTRC). In recent years, more research has been conducted on
these engineered materials in a variety of combinations to better understand their behavior
in static and dynamic settings. The elastic instability and free vibration of FG-CNTRC
annular sector plates on an elastic medium were presented by Zhang et al. [51] using
FSDT and a generalized differential quadrature (GDQ) approach. Thai et al. [52] presented
a size-dependent computational technique for static bending and free vibration studies
of FG-CNTRC microplates based on MSGT and higher-order shear deformation theory.
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Cheshmeh et al. [53] investigated the buckling and vibration analysis of an FG-CNTRC
rectangular plate under different temperature distributions and boundary conditions using
the 12-uncertainty higher order shear deformation theory (HSDT). According to NSGT and
isogeometric analysis (IGA), Phung-Van and Thai [54] predicted the natural frequencies of
FG-CNTRC nanoplates employing HSDT.

Despite the extensive research on the uniaxial and biaxial buckling characteristics of
composite microplates, the literature presented here shows that the buckling behavior of an
FG-CNTRC microplate of varying thickness subjected to non-uniform biaxial compression
resting on an elastic medium based on the TSDT in conjunction with MCST has not been
studied theoretically or numerically. The main goal of the current research is to fill this gap
by providing a novel combination of many existing methodologies. The three different
types of CNT distribution—(a) UD, (b) FG-O, and (c) FG-X—are used and compared in the
context of microplate buckling in the presence of small length scale effects. Total potential
energy is used to obtain the governing equations, which are then solved by DQM for
various combinations of simply supported or clamped boundary conditions.

2. Problem Description and Modeling

As can be seen in Figure 1, an FG-CNTRC microplate (a× b) is subjected to biaxial non-
uniform edge compression as its thickness varies in the y-direction (y-axis) while resting on
an elastic medium with the stiffness coefficient kw. Furthermore, h1 indicates the thickness
of the FG-CNTRC microplate’s left end, while h0 represents the thickness of the right side
of the FG-CNTRC microplate. In this illustration, UD represents the uniform distribution.
FG-O and FG-X are two distinct FG distributions in the plate thickness direction.
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2.1. MCST

Yang et al. [24] were the first to present MCST. Here, the strain energy density is
analyzed as a function of the stress tensor, the curvature tensor, and the couple stress tensor.
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In an isotropic linear elastic body that occupies region Λ, the strain energy Πs may then be
expressed as

Πs =
1
2

∫
Λ
(σ : ε + m : χ)Λ (1)

Here, ε signifies the strain tensor, ε represents the Cauchy stress tensor, χ represents
the symmetric curvature tensor, and m represents the deviatoric component of the couple
stress tensor. Specifically, these tensors are characterized by [24]

ε = 1
2

[
∇u + (∇u)T

]
, χ = 1

2

[
∇ϕ+ (∇ϕ)T

]
,

σ = λtr(ε)I + 2µε, m = 2l2µ χ,
(2)

where l is a material length scale parameter that is considered to be a material feature
describing the influence of the coupling stress, u is the displacement vector, λ and µ are
Lame’s constants, and ϕ = 1

2 curl(u) is the rotation vector. In this model, in addition to
the standard Lame’s constants, only one length scale parameter l is required. It should
be noted that the additional parameter l is technically the square of the modulus of cur-
vature/modulus of the shear ratio and physically a property measuring the influence of
couple stress.

2.2. Structural Model

Both shear deformation and rotating inertia in the transverse direction are taken into
account by TSDT. Total lateral displacement (U,V,W) in Cartesian coordinates for microplate
can be shown as [55,56]

U(x, y, z) = u(x, y) + zθx(x, y)− C1z3
(

θx(x, y) + ∂w(x,y)
∂x

)
,

V(x, y, z) = v(x, y) + zθy(x, y)− C1z3
(

θy(x, y) + ∂w(x,y)
∂y

)
,

W(x, y, z) = w(x, y)

(3)

in which C1 = 4
3h2(y), . In addition, w is the transverse displacement component; θx and θy

represent rotations of the middle plane around the x- and y-axes, respectively; and u and
v are the membrane displacements along the x- and y-axes, respectively. However, using
the linear strain-displacement connection, the specific components of the normal strains(
εxx, εyy

)
and shear strains

(
γxz, γyz, γxy

)
are stated as follows:

εxx = ∂u
∂x + z ∂θx

∂x − c1z3
(

∂θx
∂x + ∂2w

∂x2

)
,

εyy = ∂v
∂y + z ∂θy

∂y − c1z3
(

∂θy
∂y + ∂2w

∂y2

)
,

γxy = ∂u
∂y + ∂v

∂x + z
(

∂θx
∂y +

∂θy
∂x

)
− c1z3

(
∂θx
∂y +

∂θy
∂x + 2 ∂2w

∂x∂y

)
,

γxz =
(
1− 3c1z2)(θx +

∂w
∂x

)
,

γyz =
(
1− 3c1z2)(θy +

∂w
∂y

)
(4)
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The rotation vector is calculated by substituting the results of Equations (1) and (2)
into Equation (2) as

ϕx = 1
2

(
∂W
∂y −

∂V
∂z

)
= 1

2

([
∂w
∂y − θy

]
+ 3C1z2

[
θy +

∂w
∂y

])
,

ϕy = 1
2

(
∂U
∂z −

∂W
∂x

)
= − 1

2

([
∂w
∂x − θx

]
+ 3C1z2

[
θx +

∂w
∂x

])
,

ϕz =
1
2

(
∂V
∂x −

∂U
∂y

)
= 1

2

([
∂v
∂x −

∂u
∂y

]
+
(
z− C1z3)[ ∂θy

∂x −
∂θx
∂y

])
.

χx = 1
2

(
∂2w
∂x∂y −

∂θy
∂x

)
+ 3C1z2

2

[
∂θy
∂x + ∂2w

∂x∂y

]
,

χy = − 1
2

(
∂2w
∂x∂y −

∂θx
∂y

)
− 3C1z2

2

(
∂θx
∂y + ∂2w

∂x∂y

)
,

χz =
1−3C1z2

2

(
∂θy
∂x −

∂θx
∂y

)
,

χxy = 1+3C1z2

4

(
∂2w
∂y2 − ∂2w

∂x2

)
+ 1−3C1z2

4

(
∂θx
∂x −

∂θy
∂y

)
,

χxz =
1
4

(
∂2v
∂x2 − ∂2u

∂x∂y

)
+ z−C1z3

4

(
∂2θy
∂x2 − ∂2θx

∂x∂y

)
+ 3C1z

2

(
θy +

∂w
∂y

)
,

χyz =
1
4

(
− ∂2u

∂y2 + ∂2v
∂x∂y

)
+ z−C1z3

4

(
∂2θy
∂x∂y −

∂2θx
∂y2

)
− 3C1z

2

(
θx +

∂w
∂x

)
.

(5)

Based on Equation (2), the strain–stress relationship for the FG-CNTRC microplate in
the plain stress state can be written as:

σxx
σyy
σxy
σyz
σxz

 =


Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55




εxx
εyy
γxy
γyz
γxz

,

Q11 = E11
1−ϑ12ϑ21

, Q22 = E22
1−ϑ12ϑ21

, Q12 = ϑ12E22
1−ϑ12ϑ21

, Q66 = G12, Q44 = G23, Q55 = G13

(6)

Here, E11 and E22 express the effective Young’s modulus of the FG-CNTRC microplate,
ϑ12 and ϑ21 stand for Poisson’s ratio, while G12, G23, and G13 denote the shear modulus.
Applying the rule of mixture, we can characterize the material properties of the FG-CNTRC
plate as [57]

E11 = ζ1VCNTECNT
11 + VmEm,

ζ2
E22

= VCNT
ECNT

22
+ Vm

Em
,

ζ3
G12

= VCNT
GCNT

12
+ Vm

Gm
,

(7)

where (Em, Gm) represent the isotropic matrix moduli, and
(
ECNT

11 , ECNT
22 , GCNT

12
)

represent
the material characteristics of CNTs. Furthermore, the CNT efficiency characteristics are
denoted by ζ1, ζ2, and ζ3, and

Vm + VCNT = 1,

ϑ12 = V∗CNTϑCNT
12 + Vmϑm,

(8)

where V∗CNT and VCNT denote the volume percentages of each FG-CNTRC layer, which can
be expressed for three types of CNT distribution as UD, FG-O, and FG-X [57]:

VCNT =


V∗CNT (UD)

2
(

1− 2|z|
hc

)
V∗CNT , (FG−O)

4 |z|hc
V∗CNT , (FG− X)

(9)
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The total potential energy concept is applied to derive the FG-CNTRC microplate
equilibrium equations as

δ
(

Πs + Π f

)
= 0 (10)

where δ refers to a variation with regard to both x and y. The total energy of deformations
is denoted by Πs, and the virtual work done by external forces is denoted by Π f . The
variation of the total strain energy based on Equation (1) can be expressed as

δΠs =
∫

A

∫ h(y)
2

− h(y)
2

(σxxδεxx + σyyδεyy + σxyδγxy + σyzδγyz + σxzδγxz + mxδχx + myδχy

+mzδχz + 2mxyδχxy + 2mxzδχxz + 2myzδχyz
)
dzdA

=
∫

S

{
Nxδ ∂u

∂x + (Mx − C1Px)δ
∂θx
∂x − C1Pxδ ∂2w

∂x2 + Nyδ ∂v
∂y

+
(

My − C1Py
)
δ

∂θy
∂y − C1Pyδ ∂2w

∂y2 + Nxy

(
δ∂u
∂y + δ∂v

∂x

)
+
(

Mxy − C1Pxy
)( δ∂θx

∂y +
δ∂θy
∂x

)
− 2C1Pxy

δ∂2w
∂x∂y

+(Qx − 3C1Rx)
(

δθx +
δ∂w
∂x

)
+
(
Qy − 3C1Ry

)(
δθy +

δ∂w
∂y

)
+Xx

2

(
δ∂2w
∂x∂y −

δ∂θy
∂x

)
+ 3C1Zx

2

(
δ∂2w
∂x∂y +

δ∂θy
∂x

)
− Xy

2

(
δ∂2w
∂x∂y −

δ∂θx
∂y

)
− 3C1Zy

2

(
δ∂2w
∂x∂y + δ∂θx

∂y

)
+

Xz−3C1Zxy
2

(
δ∂θy
∂x −

δ∂θx
∂y

)
+

Xxy+3C1Zxy
2

(
δ∂2w
∂y2 − δ∂2w

∂x2

)
+

Xxy−3C1Zxy
2

(
δ∂θx
∂x −

δ∂θy
∂y

)
+Xxz

2

(
δ∂2v
∂x2 − δ∂2u

∂x∂y

)
+ Yxz−C1Wxz

2

(
δ∂2θy
∂x2 − δ∂2θx

∂x∂y

)
+3C1Yxz

(
δθy +

δ∂w
∂y

)
+

Xyz
2

(
δ∂2v
∂x∂y −

δ∂2u
∂y2

)
+

Yyz−C1Wyz
2

(
δ∂2θy
∂x∂y −

δ∂2θx
∂y2

)
− 3C1Yyz

(
δθx +

δ∂w
∂x

)
}dA

(11)

where A is the of cross-sectional area, and

{Ni, Mi, Pi} =
∫ h

2
− h

2

{
1, z, z3}σidz, i = x, y, xy,

{Qi, Ri} =
∫ h

2
− h

2

{
1, z2}σizdz, i = x, y,

{Xi, Yi, Zi, Wi} =
∫ h

2
− h

2

{
1, z, z2, z3}midz,

(12)

The potential energy variation caused by non-uniform forces and the elastic medium
can be expressed as

δΠ f =
∫ (
− fx

(
∂2w
∂x2

)
− fy

(
∂2w
∂y2

)
− 2 fxy

(
∂2w
∂x∂y

)
+ Kww

)
δwdA (13)

in which the compressive forces in the x and y directions are denoted by fx and fy, respec-
tively, while the shear force is denoted by fxy. The final form of the governing equations is
determined by inserting Equations (11) and (13) into Equation (10) and performing various
manipulations while keeping the coefficients δu, δv, δw, δθx, and δθy equal to zero.
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δu : ∂Nx
∂x +

∂Nxy
∂y + 1

2

(
∂2 Xxz
∂x∂y +

∂2 Xyz

∂y2

)
= 0,

δv : ∂Ny
∂y +

∂Nxy
∂x −

1
2

(
∂2 Xxz

∂x2 +
∂2 Xyz
∂x∂y

)
= 0,

δw0 : ∂Qx
∂x − 3C1

∂Rx
∂x +

∂Qy
∂y − 3C1

∂Ry
∂y + C1

(
∂2Px
∂x2 + 2 ∂2Pxy

∂x∂y +
∂2Py

∂y2

)
+ 3C1

(
∂Yxz
∂y −

∂Yyz
∂x

)
+ 1

2

(
∂2Xxy

∂x2 +

3C1
∂2Zxy

∂x2 −
∂2Xxy

∂y2 − 3C1
∂2Zxy

∂y2 +
∂2Xy
∂x∂y + 3C1

∂2Zy
∂x∂y −

∂2Xx
∂x∂y − 3C1

∂2Zx
∂x∂y

)
− fx

(
∂2w
∂x2

)
− fy

(
∂2w
∂y2

)
−

2 fxy

(
∂2w
∂x∂y

)
+ Kww = 0,

δθx : ∂Mx
∂x − C1

∂Px
∂x +

∂Mxy
∂y − C1

∂Pxy
∂y − (Qx − 3C1Rx) +

1
2

(
∂Xxy

∂x − 3C1
∂Zxy
∂x +

∂Xy
∂y − 3C1

∂Zy
∂y −

∂Xz
∂y +

3C1
∂Zz
∂y + ∂2Yxz

∂x∂y − 3C1
∂2Wxz
∂x∂y +

∂2Yyz

∂y2 − 3C1
∂2Wyz

∂y2

)
= 0,

δθy : ∂Mxy
∂x − C1

∂Pxy
∂x +

∂My
∂y − C1

∂Py
∂y −

(
Qy − 3C1Ry

)
− 1

2

(
∂Xx
∂x − 3C1

∂Zx
∂x +

∂Xxy
∂y − 3C1

∂Zxy
∂y −

∂Xz
∂x + 3C1

∂Zz
∂x + ∂2Yxz

∂x2 −

3C1
∂2Wxz

∂x2 +
∂2Yyz
∂x∂y − 3C1

∂2Wyz
∂x∂y

)
= 0,

(14)

Finally, the governing equations in terms of the FG-CNTRC microplate displacement
are obtained and presented in Appendix A by substituting Equation (12) into Equation (14).

The corresponding boundary conditions for clamped and simply supported boundary
conditions are as follows:

Clamped (C) edge:

u = v = w = θx = θy = ∂w
∂x = 0 → x = 0, a,

u = v = w = θx = θy = ∂w
∂y = 0 → y = 0, b, (15)

Simply supported (S) edge:

v = w = θy = Nx = Mx − C1Px +
1
2
(
Xxy − 3C1Zxy

)
= Px = 0 → x = 0, a,

u = w = θx = Ny = My − C1Py − 1
2
(
Xxy − 3C1Zxy

)
= Py = 0 → y = 0, b,

(16)

3. Solution Method

DQM [57,58] is used to discretize the governing Equations (A1)–(A5) and their cor-
responding boundary conditions (15)–(16) to solve them. By using suitable weighting
coefficients, this technique transforms the differential equations into an algebraic equation
of the first order. The weighting coefficients are independent of the nature of the problem
and only depend on the grid resolution. In other words, at a discontinuous point in a
defined domain (0 < x < a and 0 < y < b), the partial derivatives of a function (let’s call it
w) are approximated as a set of linear weighting coefficients. However, partial derivatives
of the function f

(
xi, yj

)
at the position

(
xi, yj

)
are written as in the DQM [58,59]:

f n
x
(

xi, yj
)
= ∑N

K=1 g(n)iK f
(
xK, yj

){n = 1, 2, . . . , N − 1
i = 1, 2, . . . , N

}
,

f m
y
(

xi, yj
)
= ∑M

l=1 d(m)
jl f

(
xi, yj

){m = 1, 2, . . . , M− 1
j = 1, 2, . . . , M

}
,

f (n+m)
xy

(
xi, yj

)
= ∑N

K=1 ∑M
l=1 g(n)iK d(m)

jl f (xK, yl)


n + m = 2, .., N − 1

i = 1, 2, . . . , N
j = 1, 2, . . . , M


(17)

in which N and M denote the number of grid points in the x and y directions, respectively.
The weighting coefficients for the n th-order derivative in the x and y directions are denoted
by g(n)ij and d(n)ij , respectively, which can be defined as follows:

For the first-order derivative, n = 1:

g1
iK =

M(Xi)

(Xi − XK)M(XK)
i, K = 1, 2, . . . , N, K 6= i (18)
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where

M(Xi) =
N

∏
k=1
k 6=i

(Xi − XK) (19)

The weighting coefficients for larger derivatives (n > 1) can be calculated using the
following recursion relationships

g(n)iK = n

(
g(n−1)

ii g(1)iK −
g(n−1)

iK
Xi − XK

){
i, K = 1, 2, . . . , NK 6= i

n = 2, 3, . . . , N − 1

}
(20)

and

g(n)ii = −
N

∑
K=1

g(n)iK

{
i = 1, 2, . . . , NK 6= i
n = 1, 2, . . . , N − 1

}
(21)

The DQM can be implemented with any number of discrete grid points and any
distribution of grid points. It has been demonstrated, however, that the grid point distribu-
tion, which is based on the widely established Gauss–Chebyshev–Lobatto points [58,59],
produces findings that are sufficiently precise. The coordinates of the grid points are as
follows based on the Gauss–Chebyshev–Lobatto grid point distribution:

xi =
a
2

{
1− cos

[
(i− 1)π
(N − 1)

]}
, yj =

b
2

{
1− cos

[
(j− 1)π
(M− 1)

]}
(22)

By inserting Equation (17) into the governing Equations (A1)–(A5) and their corre-
sponding boundary conditions (15)–(16) and making various simplifications, the following
matrix form is obtained as

([Ktot]− F∗[I]){Γ} = 0 (23)

in which I signifies the identity matrix and F∗ denotes the buckling load. A classic eigen-
value solver can solve Equation (23). The number of discrete mesh points employed in the
current DQM (i.e., N = M) is the same in both the x and y directions.

4. Results and Discussion
4.1. Model Validation and Convergence Checking

The validation and convergence analysis of the created model are covered here. Note
that the physical and geometric criteria used in this section and subsequent sections are
as follows:

Em = 2.1GPa, ECNT
11 = 5.6466TPa, ECNT

22 = 7.08TPa, GCNT
12 = 1.9445TPa, ϑCNT

12 = 0.175, ϑm = 0.24 (24)

In addition, Table 1 lists the CNT efficiency metrics for different volume fractions [57].
After eliminating the length scale parameter, the current model is used to calculate the
non-dimensional buckling load Ncr =

F∗a2

D11
of an FG-CNTRC plate subjected to uniform

uniaxial compressive pressure in fully clamped and simply supported boundary conditions,
and the results are compared with those from [60] in Table 2. As the DQM procedure’s
findings are dependent on the number of grid points, a convergence test is also conducted
in Table 2. Good agreement can be seen between the predicted buckling values and the
data reported in the later reference.
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Table 1. Efficiency coefficients for different CNT volume fractions.

V*
CNT

Efficiency Parameters

ζ1 ζ2 ζ3

0.11 0.149 0.934 0.934

0.14 0.15 0.941 0.941

0.17 0.14 1.381 1.381

Table 2. Convergence test and comparison of dimensionless buckling load of an FG-CNTRC plate
subjected to uniform uniaxial compressive pressure.

B.C Types
Element Mesh

Ref. [60]
5×5 7×7 9×9 11×11 13×13

SSSS
UD 13.5834 14.1105 14.1091 14.1078 14.1078 14.1073

FG-O 8.2569 9.6432 9.8357 9.8314 9.8314 9.8306
FG-X 15.8670 16.8605 17.0809 17.0642 17.0642 17.0631

CCCC
UD 24.2967 25.4071 25.6825 25.7338 25.7338 25.7329

FG-O 19.6568 20.7710 21.0564 21.1230 21.1230 21.1221
FG-X 25.9276 27.5414 27.8009 27.8893 27.8893 27.8882

In another example, Table 3 compares the non-dimensional critical buckling loads
Ncr =

F∗b2

π2D11
of thin, isotropic plates subjected to uniform uniaxial compressive pressure

under simply supported boundary conditions found with the current solution to those
reported by [61,62] for different aspect ratios. The plate was compressed uniaxially in the x
direction. Using the law h(y) = h0(1 + αy), α = h1−h0

h0
, the thickness varies linearly along

the y axis. For different aspect ratios, our results show excellent agreement with those
reported in the literature. Please refer to the cited references for further information on the
effect of the aspect ratio on buckling load performance.

Table 3. Comparison of the non-dimensional critical buckling loads of an elastic plate with variable
thickness subjected to uniform uniaxial compressive pressure.

a
b α Present Ref. [61] Ref. [62]

0.5
0.125 7.45 7.46 7.46

0.5 11.56 11.61 11.61

1.5
0.125 5.19 5.19 5.19

0.5 8.22 8.23 8.23

Finally, as seen in Figure 2, using the current approach, the buckling load for various
values of the length scale parameter have been computed and compared with the details
available in [63] for a square microplate with uniform thickness subjected to uniform
uniaxial compressive pressure. For a number of length scale parameters, there is very
good agreement between our results and those of [63], which confirms the findings of
our approach.
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4.2. Parametric Study

In this section, numerical examples are presented to examine the influences of the
percentage change of thickness, the material length scale parameter to thickness ratio,
nonuniform edge loads, boundary conditions, volume percentage of the CNTs, CNT
distribution, and elastic medium parameter on the dimensionless buckling load Ncr =
F∗a2

D0
, D0 = Emh0

3

12(1−ϑm2)
of the FG-CNTRC microplate. The thickness of the microplate is

expected to vary in the y direction according to the law h = h0
(
1 + αyβ

)
, where β indicates

a non-uniform characteristic for a microplate with variable thickness. Depending on the
value of the non-uniform parameter, the y-axis thickness will display a range of patterns.
If β = 0, for instance, the plate’s height remains the same in both the x and y axes. If we
set β = 1, we see a linear relationship between thickness (h0) at y = 0 and thickness (h1) at
y = b. At the value of two for the non-uniform parameter (β = 2), the thickness (h) varies
parabolically along the y axis.

Figures 3–5 illustrate the variations of the dimensionless biaxial buckling load of the
UD-CNTRC microplate against the material length scale parameter to thickness ratio

(
l

h0

)
for different boundary conditions (SSSS, CCSS, CCCC) and different values of the elastic
medium stiffness parameter under uniform (Figure 3), sinusoidal (Figure 4), and reverse
sinusoidal (Figure 5) edge compressive loads. It is assumed that h0 = a

10 , and a = b, V∗CNT =
0.11. The boundary conditions have a significant impact on the variability of the dimen-
sionless biaxial buckling load. Additionally, as anticipated, the buckling load for the CCCC
boundary condition has the largest value, which results from the high stiffness effect of
this kind of boundary condition on the structure. On the other hand, the structure has the
highest buckling load when subjected to reverse sinusoidal load and the lowest buckling
load when subjected to sinusoidal load. This may be because, in the case of inverse sinu-
soidal load, most of the load is distributed towards the edges of the FG-CNTRC microplate,
where the microplate’s stiffness is substantially greater. As demonstrated by these figures,
the critical buckling load increases as the material length scale parameter to thickness ratio
increases. Since the couple stress effect adds bending stiffness that grows with

(
l

h0

)
, the

total bending stiffness and critical buckling load also grow with
(

l
h0

)
. It can be shown

that the dimensionless buckling load decreases with a rise in the non-uniform parameter
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(β). This is because the average stiffness of the microplate decreases as the non-uniform
parameter increases. The buckling load is found to be proportional to the thickness differ-
ence between the microplate’s ends and the elastic medium stiffness parameter. As can be
observed, the influence of the non-uniform parameter on buckling reduces as the material
length scale parameter to thickness ratio rises; however, the influence of the thickness
difference increases.
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the material length scale parameter to thickness ratio for different boundary conditions and different
values of the elastic medium stiffness parameter (reverse sinusoidal edge compressive load).

Figures 6–8 present the effects of the CNT distributions on the uniaxial and biaxial
buckling loads of the FG-CNTRC microplate against the material length scale parameter to
thickness ratio

(
l

h0

)
for different boundary conditions (SSSS, CCSS, CCCC) under uniform

(Figure 6), sinusoidal (Figure 7), and reverse sinusoidal (Figure 8) edge compressive loads.
It is assumed that h0 = a

10 , a = b, V∗CNT = 0.11, kw = 0, α = 0. These figures show that
the critical buckling load for biaxial compression is significantly lower than for uniaxial
compression because stiffness is reduced when loads are applied in both the horizontal and
vertical planes. Based on these findings, FG-X microplates have higher buckling load values
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than UD microplates for all possible CNT distributions, while FG-O microplates have lower
values than UD microplates. The physical causes of this behavior are as follows: For the
FG-X type, the number of CNTs on the bottom and top of the FG-CNTRC microplate is
made as high as possible. This makes the structure of the system more rigid and strong. The
results indicate that FG-X > UD > FG-O is the stiffness order for the FG-CNTRC microplates.
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Figure 8. The effects of the CNT distributions on the uniaxial and biaxial buckling loads of the FG-
CNTRC microplate against the material length scale parameter to thickness ratio (reverse sinusoidal
edge compressive load).

Tables 4–6 show the effects of the CNT distributions, CNT volume fractions, and
length to thickness ratio on the variations of the dimensionless biaxial buckling load of the
FG-CNTRC microplate under uniform and nonuniform edge loads for different boundary
conditions when l

h0
= 0.1, a = b, kw = 0, α = 0. Thus, the buckling load of the FG-CNTRC

microplates has a higher value when the volume fraction of CNT is greater. This is because
the stiffness of the CNTRC microplates increases when the value of the CNT volume
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fraction rises. Furthermore, as shown in these tables, increasing the length to thickness ratio
increases the total stiffness of the structure and, as a result, the dimensionless buckling load.
Based on the tables, the effects of CNT distributions on buckling changes are amplified
when the microplate is subjected to reverse sinusoidal loading.

Table 4. The effects of the CNT distributions, CNT volume fractions, and length to thickness ratio on
the variations of the dimensionless biaxial buckling load of the FG-CNTRC microplate under uniform
and nonuniform edge loads (SSSS).

Load Cases V∗CNT a/h0 UD FG-O FG-X

Uniform load
0.11

10 76.3982 62.4456 85.6194
20 108.6706 78.6910 134.0614

0.14
10 82.8363 67.4566 92.5827
20 123.6956 87.7549 147.3007

Sine load
0.11

10 59.4015 48.5749 66.5321
20 84.6411 61.3355 102.4814

0.14
10 64.3922 52.4675 71.9237
20 96.2908 68.3911 112.2957

Inverse sine load
0.11

10 109.2032 124.1952 132.7104
20 192.4701 142.7652 229.9330

0.14
10 137.7109 116.9394 146.7540
20 227.1229 164.4443 269.8629

Table 5. The effects of the CNT distributions, CNT volume fractions, and length to thickness ratio on
the variations of the dimensionless biaxial buckling load of the FG-CNTRC microplate under uniform
and nonuniform edge loads (CCSS).

Load Cases V∗CNT a/h0 UD FG-O FG-X

Uniform load
0.11

10 92.7860 79.2604 99.2072
20 149.6673 116.2542 170.1263

0.14
10 98.7655 84.5839 106.6632
20 163.0214 128.1712 185.1515

Sine load
0.11

10 70.7530 62.8014 76.2244
20 113.5681 89.0498 128.6020

0.14
10 75.2025 64.7786 81.0391
20 123.3760 97.9230 139.7811

Inverse sine load
0.11

10 134.3347 118.1731 141.0803
20 248.9409 196.2968 281.2835

0.14
10 141.6780 126.8329 148.2357
20 279.8703 224.8863 310.8059

Table 6. The effects of the CNT distributions, CNT volume fractions, and length to thickness ratio on
the variations of the dimensionless biaxial buckling load of the FG-CNTRC microplate under uniform
and nonuniform edge loads (CCCC).

Load Cases V∗CNT a/h0 UD FG-O FG-X

Uniform load
0.11

10 116.5609 104.5692 124.5312
20 200.8065 167.8815 221.3473

0.14
10 123.0866 108.5070 130.5892
20 215.0219 181.3804 237.6610

Sine load
0.11

10 84.9358 75.2791 89.8126
20 145.5112 121.6703 160.8139

0.14
10 89.5611 79.5182 94.8094
20 156.0347 130.9422 172.8222

Inverse sine load
0.11

10 160.4343 148.0554 164.2181
20 403.4661 370.3635 450.0608

0.14
10 194.8202 168.3681 202.8523
20 447.2782 391.7958 476.9338



Buildings 2022, 12, 2238 18 of 23

5. Conclusions

This paper reports our examination of the small-scale effect on the stability of a
rectangular FG-CNTRC microplate with varying thickness under non-uniform biaxial
compression resting on an elastic medium using MCST in combination with TSDT. The
extended rule of mixture is used to evaluate the characteristics of the material in the
thickness. The DQM was used to solve the derived equations for various combinations of
simply supported or clamped boundary conditions. By comparing the established model to
data from previous studies, its accuracy and correctness were assessed. A comprehensive
numerical analysis was performed to investigate the impact of thickness variations, length
scale parameter, nonuniform edge loads, boundary conditions, CNT volume fractions, CNT
distributions, and elastic medium parameters on the buckling load. From our findings, we
can draw the following conclusions:

The structure has the highest buckling load when it is subjected to reverse sinusoidal
load and the lowest buckling load when it is subjected to sinusoidal load. This may be
because, in the case of inverse sinusoidal load, most of the load is distributed towards the
edges of the FG-CNTRC microplate, where the microplate’s stiffness is substantially greater.

The dimensionless buckling load decreases with a rise in the non-uniform parameter
(β). This is because the average stiffness of the microplate decreases as the non-uniform
parameter increases.

The buckling load is found to be proportional to the thickness difference between the
microplate’s ends.

FG-X microplates have higher buckling load values than UD microplates for all possi-
ble CNT distributions, while FG-O microplates have lower values than UD microplates.

The effects of CNT distributions on buckling changes are amplified when the mi-
croplate is subjected to reverse sinusoidal loading.
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Appendix A

δu : A11
∂2u
∂x2 + (B11 − C1D11)

∂2θx
∂x2 − C1D11

∂3w
∂x3 + (A12 + I11)

∂2v
∂x∂y + (B12 − C1D12 + J11 − C1L11)

∂2θy
∂x∂y + (J11 − C1L11)

∂2θx
∂y2 − (C1D12 + 2C1L11)

∂3w
∂x∂y2 + I11

∂2u
∂y2 + An

4 ∇2
(

∂2v
∂x∂y −

∂2u
∂y2

)
+

Bn
4 ∇2

(
∂2θy
∂x∂y −

∂2θx
∂y2

)
+ 3C1Bn

2

(
∂2θy
∂x∂y −

∂2θx
∂y2

)
+ 1

4

{
∂Bn
∂y −

∂C1
∂y En − C1

∂En
∂y

}(
∂3θy
∂x3 − ∂3θx

∂y∂x2

)
+

1
4

∂2 An
∂y2

(
∂2v

∂x∂y −
∂2u
∂y2

)
+ 1

2
∂An
∂y

(
∂3v

∂x∂y2 − ∂3u
∂y3

)
+ 1

4

{
∂2Bn
∂y2 − ∂2C1

∂y2 En − 2 ∂C1
∂y

∂En
∂y − C1

∂2En
∂y2

}(
∂2θy
∂x∂y −

∂2θx
∂y2

)
+ 1

2

{
∂Bn
∂y −

∂C1
∂y En − C1

∂En
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}(
∂3θy

∂x∂y2 − ∂3θx
∂y3

)
+ ∂I11

∂y

(
∂u
∂y + ∂v

∂x

)
+ ∂J11

∂y

(
∂θx
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∂θy
∂x

)
+

1
4

∂An
∂y

(
∂3v
∂x3 − ∂3u

∂y∂x2

)
−
{

3 ∂C1
∂y

∂Bn
∂y + 3

2
∂2C1
∂y2 Bn +

3
2 C1

∂2Bn
∂y2

}(
θx +

∂w
∂x

)
−
{

∂C1
∂y L11 + C1

∂L11
∂y

}(
∂θx
∂y +

∂θy
∂x + 2 ∂2w

∂x∂y

)
+
{

3
2

∂C1
∂y Bn +

3
2 C1

∂Bn
∂y

}(
∂θy
∂x + ∂2w

∂x∂y

)
− 3
{

∂C1
∂y Bn + C1

∂Bn
∂y

}(
∂θx
∂y + ∂2w

∂x∂y

)
= 0

(A1)



Buildings 2022, 12, 2238 19 of 23

δv : A22
∂2v
∂y2 + (B22 − C1D22)

∂2θy
∂y2 − C1D22

∂3w
∂y3 + (A12 + I11)

∂2u
∂x∂y + (B12 − C1D12 + J11 − C1L11)

∂2θx
∂x∂y + (J11 − C1L11)

∂2θy
∂x2 − (C1D12 + 2C1L11)

∂3w
∂x2∂y + I11

∂2v
∂x2 +

An
4 ∇2

(
∂2u

∂x∂y −
∂2v
∂x2

)
+

Bn
4 ∇2

(
∂2θx
∂x∂y −

∂2θy
∂x2

)
+ 3C1Bn

2

(
∂2θx
∂x∂y −

∂2θy
∂x2

)
− 1

4

{
∂Bn
∂y −

∂C1
∂y En − C1

∂En
∂y

}(
∂3θy

∂x2∂y −
∂3θx

∂x∂y2

)
+

∂A12
∂y

∂u
∂x + ∂B12

∂y
∂θx
∂x + ∂A22

∂y
∂v
∂y + ∂B22

∂y
∂θy
∂y −

1
4

∂An
∂y

(
∂3v

∂x2∂y −
∂3u

∂x∂y2

)
−
{

∂C1
∂y D22 + C1

∂D22
∂y

}
(

∂θy
∂y + ∂2w

∂y2

)
−
{

∂C1
∂y D12 + C1

∂D12
∂y −

3
2

∂C1
∂y Bn − 3

2 C1
∂Bn
∂y

}(
∂θx
∂x + ∂2w

∂x2

)
= 0

(A2)

δw :
(

I11 − 6C1M11 + 9C1
2N11

)(
∂θx
∂x + ∂2w

∂x2 +
∂θy
∂y + ∂2w

∂y2

)
+ C1D11

∂3u
∂x3 +

C1(H11 − C1K11)
∂3θx
∂x3 − C1

2K11
∂4w
∂x4 + (C1D12 + 2C1L11)

∂3v
∂x2∂y +

(
C1H12 − C1

2K12 + 2C1N11 − 2C1
2P11

)
∂3θy

∂x2∂y −
(
2C1

2K12 + 4C1
2P11

)
∂4w

∂x2∂y2 + (C1D12 + 2C1L11)
∂3u

∂x∂y2 +
(
2C1N11 − 2C1

2P11 + C1H12 − C1
2K12

)
∂3θx

∂x∂y2 + C1D22
∂3v
∂y3 + C1(H22 − C1K22)

∂3θy
∂y3 − C1K22

∂4w
∂y4 + An

4 ∇4w + 9C1
2Dn

(
∂θx
∂x + ∂2w

∂x2 +
∂θy
∂y + ∂2w

∂y2

)
+ Ǎn

4 ∇2
(

∂θx
∂x +

∂θy
∂y

)
− fx

(
∂2w
∂x2

)
− fy

(
∂2w
∂y2

)
− 2 fxy

(
∂2w
∂x∂y

)
+ kww+{

∂I11
∂y − 3 ∂C1

∂y M11 − 3C1
∂M11

∂y + 9C1
∂C1
∂y Dn + 9C1

2 ∂Dn
∂y

}(
θy +

∂w
∂y

)
− 3

2 C1

{
2 ∂Dn

∂y + 6 ∂C1
∂y Fn + 6C1

∂Fn
∂y

}
∂3w

∂x2∂y + 3
2 C1

{
∂Dn
∂y − 3 ∂C1

∂y Fn − 3C1
∂Fn
∂y

}
∂2θy
∂x2 − 1

2

{
∂An
∂y + 3 ∂C1

∂y Dn + 6C1
∂Dn
∂y + 9C1

∂C1
∂y Fn + 9C1

2 ∂Fn
∂y

}
(

∂3w
∂y3 − ∂3w

∂x2∂y

)
− 1

4

{
∂2 An
∂y2 − 3 ∂2C1

∂y2 Dn − 6 ∂C1
∂y

∂Dn
∂y − 9C1

∂2C1
∂y2 Fn − 18C1

∂C1
∂y

∂Fn
∂y − 9C1

2 ∂2Fn
∂y2

}
(

∂θx
∂x −

∂θy
∂y

)
− 1

2

{
∂An
∂y − 3 ∂C1

∂y Dn − 9C1
∂C1
∂y Fn − 9C1

2 ∂Fn
∂y

}(
∂2θx
∂x∂y −

∂2θy
∂y2

)
−

3
4 C1

{
∂2Dn
∂y2 + 3 ∂2C1

∂y2 Fn + 6 ∂C1
∂y

∂Fn
∂y + 3C1

∂2Fn
∂y2

}(
∂2w
∂y2 − ∂2w

∂x2

)
–
{

∂An
∂y + 3 ∂C1

∂y Dn + 3C1
∂Dn
∂y

}
∂3w

∂x2∂y+

1
2

{
∂An
∂y − 3 ∂C1

∂y Dn − 9C1
∂C1
∂y Fn − 9C1

2 ∂Fn
∂y

}
∂2θx
∂x∂y + 3

2 C1
∂Bn
∂y

(
∂2v
∂x2 − ∂2u

∂x∂y

)
+ 3

2 C1

{
∂Dn
∂y −

∂C1
∂y Fn − C1

∂Fn
∂y

}
(

∂2θy
∂x2 − ∂2θx

∂x∂y

)
− 1

4

{
∂2 An
∂y2 + 3 ∂2C1

∂y2 Dn + 6 ∂C1
∂y

∂Dn
∂y + 3C1

∂2Dn
∂y2

}(
∂2w
∂y2 − ∂2w

∂x2

)
− C1

{
∂2C1
∂y2 K12 + 2 ∂C1

∂y
∂K12

∂y + C1
∂2K12

∂y2

}
(

∂θx
∂x + ∂2w

∂x2

)
− C1

{
∂2C1
∂y2 K22 + 2 ∂C1

∂y
∂K22

∂y + C1
∂2K22

∂y2

}(
∂θy
∂y + ∂2w

∂y2

)
− 2C1

{
∂C1
∂y P11 + C1

∂P11
∂y

}
(

∂2θx
∂x∂y +

∂2θy
∂x2 + 2 ∂3w

∂x2∂y

)
− 2C1

{
∂C1
∂y K12 + C1

∂K12
∂y

}(
∂2θx
∂x∂y + 2 ∂3w

∂x2∂y

)
− 2C1

{
∂C1
∂y K22 + C1

∂K22
∂y

}
(

∂2θy
∂y2 + ∂3w

∂y3

)
+ 2C1

∂N11
∂y

(
∂2θx
∂x∂y +

∂2θy
∂x2

)
+ C1

∂2D12
∂y2

∂u
∂x + 2C1

∂D12
∂y

∂2u
∂x∂y + C1

∂2 H12
∂y2

∂θx
∂x +

2C1
∂H12

∂y
∂2θx
∂x∂y + C1

∂2D22
∂y2

∂v
∂y + 2C1

∂D22
∂y

∂2v
∂y2 + C1

∂2 H22
∂y2

∂θy
∂y + 2C1

∂H22
∂y

∂2θy
∂y2 + 2C1

∂L11
∂y

(
∂2u

∂x∂y + ∂2v
∂x2

)
+

1
2

(
∂An
∂y − 3 ∂C1

∂y Dn − 3C1
∂Dn
∂y

)
∂2θy
∂x2 − 3C1

{
∂M11

∂y − 3 ∂C1
∂y N11 − 3C1

∂N11
∂y

}(
θy +

∂w
∂y

)
= 0

(A3)
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δθx : (B11 − C1D11)
∂2u
∂x2 +

(
F11 − 2C1H11 + C1

2K11
) ∂2θx

∂x2 − C1(H11 − C1K11)
∂3w
∂x3 +

(B12 − C1D12 + J11 − C1L11)
∂2v

∂x∂y +
(

F12 − 2C1H12 + C1
2K12 + M11 − 2C1N11 + C1

2P11
)

∂2θy
∂x∂y −

(
2C1N11 − 2C1

2P11 + C1H12 − C1
2K12

)
∂3w

∂x∂y2 + (J11 − C1L11)
∂2u
∂y2 +

(
M11 − 2C1N11 + C1

2P11
)

∂2θx
∂y2 −

(
I11 − 6C1M11 + 9C1

2N11
)(

θx +
∂w
∂x

)
+ Bn

4 ∇2
(

∂2v
∂x∂y −

∂2u
∂y2

)
+ 3C1Bn

2

(
∂2v

∂x∂y −
∂2u
∂y2

)
−

Ǎn
4 ∇2 ∂w

∂x − 9C1
2Dn

(
θx +

∂w
∂x

)
+ 3C1Dn

(
∂2θy
∂x∂y −

∂2θx
∂y2

)
+ D̃n

4 ∇2
(

∂2θy
∂x∂y −

∂2θx
∂y2

)
+

Ân
4

(
∂2θx
∂x2 + 4 ∂2θx

∂y2 − 3 ∂2θy
∂x∂y

)
+ ∂J11

∂y

(
∂u
∂y + ∂v

∂x

)
+ ∂M11

∂y

(
∂θx
∂y +

∂θy
∂x

)
+ 1

2

{
∂An
∂y − 3 ∂C1

∂y Dn − 3C1
∂Dn
∂y

}
∂θx
∂y −

1
2

{
∂An
∂y − 3 ∂C1

∂y Dn − 3C1
∂Dn
∂y

}(
∂θy
∂x −

∂θx
∂y

)
− 3
{

∂C1
∂y

∂Dn
∂y + 1

2
∂2C1
∂y2 Dn +

1
2 C1

∂2Dn
∂y2

}(
θx +

∂w
∂x

)
−{

∂C1
∂y N11 + C1

∂N11
∂y

}(
∂θx
∂y +

∂θy
∂x + 2 ∂2w

∂x∂y

)
+ 3

2

{
∂C1
∂y Dn + C1

∂Dn
∂y

}(
∂θy
∂x + ∂2w

∂x∂y

)
−

3
{

∂C1
∂y Dn + C1

∂Dn
∂y

}(
∂θx
∂y + ∂2w

∂x∂y

)
− C1

∂L11
∂y

(
∂u
∂y + ∂v

∂x

)
− C1

∂N11
∂y

(
∂θx
∂y +

∂θy
∂x

)
+ C1{

∂C1
∂y P11 + C1

∂P11
∂y

}(
∂θx
∂y +

∂θy
∂x + 2 ∂2w

∂x∂y

)
− 1

2

{
∂An
∂y + 3 ∂C1

∂y Dn + 3C1
∂Dn
∂y

}
∂2w
∂x∂y+

3
4 C1

{
∂Dn
∂y + 3 ∂C1

∂y Fn + 3C1
∂Fn
∂y

}
∂2w
∂x∂y −

3
2 C1

{
∂Dn
∂y − 3 ∂C1

∂y Fn − 3C1
∂Fn
∂y

}
∂θx
∂y + 3

2 C1

{
∂Dn
∂y − 3 ∂C1

∂y Fn − 3C1
∂Fn
∂y

}
(

∂θy
∂x −

∂θx
∂y

)
+ 1

4
∂Bn
∂y

(
∂3v
∂x3 − ∂3u

∂x2∂y

)
+ 1

4

{
∂Dn
∂y −

∂C1
∂y Fn − C1

∂Fn
∂y

}(
∂3θy
∂x3 − ∂3θx

∂x2∂y

)
−

3
4 C1

∂En
∂y

(
∂3v
∂x3 − ∂3u

∂x2∂y

)
− 3

4 C1

{
∂Fn
∂y −

∂C1
∂y Hn − C1

∂Hn
∂y

}(
∂3θy
∂x3 − ∂3θx

∂x2∂y

)
− 9

2 C1

{
∂C1
∂y Fn + C1

∂Fn
∂y

}
(

∂θy
∂x + ∂2w

∂x∂y

)
+ 1

4
∂2Bn
∂y2

(
∂2v

∂x∂y −
∂2u
∂y2

)
+ 1

2
∂Bn
∂y

(
∂3v

∂x∂y2 − ∂3u
∂y3

)
+ 1

4

{
∂2Dn
∂y2 − ∂2C1

∂y2 Fn − 2 ∂C1
∂y

∂Fn
∂y − C1

∂2Fn
∂y2

}
(

∂2θy
∂x∂y −

∂2θx
∂y2

)
+ 1

2

{
∂Dn
∂y −

∂C1
∂y Fn − C1

∂Fn
∂y

}(
∂3θy

∂x∂y2 − ∂3θx
∂y3

)
− 3

4 C1
∂2En
∂y2

(
∂2v

∂x∂y −
∂2u
∂y2

)
−

3
2 C1

∂En
∂y

(
∂3v

∂x∂y2 − ∂3u
∂y3

)
− 3

4 C1

{
∂2Fn
∂y2 − ∂2C1

∂y2 Hn − 2 ∂C1
∂y

∂Hn
∂y − C1

∂2 Hn
∂y2

}(
∂2θy
∂x∂y −

∂2θx
∂y2

)
−

3
2 C1

{
∂Fn
∂y −

∂C1
∂y Hn − C1

∂Hn
∂y

}(
∂3θy

∂x∂y2 − ∂3θx
∂y3

)
+ 9

2 C1

{
∂2C1
∂y2 Fn + 2 ∂C1

∂y
∂Fn
∂y + C1

∂2Fn
∂y2

}(
θx +

∂w
∂x

)
+

9C1

{
∂C1
∂y Fn + C1

∂Fn
∂y

}(
∂θx
∂y + ∂2w

∂x∂y

)
= 0

(A4)

δθy : (B22 − C1D22)
∂2v
∂y2 +

(
F22 − 2C1H22 + C1

2K22
) ∂2θy

∂y2 − C1(H22 − C1K22)
∂3w
∂y3 +

(B12 − C1D12 + J11 − C1L11)
∂2u

∂x∂y +
(

F12 − 2C1H12 + C1
2K12 + M11 − 2C1N11 + C1

2P11
)

∂2θx
∂x∂y −

(
2C1N11 − 2C1

2P11 + C1H12 − C1
2K12

)
∂3w

∂x2∂y + (J11 − C1L11)
∂2v
∂x2 +

(
M 11 − 2C1N11 + C1

2P11
)

∂2θy
∂x2 −

(
I11 − 6C1M11 + 9C1

2N11
)(

θy +
∂w
∂y

)
+ Bn

4 ∇2
(

∂2u
∂x∂y −

∂2v
∂x2

)
+ 3C1Bn

2

(
∂2u

∂x∂y −
∂2v
∂x2

)
−

Ǎn
4 ∇2 ∂w

∂y − 9C1
2Dn

(
θy +

∂w
∂y

)
+ 3C1Dn

(
∂2θx
∂x∂y −

∂2θy
∂x2

)
+ D̃n

4 ∇2
(

∂2θx
∂x∂y −

∂2θy
∂x2

)
+

Ân
4

(
∂2θy
∂y2 + 4 ∂2θy

∂x2 − 3 ∂2θx
∂x∂y

)
+ ∂B12

∂y
∂u
∂x + ∂F12

∂y
∂θx
∂x + ∂B22

∂y
∂v
∂y + ∂F22

∂y
∂θy
∂y −

1
4

{
∂An
∂y − 3 ∂C1

∂y Dn − 3C1
∂Dn
∂y

}
(

∂θx
∂x −

∂θy
∂y

)
−
{

∂C1
∂y H12 + C1

∂H12
∂y

}(
∂θx
∂x + ∂2w

∂x2

)
−
{

∂C1
∂y H22 + C1

∂H22
∂y + 3

2
∂C1
∂y Dn +

3
2 C1

∂Dn
∂y

}(
∂θy
∂y + ∂2w

∂y2

)
+ C1

{
∂C1
∂y K12 + C1

∂K12
∂y

}(
∂θx
∂x + ∂2w

∂x2

)
− C1

∂D22
∂y

∂v
∂y − C1

∂H22
∂y

∂θy
∂y + C1{

∂C1
∂y K22 + C1

∂K22
∂y

}(
∂θy
∂y + ∂2w

∂y2

)
− 1

4

{
∂An
∂y + 3 ∂C1

∂y Dn + 3C1
∂Dn
∂y

}(
∂2w
∂y2 − ∂2w

∂x2

)
+

3
4 C1

{
∂Dn
∂y + 3 ∂C1

∂y Fn + 3C1
∂Fn
∂y

}(
∂2w
∂y2 − ∂2w

∂x2

)
+ 3

4 C1

{
∂Dn
∂y − 3 ∂C1

∂y Fn − 3C1
∂Fn
∂y

}(
∂θx
∂x −

∂θy
∂y

)
−

1
4

∂Bn
∂y

(
∂3v

∂x2∂y −
∂3u

∂x∂y2

)
− 1

4

{
∂Dn
∂y −

∂C1
∂y Fn − C1

∂Fn
∂y

}(
∂3θy

∂x2∂y −
∂3θx

∂x∂y2

)
+ 3

4 C1
∂En
∂y

(
∂3v

∂x2∂y −
∂3u

∂x∂y2

)
+

3
4 C1

{
∂Fn
∂y −

∂C1
∂y Hn − C1

∂Hn
∂y

}(
∂3θy

∂x2∂y −
∂3θx

∂x∂y2

)
− 9

2 C1

{
∂C1
∂y Fn + C1

∂Fn
∂y

}(
∂θx
∂x + ∂2w

∂x2

)
= 0

(A5)
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where

{A11, B11, F11, D11, H11, K11} =
∫ h(y)

2

− h(y)
2

E11

1− ϑ12ϑ21

{
1, z, z2, z3, z4, z6

}
dz,

{A12, B12, F12, D12, H12, K12} =
∫ h(y)

2

− h(y)
2

ϑ12E22

1− ϑ12ϑ21

{
1, z, z2, z3, z4, z6

}
dz,

{A22, B22, F22, D22, H22, K22} =
∫ h(y)

2

− h(y)
2

E22

1− ϑ12ϑ21

{
1, z, z2, z3, z4, z6

}
dz,

{An, Bn, Dn, En, Fn, Hn} =
∫ h(y)

2

− h(y)
2

l2G12

{
1, z, z2, z3, z4, z6

}
dz,

Bn = Bn − C1En, Dn = Dn − C1Fn, D̃n = Dn − 2C1Fn + C1
2Hn,

Ân = An − 6C1Dn + 9C1
2Fn, An = An + 6C1Dn + 9C1

2Fn,

Ãn = An − 9C1
2Fn.
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