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Abstract Due to the lack of experimental values con-

cerning some material properties at the nanoscale, it is

interesting to evaluate this theoretically. Through a ‘‘top–

down’’ approach, a universal equation is developed here

which is particularly helpful when experiments are difficult

to lead on a specific material property. It only requires the

knowledge of the surface area to volume ratio of the

nanomaterial, its size as well as the statistic (Fermi–Dirac

or Bose–Einstein) followed by the particles involved in the

considered material property. Comparison between differ-

ent existing theoretical models and the proposed equation

is done.
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Introduction

Understanding how materials behave at tiny length scales

is crucial for developing future nanotechnologies. The

advances in nanomaterials modeling coupled with new

characterization tools are the key to study new properties

and capabilities and then to design devices with improved

performance [1]. This study of size and shape effects on

material properties has attracted enormous attention due to

their scientific and industrial importance [2–4]. Nanoma-

terials have different properties from the bulk due to their

high surface area over volume ratio and possible appear-

ance of quantum effects at the nanoscale [5–7]. The

determination of nanomaterials properties is still in its

infancy and many materials properties are unknown or ill-

characterized at the nanoscale [8, 9]. Therefore, modeling

different phenomena by only one general equation could be

particularly helpful at the nanoscale when experimental

data is lacking.

Theory

When modeling nanomaterials, there exist two main

approaches. In the ‘‘top–down’’ approach, one looks at the

variation of the properties of systems that change when

going from the macro to the nano dimensions. At the

opposite, in the ‘‘bottom-up’’ approach, one starts from

atoms and one adds more and more atoms, in order to see

how the properties are modified. The first makes use of

classical thermodynamics, whereas the second relies on

computational methods like molecular dynamics. Molecu-

lar dynamics generally considers less than one million

atoms [10] in order to keep calculation time within rea-

sonable values. This factor limits the nanostructure size

modeled until values around 100 nm [11]. By using clas-

sical thermodynamics, the ‘‘top–down’’ approach ceases to

be valid when thermal energy kT becomes smaller than the

energetic gap between two successive levels, d. Generally

for metals, according to Halperin [12], when d/k * 1 K,

the band energy splitting appears for diameter values

between*4–20 nm depending on the material considered.

When d/k * 100 K, this diameter is between *1 and

4 nm in agreement with the value announced by Wautelet

et al. [13]. The size limit considered in this manuscript will

be 4 nm. Therefore, the ‘‘top–down’’ approach emerges as

a simple complementary method which can give useful

insights into nanosciences and nanotechnology.
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Adopting a ‘‘top–down’’ approach, the following equa-

tion has been proposed in a previous paper [14] to describe

size and shape effects on characteristic temperatures at the

nanoscale. This equation predicts the melting temperature,

Debye temperature, Curie temperature and superconduc-

ting temperature of nanomaterials according to the spin of

the particles involved in the considered material property.

The ratio of the size/shape-dependent characteristic tem-

perature, TX, over the characteristic bulk temperature, TX,?,

is given by:

TX=TX;1 ¼ 1� ashape=D
� �1=2S

ð1Þ

where X represents melting, Debye, Curie or supercon-

ducting. ashape is the parameter quantifying the size effect

on the material property and depending on the nanostruc-

ture’s shape. ashape is defined as ashape = [D(cs - cl)/

DHm,?](A/V) where A/V is the surface area over volume

ratio, DHm,? is the bulk melting enthalpy and cs(l) the

surface energy in the solid (liquid) phase. D is the size of

the nanostructure. S equals to one half or one if the parti-

cles involved in the considered phenomena follow a sta-

tistic of Fermi–Dirac or Bose–Einstein. For melting and

ferromagnetism (Curie), S equals to one-half, whereas for

superconducting and vibration (Debye) S equals to one.

One of the most important property from which we can

derive almost all the thermodynamic properties of materi-

als is the cohesive energy [15]. Indeed, the cohesive energy

is responsible for the atomic structure, thermal stability,

atomic diffusion, crystal growth and many other properties

[6, 16]. It is related to the melting temperature, activation

energy of diffusion and vacancy formation energy by the

following relation [15, 17, 18]:

Ec

Ec;1
¼

Ea

Ea;1
¼

Ev

Ev;1
¼

Tm

Tm;1
ð2Þ

The cohesive energy is the energy required to break the

atoms of a solid into isolated atomic species. The activation

energy of diffusion is the energy required to activate the

diffusion of one atom. The vacancy formation energy is the

energy required to produce one vacancy i.e. a Schottky

defect. All the particles involved in the cohesive energy,

activation energy of diffusion and vacancy formation

energy are electrons, characterized by a half integer spin,

and obey then to a Fermi–Dirac statistic (Table 1).

By combining Eqs. 1 and 2, this suggests an extension

of the universal relation developed for characteristic tem-

peratures to other properties as the cohesive energy which

is one of the most important material properties.

n=n1 ¼ 1� ashape=D
� �1=2S

ð3Þ

where n represents the size/shape-dependent material

property and n
?

represents the bulk material property. The

material properties considered here are the melting tem-

perature, Curie temperature, Debye temperature, super-

conductive temperature, cohesive energy, activation energy

of diffusion, vacancy formation energy.

From Eq. 3, it is clear that for a given material (i.e. a

given ashape parameter) and a given size (D), the size effect

on materials properties described by a Fermi–Dirac statistic

(‘‘fermionic properties’’) is stronger than the size effect on

materials properties described by a Bose–Einstein one

(‘‘bosonic properties’’). For a given material property, the

size effect increases when the ashape parameter increases or

the size of the nanostructure D decreases or both. In Fig. 1,

we have illustrated the materials properties behavior

(Eq. 3) whatever the size, the shape and the nature of the

material. Figure 1a, b illustrates the ‘‘fermionic’’ and

‘‘bosonic’’ material properties, respectively. Figure 2

illustrates both properties into one graph versus the reci-

procal size of nanomaterials for different ashape values.

Results and Discussion

To validate Eq. 3, we have compared the theoretical pre-

diction with experimental data of cohesive energy for Mo

and W nanoparticles (Fig. 2.) and of activation energy of

diffusion for Fe and Cu nanoparticles (Fig. 3.). We observe

in Fig. 2, a decreasing behavior of the cohesive energy by

reducing size. From Fig. 3, we note that diffusion is more

easily activated and faster [19] at the nanoscale which is

then particularly interesting for industrial applications

because it lowers the process temperature. Moreover, the

theoretical predictions from Eq. 3 are in good agreement

with experimental data. The small discrepancies with Mo

data may come from the shape, here we used with Eq. 3 the

ashape for a sphere and experimentally the shape may

deviate a little bit from this ideal case. Different from

Table 1 Distinction between

‘‘fermionic’’ and ‘‘bosonic’’

material properties

S = 1/2 (‘‘fermionic properties’’) S = 1 (‘‘bosonic properties’’)

Material property Melting Superconductivity

Ferromagnetism Vibration

Cohesion

Diffusion

Vacancies
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complex and time-consuming computer simulation pro-

cess, the universal relation (Eq. 3) can predict the men-

tioned materials properties from the bulk to sizes of

nanostructures higher than *4 nm. For a given material,

the ashape parameter can be calculated and then used to

explore the size effect on all the mentioned material

properties (Fig. 4).

Vacancies play an important role in the kinetic and

thermodynamic properties of materials. Therefore, the

vacancy formation energy is the key to understand the

processes occurring in nano and bulk materials during heat

treatment and mechanical deformation. To the best of our

knowledge, only bulk vacancy formation energy is known

[20–22] and there is not yet experimental data concerning

the vacancy formation energy at the nanoscale. As it is

difficult to determine it experimentally, researchers refer to

theoretical predictions. Therefore, we compared our results

obtained from Eq. 3 with different models predicting the

size-dependent behavior of the vacancy formation energy.

Due to the linear proportionality between the cohesive

energy and the vacancy formation energy [23], the surface-

area-difference model from Qi et al. [24, 25] which con-

sider the difference between the surface area of a whole

particle and the overall surface area of all the constituent

atoms in isolated state could write the vacancy formation

energy as given by Eq. 4.

Fig. 1 n/n
?

ratio versus the ashape parameter for different sizes in

both cases: a when materials properties are described by a Fermi–

Dirac statistic and b when they are described by a Bose–Einstein one.

When ashape is equal to 0 (vertical red line) or when n/n? is equal to 1

(horizontal red line) then there is no size effect, and the material

behaves as the bulk one. The solid, dashed and dotted blue lines

indicate the behavior of the nanomaterials for different sizes D = 4,

10, 100 nm, respectively. The yellow region indicates the region

where thermodynamics is no more valid

Fig. 2 n/n
?

ratio versus the reciprocal size for different values of

ashape parameter. When D-1 is equal to 0 (vertical red line) or when n/

n
?

is equal to 1 (horizontal red line) then there is no size effect, and

the material behaves as the bulk one. The solid, dashed and dotted

black (blue) lines indicate the behavior of ‘‘fermionic’’ (‘‘bosonic’’)

nanomaterials properties for different ashape values. The yellow region

indicates the region where thermodynamics is no more valid

Fig. 3 Cohesive energy versus the size of the nanostructure for

molybdenum (Mo) and tungsten (W). The solid lines indicate the

theoretical prediction with Eq. 3. for Mo and W nanoparticles. The

symbols are the experimental values of Mo [28] and W [28]

nanoparticles. The cohesive energies of the corresponding bulk Mo

and W are 6.19 eV [29] and 8.54 eV [29]
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Ev Qi ¼ Ev;1 1� pdhklbð Þ ð4Þ

where p is the ratio between the interface surface energy

per unit area at 0K over the surface energy per unit energy

at 0K. dhkl is the interplanar distance of hkl. b equals to 3j/

D, 2/w or 1/t for a nanoparticle, nanowire or nanofilm,

respectively. D, w and t are the size of the nanoparticle,

width of nanowire and thickness of the nanofilm, respec-

tively. j is the shape factor of the nanoparticle defined as

the surface area ratio between non-spherical and spherical

nanoparticles in an identical volume.

The thermodynamic model from Yang et al. [15]

expresses the vacancy formation energy of nanostructures

from the size-dependent cohesive energy model of Jiang

et al. [26] as:

Ev Yang ¼ Ev;1 1�
1

2D=dð Þ � 1

� �

exp
�2Sb

3R

1

2D=dð Þ � 1

� �

ð5Þ

where d is the atomic diameter, R is the ideal gas constant.

Sb is the bulk evaporation entropy.

The effective coordination number model from Shandiz

[16] is based on the low coordination number of surface

atoms and it expresses the vacancy formation energy as:

Ev Shandiz ¼ Ev;1 1� 1� ZSBð Þ
2D0

Dþ D0

� �� �

ð6Þ

where ZSB is the ratio of the surface coordination number

over the bulk coordination number. D0 is the size of the

nanoparticle for which all the atoms are located on the

surface. D0 = (2/3)(3 - k)(PS/PL)d. k is a parameter rep-

resenting the dimension of the nanostructure: k = 0 for

nanoparticles, k = 1 for nanowires and k = 2 for nano-

films. PS is the packing fraction of the surface crystalline

plane. PL is the lattice packing fraction. d is the atomic

diameter.

The bond-order-length-strength (BOLS) model from

Sun [6] is based on the atomic coordination number

imperfection due to the termination of the lattice period-

icity. The BOLS formalism expresses the size-dependent

vacancy formation energy as:

Ev Sun ¼ Ev;1 1þ
X

i� 3

ci ZiBc
�m
i � 1

� 	

" #

ð7Þ

where i is counted up to 3 from the outermost atomic layer to

the center of the solid because no coordination imperfection

is expected for i[ 3. ci = scid/D is the portion of the atoms

in the ith layer from the surface compared to the total number

of atoms in the entire solid. s is a parameter representing the

dimension of the nanostructure (s = 1 for a film, s = 2 for a

wire and s = 3 for a particle). d is the bond length or the

atomic diameter (without coordination number imperfec-

tion). ZiB is the ratio of the coordination number of the ith

layer (Zi) over the bulk coordination number (ZB). ci ¼

2 1þ exp 12� Zi=8Zið Þ½ ��1
is the bond contraction coeffi-

cient. m is a parameter representing the nature of the bond.

The liquid-drop model from Nanda et al. [17, 27]

expresses the size-dependent vacancy formation energy as:

Ev Nanda ¼ Ev;1 1�
Es

Ev;1

d

D

� �

� Ev;1 1� 5:75
d

D

� �

ð8Þ

where Es = pd2c is the cohesive energy of an atom at the

surface and c is the surface energy of the material. d is the

atomic diameter.

Figure 5 illustrates the comparison between the men-

tioned models and all the models indicate a decreasing

behavior of the vacancy formation energy of free-standing

nanostructures with the size. Let us note that the Guisbiers

and Nanda’s models give in this particular case the same

results. The consequence of this decreasing behavior with

size means an increasing of the vacancies concentration in

nanostructures compared to bulk. Indeed, by considering the

size effect on the vacancy formation energy in the vacancies

concentration of bulk materials cv,? = C exp (-Ev,?/kT)

(C being a constant considered size independent), we get

Eq. 9 which is similar to the one obtained earlier by Qi et al.

[25], validating then the reasoning based on Eq. 3.

cv ¼ cv;1 exp
Ev

kT

ashape

D

� �

ð9Þ

where cv is the size/shape-dependent vacancies concentra-

tion and cv,? is the bulk vacancies concentration. k is the

Boltzmann constant and T is the temperature.

Fig. 4 Activation energy of diffusion versus the size of the

nanostructure for iron (Fe) and copper (Cu). The solid lines indicate

the theoretical prediction with Eq. 3. for Fe and Cu nanoparticles. The

symbols are the experimental values of Fe [15] and Cu [30]

nanoparticles. The activation energies of diffusion of the correspond-

ing bulk Fe and Cu are 218 kJ/mol [15] and 69.78 kJ/mol [30]
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Conclusion

In summary, it is shown that there exists a universal rela-

tion between many materials properties, the inverse of the

particle size and the spin of the particles involved in the

considered material property. Whatever the nature of the

material, Figs. 1 and 2 are general maps summarizing the

size and shape effects on the mentioned materials proper-

ties from the bulk to the nanoscale. The prediction from the

universal relation (Eq. 3) has been validated by comparison

with available experimental results and existing theoretical

models. Describing different phenomena with only one

equation is the ‘‘Holy Grail’’ for all physicists and maybe a

more sophisticated equation may exist by considering other

material properties. Nevertheless, the great advantage of

the present equation is that it is free of any adjustable

parameters!
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