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Size‑Dependent Oxidation‑Induced Phase 
Engineering for MOFs Derivatives Via Spatial 
Confinement Strategy Toward Enhanced Microwave 
Absorption
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HIGHLIGHTS

• The size of metal organic frameworks (MOFs) derivatives was manipulated by a spatial confined growth strategy.

• Dielectric polarization is the dominant dissipation mechanism due to the phase hybridization based on size dependent oxidation 
motion.

• The specific reflection loss of synthesized Co/Co3O4 hollow carbon nanocages surpasses most reported MOFs derived counterparts 
for practical microwave absorption applications.

ABSTRACT Precisely reducing the size of metal-organic frameworks (MOFs) 
derivatives is an effective strategy to manipulate their phase engineering owing to 
size-dependent oxidation; however, the underlying relationship between the size of 
derivatives and phase engineering has not been clarified so far. Herein, a spatial con-
fined growth strategy is proposed to encapsulate small-size MOFs derivatives into 
hollow carbon nanocages. It realizes that the hollow cavity shows a significant spatial 
confinement effect on the size of confined MOFs crystals and subsequently affects the 
dielectric polarization due to the phase hybridization with tunable coherent interfaces 
and heterojunctions owing to size-dependent oxidation motion, yielding to satisfied 
microwave attenuation with an optimal reflection loss of −50.6 dB and effective band-
width of 6.6 GHz. Meanwhile, the effect of phase hybridization on dielectric polariza-
tion is deeply visualized, and the simulated calculation and electron holograms dem-
onstrate that dielectric polarization is shown to be dominant dissipation mechanism 
in determining microwave absorption. This spatial confined growth strategy provides 
a versatile methodology for manipulating the size of MOFs derivatives and the understanding of size-dependent oxidation-induced phase 
hybridization offers a precise inspiration in optimizing dielectric polarization and microwave attenuation in theory.
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1 Introduction

With the ever-increasing demand of electronic safety defense 
technology, smart microwave absorption devices with flex-
ible characteristics, lightweight, ultrathin thickness, and high 
efficient performance are significantly pursued and promoted 
in civil and military electronic instruments [1, 2]. In recent 
decades, tremendous efforts have been attempted to develop 
functional absorbers to solve the serious electromagnetic 
radiation pollution; therefore, many promising candidates, 
such as carbon nanotubes [3], graphene [4–6], Mxene [7], 
and metal oxide/sulfide [8, 9], have attracted considerable 
attention, especially for their hybrid composites with multi-
ple magnetic–dielectric components. In this case, optimized 
electromagnetic parameters and strong attenuation capability 
can be simultaneously achieved by manipulating the chemi-
cal components. In view of the advantage of morphologies 
(shape and size), several morphological-dependency inves-
tigations have manifested that structural engineering is also 
regarded as an effective strategy for tailoring the impedance 
characteristics, boosting microwave consumption and the 
most important characteristic, reducing the loading content. 
Recently, significant efforts have been devoted to construct-
ing hierarchical absorbers, including multilayer core–shell 
or yolk–shell structures [10–12], hollow spheres [13, 14], 
or 3D porous foams [15–17], to reduce the density and opti-
mize the impedance matching, which can trigger interfacial 
polarization and induce multiple reflection loss. Benefiting 
from the synergistic effect of structural merits and multiple 
loss coordination, the novel nanostructures with porous char-
acteristics and large heterogeneous interfaces can simultane-
ously satisfy microwave consumption and decrease loading 
content to meet the requirement of high efficient absorption.

Nowadays, numerous scientific studies have demonstrated 
that metal–organic frameworks (MOFs)-derived strategy is 
one of the emerging research fields in the application of 
microwave absorption [18–23]. However, we get insight that 
changing microstructures and adjusting chemical compo-
nents are still the two mainstreams to tune the microwave 
absorption for MOFs derivatives [24–26], in which dielec-
tric polarization originated from the smaller size has been 
restricted more or less due to large size derivatives with 
unsatisfied heterogeneous junctions. The effect of phase 
hybridization, owing to size-dependent oxidation, on the 
microwave attenuation for MOFs derivatives has rarely 

been reported. Besides, it is well recognized that most MOFs 
derivatives exhibit solid morphology, high loading content, 
and impedance mismatch [27]. To address the dielectric 
polarization issue, a popular strategy is to reduce the size 
of MOFs derivatives to nanoscale because smaller size 
will endow the derivatives with large specific surface area, 
triggering enhanced dielectric polarization. Moreover, it is 
generally accepted that smaller derivatives produce more 
unavoidable defects and active sites, leading to phase hybrid-
ization due to the size-dependent oxidation, thus inducing 
interfacial polarization between the heterojunctions and 
coherent interfaces [28, 29], but the underlying mechanism 
between phase hybridization and microwave attenuation is 
based on semiempirical rules because these reduced nano-
particles are tend to aggregate or protected by carbon layers, 
in which the phase hybridization owning to size-dependent 
oxidation motion is prohibited. With regard to solid mor-
phology for MOFs derivatives, it has been widely recognized 
that hollow engineering is an effective strategy to decrease 
the loading content. Hence, classical sacrificing templates 
[30], solvent etching [31], or synergistic protecting–etch-
ing strategy [32] have been used to construct hollow MOFs 
derivatives, which can indeed solve the loading content issue 
and manipulate the impedance characteristics, but the large 
inner hollow cavity limits the interfacial polarization to 
some degree. Therefore, precisely reduce the size of MOFs 
derivatives with respect to manipulate their phase hybridiza-
tion and strengthen dielectric polarization, and simultane-
ously construct hollow cavity so as to meet the requirement 
of lightweight characteristics are highly desirable, but still 
face the bottlenecks and huge challenges.

Herein, we propose an internal growth strategy to confine 
the size of Co-based zeolitic imidazolate (ZIF-67) crystals, 
in which geometrically confined Co/Co3O4 derivatives, 
owing to the size-dependent oxidation, are encapsulated into 
hollow carbon nanocages (HCNs). It is believed that dielec-
tric polarization increases due to phase hybridization with 
coherent interfaces, heterojunctions, and hierarchical pores, 
which are characterized by the simulated calculation and 
Lorentz off-axis electron hologram. The dielectric HCNs 
shell with internal hollow cavity effectively overcomes the 
shortcoming of high loading content, favors conduction loss, 
and optimizes matching impedance. The Co/Co3O4@HCNs 
absorbers exhibit an optimal reflection loss of −50.6 dB and 
an impressive bandwidth of 6.6 GHz with 20 wt% loading 
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content, and the high specific reflection loss surpasses most 
MOFs-derived counterparts.

2  Experimental and Calculation

2.1  Synthesis of Hollow Carbon Nanocages

Resorcinol–formaldehyde (RF) resin was used as carbon 
source, and  SiO2 spheres were used as sacrificing template 
to synthesize HCNs. In a typical procedure, 6 mL of TEOS 
and 2 mL ammonia (28 wt%) were firstly dissolved in 60 mL 
 H2O/ethanol solvent (v/v = 1:1) and stirred for 30 min. After 
that, 0.4 g resorcinol and 0.6 mL formaldehyde were added, 
and the mixture solution was stirred for 24 h. The precipi-
tates were collected by centrifugation with deionized water 
and dried at 60 °C for 12 h. After annealing at 800 °C for 
4 h under  N2 atmosphere, the products were washed with 
NaOH solution (1 mol  L−1) at 65 °C for 10 h to completely 
etch  SiO2 spheres.

2.2  Synthesis of ZIF‑67@HCNs

0.01 g HCNs was dispersed in 2.5 mL methanol and stirred 
for 30  min. After that, 0.0291  g Co(NO3)2·6H2O and 
0.0328 g 2-methylimidazole were added and stirred for 
25 min. The obtained ZIF-67@HCNs were collected by 
centrifugation.

2.3  Synthesis of Co/Co3O4@HCNs

The as-prepared ZIF-67@HCNs were annealed at 800 °C 
for 2 h under  N2 atmosphere, in which the ZIF-67 precursors 
were in situ transformed into dissociative Co/Co3O4 due to 
the size-dependent oxidation.

2.4  Characterization

The morphologies were observed by field emission scanning 
electron microscopy (FESEM, Verios G4) and transmission 
electron microscopy (TEM, FEI Talos F200X TEM). The 
chemical compositions were characterized via X-ray diffrac-
tometer (XRD, Bruker, D8 DISCOVER A25). The Fourier-
transform infrared (FTIR) spectra were measured by FTIR 
spectrophotometer (Varian 7000). The Raman spectroscopy 

was measured by WITec Alpha300R. The surface composi-
tion and valence state of elements were analyzed by XPS 
(Phoibos 100 spectrometer). The  N2 adsorption–desorption 
isotherms and pore-size distribution were obtained on a pore 
structure and specific surface area analyzer (Micromeritics 
ASAP2460). The static magnetic properties were analyzed 
by multifunctional physical property measurement system 
(PPMS, CFMS-14 T). The samples were dispersed in paraf-
fin matrix with 20 wt%, which were made into a circular ring 
with an internal diameter of 3.0 mm and external diameter of 
7.0 mm. The minimum reflection loss (RL,min) values, attenu-
ation constant (α), impedance match degree (Δ), radar cross 
section (RCS) simulation, and computational analysis were 
presented in the supporting information.

3  Results and Discussion

3.1  Characterization of Co/Co3O4@HCNs

The overall synthetic process is schematically illustrated 
in Fig. 1. Firstly, uniform core–shell  SiO2@resorcinol–for-
maldehyde  (SiO2@RF) spheres, with smooth surface and 
average diameter of ~ 430 nm, are formed by using a modi-
fied Stöber method with the coexistence of resorcinol and 
formaldehyde in an alkaline system, as confirmed by SEM 
and TEM images in Fig. 2a–b. The synthesized  SiO2@RF 
spheres are composed of C, N, O, and Si elements (Fig. S1), 
and the corresponding element distribution maps imply that 
these  SiO2 spheres are completely wrapped by RF matrix. 
FTIR illustrates the –OH groups on  SiO2 spheres interact 
with RF resin via hydrogen bonds in Fig. S2 which further 
confirms the formation of core–shell  SiO2@RF spheres. 
Secondly, HCNs, with an internal hollow cavity and thin 
carbon shell of about 15 nm, are obtained via transform-
ing the RF matrix into carbon shell under a carbonization 
process, and the sacrificial  SiO2 templates are completely 
removed by etching in hot NaOH solution for 10 h, as shown 
in Figs. 2c–d and S3. The mesoporous characteristic of the 
carbon shell, with an optimal pore-size distribution of 6 nm, 
provides an effective channel for  Co2+ and 2-MeIm to enter 
the internal void (Fig. S4), and the large cavity with a diam-
eter of ~ 400 nm can be used as confined cages for the growth 
of ZIF-67 particles. If etching time is only 2 h, the shad-
ows in Fig. S5 reveal that only a few of the sacrificial  SiO2 
templates are removed. Thirdly,  Co2+ and 2-MeIm ions can 
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easily infiltrate into the internal space of HCNs owing to 
the high penetration and porous characteristic of the shell, 
and both of them assemble to small-size ZIF-67 particles 
(Figs. 2e–f, S6 and Movie S1). In particular, the presence 
of negligible N atoms originated from the carbonization of 
residual ammonia in HCNs can anchor  Co2+ species by the 
electrostatic action, so it is clear to observe that some ZIF-
67 crystals individually deposit on the outside surface of 
HCNs [33]. XRD pattern of ZIF-67@HCNs shows the same 
standard crystal structure to that of ZIF-67 (Fig. S7), sug-
gesting that ZIF-67 crystals are encapsulated into HCNs. In 
order to demonstrate the spatial confined growth effect, the 
morphologies of ZIF-67 crystals in a free nucleation envi-
ronment without adding HCNs are shown in Fig. S8. Under 
an uninhibited environment, it is freedom for ZIF-67 to grow 
and larger crystals can be obtained compared with these con-
fined ZIF-67 crystals. Finally, these confined ZIF-67 crystals 
are in situ transformed into small-size Co/Co3O4 derivatives 
via a carbonization process owing to the partial oxidation, 

resulting in the formation of Co/Co3O4@HCNs. The overall 
morphology does not differ significantly from that of HCNs 
spheres except that reduced Co/Co3O4 particles, with the 
diameter in the range of 10–20 nm, are confined in the inter-
nal void, as presented in Fig. 2g–h. HRTEM images are car-
ried out to clarify the coherent heterojunctions and phase 
hybridization by analyzing the crystal lattice. In Fig. 2i, it is 
clear that the coherent heterojunctions between small-size 
derivatives and carbon matrix are noted. In detail, as shown 
in Fig. 2j, the lattice spacing of 0.205 nm corresponds to 
the (111) plane of Co crystal and the spacing of 0.245 nm 
is assigned to the (311) plane of  Co3O4, respectively. The 
clear grain boundaries with phase inversion, as indicated by 
blue area, imply that Co and  Co3O4 are separated with each 
other, verifying the phase conversion and generating phase 
hybridization with obvious coherent interfaces [34]. Simul-
taneously, a large number of defects can be observed (red 
circles), and both of the coherent interfaces and defects will 
trigger strong dipolar/interfacial polarization. In addition, 
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SAED pattern confirms the polycrystals characteristics in 
Fig. 2k and the elemental mapping images suggest the pres-
ence of C, O, and Co elements. For the Co/NC composites 

derived from ZIF-67 crystals in a free nucleation without 
adding HCNs (Fig. S9), it is clear that reduced Co nanopar-
ticles, enclosed by graphitic carbon layer with polycrystals, 
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pattern, and corresponded elemental mapping images of Co/Co3O4@HCNs
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tend to aggregate with obvious crystal region and less 
defects, resulting in larger size compared with confined Co/
Co3O4 derivatives. Under atmosphere condition without pro-
tection, metal particles with smaller size will produce more 
unavoidable defects and active sites, which are expected to 
be oxidized easily by providing a channel for oxygen incor-
poration compared with these ZIF-67 derivatives in a free 
nucleation environment without adding HCNs, in which the 
larger reduced Co particles are protected by the graphitic 
layers [35], leading to phase hybridization (Co/Co3O4) due 
to the size-dependent oxidation and adjustable polarization 
behavior between heterojunctions and coherent interfaces.

The crystal structure is identified by XRD pattern in 
Fig. 3a. The results prove that the diffraction peak located 
at ~ 22° for  SiO2@C demonstrates the amorphous struc-
ture and the broad diffraction peak for HCNs is indexed 
to the (002) plane of carbon matrix. Obviously, the three 
diffraction peaks of Co/NC at 44.6°, 51.6°, and 75.8° match 
well with standard cubic Co [Fm-3 m] (PDF#15–0806) 
crystals. For Co/Co3O4@HCNs, except for the diffraction 
peaks of cubic Co crystals, the other diffraction peaks are 
assigned to cubic  Co3O4 [Fd-3 m] (PDF#73–1701) because 
the boundary of cubic Co preferentially promotes the ori-
entation of cubic  Co3O4 with identical crystal symmetry 
and lower interfacial energy due to the size-dependent 
oxidation. Interesting, it is noted that the diffraction peak 
of (111) slightly shifts to low degree with decrease in the 
particles sizes, which is attributed to the fact that some 
Co atoms are substituted by O atoms in the lattice, lead-
ing to the formation of phase hybridization [36]. Raman 
spectra are utilized to investigate the presence of  Co3O4 
and defects in carbon matrix. As shown in Fig. S10,  F2g (1) 
mode at 191  cm−1 is assigned to the translation of the  CoO4 
unit,  Eg (473  cm−1) with other two  F2g modes (514  cm−1 
and 612  cm−1) represents the vibrations of tetrahedral and 
octahedral sites, and  A1g mode at 676  cm−1 matches well 
the symmetric stretching of  Co3+-O and the bending of 
 Co2+-O, suggesting the formation of  Co3O4 with spinel 
lattice [37]. In Fig. 3b, it is clear that the ID/IG values of 
 SiO2@C and HCNs are as high as 0.95 and 0.94 due to 
the defects in carbon skeleton and incomplete graphitiza-
tion, while the presence of Co particles promotes the gra-
phitization of carbon, resulting in lower value of 0.92 for 
Co/Co3O4@HCNs.  N2 adsorption–desorption isotherms 
are conducted to characterize the porous characteristics. 
As presented in Fig. 3c, the type-I–V curve in the middle 

region of the pressure suggests the presence of mesopores, 
and the increased hysteresis loops at low/high pressure 
indicate the coexistence of micro/macropores. The pore-
size distribution (Fig. 3d) implies the significant amount 
of mesopores with an optimal diameter of ~ 3.9 nm and the 
coexistence of micropores (0.4–1.2 nm). The specific sur-
face area and pore volume of Co/Co3O4@HCNs are meas-
ured to be 739.3  m2  g−1 and 1.5491  cm3  g−1, larger than 
that of Co/NC (Figs. S11 and S12). XPS survey spectrum 
in Fig. S13a confirms the presence of C, N, O, and Co ele-
ments. C 1s spectrum (Fig. S13b) is deconvoluted into four 
peaks of C=C, C–N, C–O, and O–C–O, respectively. More 
detailed information of N atoms is depicted in Fig. 3e, in 
which N 1s spectrum corresponds to three peaks, pyridinic 
N at 397.9 eV, pyrrolic N at 399.3 eV, and graphitic N 
at 400.9 eV, suggesting the formation of N-doped carbon 
matrix. In Fig. 3f, the O1 peak at 530.3 eV is indexed to 
the lattice oxygen in metal oxide (Co–O), the O2 peak at 
531.2 eV belongs to the surface oxygen vacancies and the 
small O3 peak at a higher binding energy of 532.5 eV is 
attributed to the unavoidable adsorbed/residual water mole-
cules or C-O bond in carbon skeleton [38]. High-resolution 
Co 2p spectrum in Fig. 3g fits well with the corresponding 
peaks of magnetic Co (778.8 and 794.3 eV) and different 
oxidation states  (Co2+ at 780.8 eV and  Co3+ at 782.3 eV), 
implying the coexistence of Co and  Co3O4. The simplified 
spinel structure of  Co3O4 in Fig. 3h indicates that  Co2+ 
with tetrahedral coordination and  Co3+ with octahedral 
coordination share the unit cell occupancies with  O2−, 
the interfacial structure indicates the phase hybridization 
between Co and  Co3O4 in the coherent interfaces (Fig. 3i), 
and thus, the multiple phases and abundant heterojunctions 
with different frequency responses are desired for dielectric 
polarization, which will be clearly analyzed below.

3.2  Microwave Absorption Performance of Co/Co3O4@
HCNs

The microwave absorption of  SiO2@C, HCNs, and Co/
NC@HCNs with 20 wt% loading content is presented in 
Fig. 4. The results display that the minimum reflection loss 
(RL,min) values of  SiO2@C (Fig. 4a–c) and HCNs (Fig. 4e–g) 
are merely −12.2 and −14.1 dB due to the impedance mis-
match (the larger |Δ| value with large area means unmatched 
impedance), and thus, most of the incident microwave will 
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reflect at the surface of the absorbers. Besides, the separated 
closed circles in the RL contour plots demonstrate the nar-
row effective absorption bandwidth (EAB). Obviously, with 
regard to Co/Co3O4@HCNs as shown in Fig. 4i–k, the syn-
ergistic loss mechanism and hollow engineering can indeed 
favor the impedance characteristic and absorption capacity 
simultaneously; thus, the area of the |Δ| value close to zero is 
larger than that of  SiO2@C and HCNs, the RL,min value sig-
nificantly increases to −50.6 dB with a thickness of 2.2 mm, 
and the EAB regions expand into strips, reaching 6.6 GHz at 
2.1 mm. Moreover, the lower RCS simulation value of Co/

Co3O4@HCNs demonstrates that electromagnetic scatter-
ing is effectively suppressed after coating absorbers on the 
metal plate (Fig. 4e, h, l), especially at zero degree, indicat-
ing good microwave absorbing ability. From above discus-
sion, we can conclude that optimized absorption capability 
and preferable bandwidth are simultaneously achieved for 
Co/Co3O4@HCNs compared with  SiO2@C, HCNs, and Co/
NC (the RL,min value of −32.3 dB and EAB of 4.1 GHz, Fig. 
S14), implying the attenuation performance can be effec-
tively manipulated by the phase hybridization owing to the 
size-dependent oxidation aforementioned.
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It is well known that the absorption performance is 
determined by the two electromagnetic parameters in the 
frequency range of 2–18 GHz. As depicted in Fig. 5a, 
the complex permittivity real part (ε’) of  SiO2@C and 
HCNs decreases slightly in the whole frequency region, 
and the lower imaginary part (ε") with almost constant 
values is attributed to the existence of insulated  SiO2 core 
and amorphous carbon shell with poor electrical con-
ductivity, resulting in unmatched impedance and unsat-
isfied dielectric loss. The complex permeability (μ′≈1 
and μ″≈0) indicates a negligible magnetic loss. On the 
contrary, small-size Co/Co3O4 derivatives with defects, 
phase hybridization, and large numbers of coherent inter-
faces will induce dipolar/interfacial polarization, and 
thus, it is obvious that Co/Co3O4@HCNs show the obvi-
ous enhanced complex permittivity (ε’ and ε") [39]. In 
order to clarify the underlying relationship between phase 
hybridization and dielectric behaviors in detail, conduction 
loss (εc") and polarization loss (εp") of Co/Co3O4@HCNs, 
separated from ε", are investigated. In general, dielectric 
loss is classified into conduction loss (εc") and polarization 
loss (εp") according to Debye theory, and the imaginary 
part ε" is described as follows:

where σ is the electrical conductivity, ω is the angular, and 
ε0 is the permittivity in vacuum. As shown in Fig. S15, it is 
obvious that the εc" values exhibit a downward trend with 
increasing the frequency and the εp" values are obviously 
higher than that of εc" in the whole frequency range of 
2–18 GHz, implying polarization loss (dipolar and interfacial 
polarization) is shown to be dominant in determining die-
lectric behavior. Therefore, encapsulating small-size MOFs 
derivatives into HCNs via spatial confinement is an effective 
strategy to realize high dielectric loss (Fig. 5c). In the μ″ 
curve, the enhanced anisotropy energy induced by small-size 
Co/Co3O4 particles shifts the frequency to gigahertz; thus, 
the resonance peaks at low frequency originate from the 
natural ferromagnetic resonance, and the resonance peaks 
at high frequency belong to exchange resonance because 
the crystal size of derivatives is close to the exchange length 
[40]. Except for promoted impedance matching, it is obvi-
ous that the attenuation constant of Co/Co3O4@HCNs is 
larger than  SiO2@C and HCNs over the whole investigated 
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frequency in Fig. 5d, further implying stronger microwave 
attenuation ability [41]. For practical applications, it is obvi-
ous that the specific reflection loss (SRL) of Co/Co3O4@
HCNs, based on the formula of  SRLl =|RL,min|/loading con-
tent and  SRLlt =|RL,min|/(loading content × layer thickness), 
remarkably surpasses most reported MOFs-derived counter-
parts (Fig. S16) due to strong RL,min, low loading content as 
well as thin layer thickness, implying the promising candi-
dates for lightweight microwave absorbers.

3.3  Analysis of Microwave Absorption Mechanism

In general, the detailed dissipation microwave mechanism 
of Co/Co3O4@HCNs is closely related to matched imped-
ance, enhanced dielectric polarization, improved magnetic 
loss as well as the synergistic loss capacity, which can 
be systematically clarified as follows [42–44]. First, it is 
reasonable to speculate that these Co/Co3O4 derivatives 
embedded inside carbon matrix favor dielectric–magnetic 
balance, and hollow engineering drastically decreases the 
interfacial impedance gap at the interface of absorbers–air 
[45], and both of them result in optimized impedance char-
acteristic and less backscattered microwave, which is the 
critical precondition for subsequent microwave attenua-
tion. Second, it is nonnegligible that carbon shell with 
hollow structure can build more efficient electronic trans-
mission channel by the physical contacts compared with 
solid counterparts in the same mass condition, as illus-
trated in Fig. 5e, which facilitates the electronic transmis-
sion and consumes the microwave energy [46], resulting 
in dominant role in conduction loss because the loss that 
stems from Co/Co3O4 derivatives can be ignored owing 
to the small size. Besides, the intricate conductive net-
work spontaneously responds to the incident microwave 
and intensely induces time-varying electromagnetic field-
induced current in the circular resistive network, convert-
ing electromagnetic energy into thermal energy [47, 48]. 
Third, polarization loss primarily originated from dipo-
lar/interfacial polarization becomes the dominant factor 
in determining the dielectric behavior. By examining the 
effect of dipolar polarization on polarization loss, the so-
called ionocovalent bonding nature of  Co3O4 is shown in 
Fig. 5f, where the spatial overlap from the Co 3d orbital to 
O 2p orbital, especially  Co3+, strongly interacts with O 2p, 
strengthens the bond, and leads to electron polarization. 
The coexistence of ion hybridization in  Co3O4, induced 
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defects, heteroatoms, and residual functional groups, as 
proved by the XPS analysis and simulated calculations 
(Fig.  5g), will displace the local electron density and 
trigger dielectric dipole oscillations [49], resulting in 
enhanced dipolar polarization. Besides, because of the 
compatibility between Co and  Co3O4 with same cubic 
phases, the transformation promotes the phase hybridiza-
tion with coherent interfaces [50, 51]. Combining with 
heterojunctions and hierarchical pores, strong interfacial 
polarization can be achieved, which are expressed by the 
typical Lorentz off-axis electron holograms in Fig. 5h–j. 
It is clear that the electrical characteristics, among the 
coherent interfaces, heterojunctions as well as hierarchical 
pores, vary significantly and display different charge den-
sities because of the redistribution, transfer, or accumula-
tion, which act as the topological conditions to produce 
capacitor-like structures at the heterogeneous interfaces 
and generate strong interfacial loss [52, 53]. The multiple 
Debye relaxation polarization also can be verified by the 
Cole–Cole plots with different resonance peaks in Fig. S17 
[54], but it is difficult to precisely identify the exact dipo-
lar or interfacial polarization at present. Profiting from the 
feature of strong polarization behavior, the Co/Co3O4@
HCNs absorbers will exhibit satisfied dielectric loss. 
Fourth, with respect to magnetic loss, it is no doubt that it 
is mainly dominated by ferromagnetic resonance and eddy 
current loss in 2–18 GHz. Figure S18 shows the hysteresis 
loops of Co/NC and Co/Co3O4@HCNs. It reveals that the 
saturation magnetization (Ms) and coercivity (Hc) values 
are measured to be 43.6 emu  g−1, 28.1 emu  g−1 and 309.4 
Oe, 281.1 Oe, respectively. The moderate lower Ms value 
of Co/Co3O4@HCNs can be explained by the additional 
nonmagnetic hollow cavity, and the decreased Hc value is 
attributed to the smaller grain size than the critical value 
(~ 70 nm) for Co particles under the identical crystalline 
structure and approximate shape anisotropy, which is 
favorable for the initial permeability and magnetic loss 
[55]. The magnetic loss induced by eddy current effect 
is characterized by the coefficient value (μ″(μ′) −2f−1) as 
depicted in Fig. S19, and the value is almost constant 
when the frequency is over 7 GHz, implying that eddy 
effect also plays a fundamental role in magnetic loss at this 
frequency region. In addition, the integrated synergistic 
effect can effectively strengthen multiple loss coordina-
tion by making full use of dielectric loss and magnetic 
loss, and the hierarchical pores trigger multiple scattering 

and propagated pathway; both of them are beneficial to 
absorption capability [56].

4  Conclusions

In summary, we have proposed a spatial confined growth 
strategy to encapsulate small-size ZIF-67 crystals into 
HCNs, in which multiple derivatives are confined in hol-
low cavity of HCNs by the spatial confinement effect. Being 
determined by size-dependent oxidation, dielectric polariza-
tion originated from phase hybridization, abundant hetero-
junctions, and hierarchical pores is dominant in dielectric 
behavior. Moreover, the internal hollow cavity of HCNs 
adjusts impedance characteristics and multiple scattering 
contributes absorption attenuation to some degree. Particu-
larly, an optimal absorption ability of −50.6 dB and effective 
bandwidth of 6.6 GHz are achieved. The spatial confinement 
strategy demonstrates a new strategy for manipulating the 
size of MOFs derivatives, and the results provide a theoreti-
cal guideline for optimizing polarization behaviors by the 
size-dependent phase hybridization.
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