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or semiconductor. Nanotubes are categorized as single-walled carbon nanotubes (SWCNTs)
and multi-walled carbon nanotubes (MWCNTs).

Sometimes, the classical theory cannot describe some phenomena of the material at the
atomic level. The classical (local) theory assumes that the stress at a defined point depends
uniquely on the strain at the same point. But there are theories that are capable for consid-
ering small scale effects such as Eringen, couple stress, modified couple stress theory (MCST),
and strain gradient. The MCST has been used by many researchers in order to analyze size-
dependent structures. For instance, Simsek and Reddy[3] investigated the bending and vibration
of functionally graded (FG) micro beams using a new higher order beam theory and the MCST.
Wang et al.[4] presented the size-dependent vibration analysis of three-dimensional cylindrical
micro beams based on the MCST.

In present, mechanical behavior of beams is studied by applying various beam theories.
It should be noted that the Euler-Bernoulli beam theory (EBT) is only applicable for slen-
der beams, and the shear deformation effect is not considered. The Timoshenko beam theory
(TBT) accounts for the shear deformation effect for short beams by assuming a constant shear
strain through the height of the beam. To avoid the use of shear correction factor, higher
order shear deformation theories were developed based on the assumption of the higher order
variation of axial displacement through the height of the beam such as the sinusoidal shear
deformation beam theory (SSDBT)[5]. Yoon et al.[6] carried out the vibration and instability
of CNTs conveying fluid. Kiani[7] studied the effects of the small-scale parameter, inclination
angle, speed, and density of the fluid flow on the maximum dynamic amplitude factors of longi-
tudinal and transverse displacements. Based on the nonlocal TBT, the buckling analysis of an
SWCNT embedded in an elastic medium was reported by Murmu and Pradhan[8]. Results show
the dependency of critical dynamic load on the nonlocal parameter and surrounding medium.
Applying the nonlocal elasticity field theory in nanomechanics and an exact variational prin-
cipal approach, Lim[9] derived the new equilibrium conditions, domain governing differential
equations, and boundary conditions for bending of nanobeams. Mirramezani et al.[10] showed
that based on their result, they could have developed an innovative model for one dimensional
coupled vibrations of CNTs conveying fluid using the slip velocity of the fluid flow on the CNT
walls as well as utilizing size-dependent continuum theories to consider the size effects of nano-
flow and nano-structure. Kaviani and Mirdamadi[11] showed that considering the small-size
effects of the flow field on the dynamic characteristics of CNTs conveying the fluid is essen-
tial. They investigated the wave propagation analysis of CNTs conveying the fluid including
the slip boundary condition and the strain/inertial gradient theory. Ghorbanpour Arani et
al.[12] carried out the surface effects on the frequency analysis of nanotubes using the nonlocal
TBT. Gheshlaghi and Hasheminejad[13] investigated the surface effects on the nonlinear free
vibration of nanobeams. Malekzadeh and Shojaee[14] presented the surface and nonlocal effects
on the nonlinear free vibration of non-uniform nanobeams. They found that the increase of
the amplitude ratio causes the reduction of the surface effects. The longitudinal free vibration
analysis of axially FG microbars was investigated by Akgöz and Civalek[15] on the basis of
strain gradient elasticity theory. They utilized the Rayleigh-Ritz solution technique to obtain
an approximate solution to the free longitudinal vibration problem of strain gradient micro-
bars for clamped-clamped and clamped-free boundary conditions. In another work by Akgöz
and Civalek[16], buckling behavior of size-dependent microbeams made of functionally graded
materials (FGMs) for different boundary conditions was investigated on the basis of EBT and
modified strain gradient theory. Based on the nonlocal continuum theory, Wang et al.[17] inves-
tigated the nonlinear vibration of an embedded SWCNT subjected to a harmonic load. Xu and
Deng[18] established variational principles for the buckling and vibration of MWCNTs with the
aid of the semi-inverse method. The size-dependent stability behavior of nano-sandwich plates
was investigated by Ghorbanpour Arani et al.[19] using the MCST. Akgöz and Civalek[20] per-
formed the thermo-mechanical size-dependent buckling analysis of embedded FG microbeams
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based on the SSDBT and the MCST. The effects of the thickness-to-material length scale pa-
rameter ratio, material property gradient index, slenderness ratio, temperature change, and
Winkler parameter on critical buckling loads of embedded FG microbeams were discussed in
detail.

Based on the best knowledge of the authors, the dynamic instability of SWCNTs has not
been reported based on the SSDBT. In the present work, the dynamic stability of the SWCNTs
subjected to the harmonic load is investigated based on the SSDBT. The size effects are con-
sidered using the MCST. The SWCNTs are embedded in a realistic visco-Pasternak medium.
Motion equations of system are derived using the energy method and Hamilton’s principle. The
differential quadrature method (DQM) in conjunction with the Bolotin method is applied for
obtaining the dynamic instability region (DIR) of the SWCNTs. The effects of the nonlocal
parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters on the DIR
of SWCNTs are discussed in details.

2 Basic equations

A schematic figure for the SWCNT embedded in a visco-Pasternak foundation is shown in
Fig. 1, where the geometrical parameters of the length (L), the thickness (h), and the radius
(R) are also indicated.

Fig. 1 Schematic of SWCNT embedded in visco-Pasternak foundation

2.1 SSDBT

The displacement fields of SWCNTs based on the SSDBT can be described as[3]

ux(x, z, t) = u(x, t) − z
∂w(x, t)

∂x
+ Φ(z)ϕ(x, t), (1)

uy(x, z, t) = 0, (2)

uz(x, z, t) = w(x, t), (3)

in which

ϕ(x, t) =
∂w(x, t)

∂x
− φ(x, t), (4)

Φ(z) =
h

π
sin

(πz

h

)

, (5)

where h is the beam thickness, u and w are the axial and the transverse displacements of any
point on the neutral axis, respectively, t denotes the time, ϕ and φ are the transverse shear
strain of any point on the neutral axis and the total bending rotation of the cross-sections at
any point on the neutral axis, respectively, and Φ(z) is a function of z, which characterizes the
transverse shear stress distribution along the thickness of the beam.
2.2 MCST

By considering the MCST, the strain energy density is related to the strain tensor and the
curvature tensor. Thus, the strain energy of the bulk Us in a deformed isotropic linear elastic
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material occupying the region Ω is given as follows[4]:

Us =
1

2

∫

Ω

(σijεij + mijχij)dV, (6)

where εij and χij represent the strain and the symmetric rotation gradient tensors, respectively,
which are defined by

εij =
1

2

(∂uj

∂xi

+
∂ui

∂xj

)

, (7)

χij =
1

2

(

eipq

∂εqj

∂xp

+ ejpq

∂εqi

∂xp

)

, (8)

where ui and eijk are the displacement vector and the alternate tensor, respectively. The
classical stress tensor σij and the higher order stress mij are given by

σij = Eδijεmm + 2Gεij , (9)

mij = 2l22µχij , (10)

where δij is the Kronecker product, E and G are the Lame constants, and l2 is the independent
material length scale parameter. It is recalled that E = Eν/(1+ν)(1−2ν), and G = E/2(1+ν),
where E and ν are Young’s modulus and Poisson’s ratio, respectively.

3 Energy method

Substitution Eqs. (1)–(3) into Eq. (7), the strains are

εx =
∂u

∂x
− z

∂2w

∂x2
+

h

π

(∂2w

∂x2
−

∂φ

∂x

)

S(z), (11)

εxz =
1

2

(∂w

∂x
− φ

)

C(z), (12)

where

S(z) = sin
(πz

h

)

, C(z) = cos
(πz

h

)

. (13)

Substituting Eqs. (11) and (12) into Eq. (8) gives the symmetric rotation gradient tensors as

χxy = χyx = −
1

2

∂2w

∂x2
+

1

4

(∂2w

∂x2
−

∂φ

∂x

)

C(z), (14)

χyz = χzy =
1

4

π

h

(

φ −
∂w

∂x

)

S(z). (15)

By using the above relations, the stresses and higher order stresses are

σx = E
(∂u

∂x
− z

∂2w

∂x2
+

h

π

(∂2w

∂x2
−

∂φ

∂x

)

S(z)
)

, (16)

σxz = G
(1

2

(∂w

∂x
− φ

)

C(z)
)

, (17)

mxy = myx = 2l22G
(

−
1

2

∂2w

∂x2
+

1

4

(∂2w

∂x2
−

∂φ

∂x

)

C(z)
)

, (18)

myz = mzy = 2l22G
(1

4

π

h

(

φ −
∂w

∂x

)

S(z)
)

. (19)
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Substituting Eqs. (16)–(19) into Eq. (6) leads to

Us =
1

2

∫ L

0

(

ζ1

(∂u

∂x

)2

+ ζ2

(∂2w

∂x2

)2

+ ζ3

(∂w

∂x

)2

+ ζ4

(∂2w

∂x2

∂u

∂x

)

+ζ5

(∂2w

∂x2

∂φ

∂x

)

+ ζ6

(

φ
∂w

∂x

)

+ ζ7

(∂φ

∂x

)2

+ ζ8

(∂φ

∂x

∂u

∂x

)

+ ζ9(φ)2
)

dx, (20)

where










































































































ζ1 = EA,

ζ2 = −l22GT0 + 0.25l22GO + l22GA + EI − 2
h

π
EP +

h2

π2
EL,

ζ3 =
1

4

l22GLπ2

h2
+ GO,

ζ4 = 2
h

π
EP0,

ζ5 = −0.5 l22GO + l22GT0 − 2
h2

π2
EL + 2

h

π
EP1,

ζ6 = −
1

2

l22GLπ2

h2
− 2GO,

ζ7 = 0.25 l22GO +
h2

π2
EL,

ζ8 = −2
h

π
EP0,

ζ9 =
1

4

l22GLπ2

h2
+ GO.

(21)

The following integrals are defined by

(A, I, P0, P1, T0, L, O) =

∫

A

ξdA, (22)

where

ξ = (1, z2, S(z), C(z), zC(z), S2(z), C2(z)). (23)

The total kinetic energy of nanotubes can be expressed as

Ks =
1

2
ρt

∫ L

0

(

∫

A

((∂ux

∂t

)2

+
(∂uz

∂t

)2)

dA
)

dx, (24)

where ρt is the density of nanotube.
The external work due to a visco-Pasternak foundation is written as

W =

∫ L

0

(−Kww + GP∇
2w)wdx −

∫ L

0

Cd
∂w

∂t
dx, (25)

where Kw, Cd, and GP are Winkler’s spring modulus, damper, and Pasternak’s shear modulus
of an elastic medium, respectively.
3.1 Hamilton’s principle

Hamilton’s principle is used to derive the motion equations of system as follows:

∫ t1

t0

(δUs − (δKs + δW )) = 0. (26)
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Integrating Eq. (26) by parts and setting the coefficients of δu, δw, and δφ to zero lead to
the following motion equations:

δu : − 2ζ1
∂2u

∂x2
− ζ4

∂3w

∂x3
− ζ8

∂2φ

∂x2
+ ρtA

∂2u

∂t2
+

ρthP0

π

∂3w

∂x∂t2
−

ρthP0

π

∂2φ

∂t2
= 0, (27)

δw : 2ζ2
∂4w

∂x4
+ ζ5

∂3φ

∂x3
− 2ζ3

∂2w

∂x2
− ζ6

∂φ

∂x
+ ζ4

∂3u

∂x3
−

ρthP1

π

∂3φ

∂x∂t2

−
ρth

2L

π2

∂4w

∂x2∂t2
+

ρth
2L

π2

∂3φ

∂x∂t2
− Iρt

∂4w

∂x2∂t2
+ ρtA

∂2w

∂t2

−
ρthP0

π

∂3u

∂x∂t2
+ 2

ρthP1

π

∂4w

∂x2∂t2
− Gp∇

2w + Kww + Cd
∂w

∂t
= 0, (28)

δφ : − ζ5
∂3w

∂x3
+ ζ6

∂w

∂x
+ 2ζ9φ − 2ζ7

∂2φ

∂x2
− ζ8

∂2u

∂x2
−

ρthP0

π

∂2u

∂t2

+
ρthP1

π

∂3w

∂x∂t2
−

ρth
2L

π2

∂3w

∂x∂t2
+

ρth
2L

π2

∂2φ

∂t2
= 0. (29)

Furthermore, the boundary conditions at x = 0 and x = L can be obtained as

∂2δw

∂x2
= 0,

∂δw

∂x
= 0, δw = 0,

∂δφ

∂x
= 0, δφ = 0,

∂δu

∂x
= 0, δu = 0. (30)

4 Solution procedure

4.1 DQM

The DQM is employed in this section which in essence approximates the partial derivative
of a function, with respect to a spatial variable at a given discrete point, as a weighted linear
sum of the function values at all discrete points chosen in the solution domain of the spatial
variable. Let F be a function representing u1, u2, w1, w2, φ1, and φ2, with respect to the
variable x, in the domain of (0 < x < L) having Nx grid points along these variables. The
nth-order partial derivative of F (x) with respect to x may be expressed discretely as

dnF (xi)

dxn
=

Nx
∑

k=1

A
(n)
ik F (xk) n = 1, 2, · · · , Nx − 1, (31)

where A
(n)
ik is the weighting coefficient, whose recursive formula was described in Ref. [8]. The

Chebyshev-Gauss-Lobatto polynomial[8] is used to determine the unequally spaced position of
the grid points as follows:

xi =
L

2

(

1 − cos
( 2i − 1

Nx − 1

)

π
)

. (32)

Combining all the motion equations along with the corresponding boundary conditions,
using the DQM, and rewriting them in the matrix form yield

(K − PKG)d + Cḋ + Md̈ = 0, (33)

where M , C, and K are the mass, damping, and stiffness matrices, respectively, KG is the
geometrical stiffness matrix, d is the displacement vector (i.e., d = [u, v, w]), and

P (t) = αPcr + βPcr cos(ωt), (34)

in which ω is the frequency of excitation, Pcr is the static buckling load, α and β may be defined
as static and dynamic load factors, respectively.
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4.2 Bolotin method

In order to determine the DIR of SWCNTs, the method suggested by Bolotin[21] is applied.
Hence, the component of d can be written in the Fourier series with the period 2T as

d =

+∞
∑

k=1,3,5,···

(

ak sin
kωt

2
+ bk cos

kωt

2

)

, (35)

where ak and bk are undetermined constants according to this method.
According to this method, The first instability region is usually the most important in

studies of structures. It is due to the fact that the first DIR is wider than other DIRs, and
the structural damping in higher regions becomes neutralized[22]. Substituting Eq. (35) into
Eq. (33) and setting the coefficients of each sine and cosine as well as the sum of the constant
terms to zero, yield

∣

∣

∣

∣

K − PcrαKG ± Pcr
β

2
KG ∓ C

ω

2
− M

ω2

4

∣

∣

∣

∣

= 0. (36)

Solving the above equation based on the eigenvalue problem, the variation of ω with respect
to α can be plotted as the DIR.

5 Results and discussion

In this approach, the effects of nonlocal parameter, visco-Pasternak foundation, mode num-
bers, and geometrical parameters on the DIR of SWCNTs are investigated. The material
properties of the SWCNTs related to bulk are as follows: Young’s modulus E = 1 TPa, Pois-
son’s ratio υ = 0.27, the density ρ = 2 300 kg/m3, the radius R = 0.5 nm, and the thickness
h = 0.34 nm[17,23].

To demonstrate the efficiency and accuracy of the present solution, the results are compared
with the existing data available in literature. By neglecting the harmonic load and elastic foun-
dation, the nonlocal natural frequency of a microbeam is obtained based on the SSDBT and the
MCST. Considering the material properties, which are the same as those in Ref. [24] and the
dimensionless frequency as ω = ωL2

√

m0/EI, the results of validation are shown in Table 1 for
different mode numbers and slenderness ratios based on the EBT, the TBT, and the SSDBT
for both classical theory (CT) and MCST. It is evident that the results of the present work
are in good agreement with those of Ref. [24], indicating the validity of the present study. It is
also concluded that the difference between the present theory with the EBT and the TBT is
significant for higher modes and smaller L/h. Therefore, the present beam should be used to
predict the responses of shorter beams and higher modes where the shear deformation effect is
significant.

Figure 2 illustrates the effect of various surrounding foundation on the dimensionless pul-
sation frequency. Four different elastic media are considered, namely, the visco-Pasternak (i.e.,
Kw = 1 × 1017, Gp =4, Cd =10), the Pasternak (i.e., Kw =1 × 1017, Gp =4, Cd = 0), the visco-
Winkler (i.e., Kw =1×1017, Gp =0, Cd=10), and the Winkler (i.e., Kw =1×1017, Gp =0, Cd =
0) media. It is understood that the elastic foundation increases the dimensionless pulsation
frequency, and the DIR shifts to the right. It is due to the fact that putting the SWCNT in an
elastic medium makes the system more stable and stiffer. It is also concluded that the DIR of
the Pasternak or visco-Pasternak model is higher than that of Winkler or visco-Winkler one.
It is because the Pasternak model considers not only the normal stresses but also the trans-
verse shear deformation and continuity among the spring elements. Furthermore, the DIRs
predicted by the visco-Pasternak and visco-Winkler media are lower than those predicted by
the Pasternak and Winkler models, respectively.

Figure 3 shows the dimensionless pulsation frequency with respect to the dimensionless pul-
sation amplitude for different mode numbers. Increasing the mode numbers, the dimensionless
pulsation frequency and the DIR will increase.



272 R. KOLAHCHI and A. M. MONIRI BIDGOLI

Table 1 Dimensionless frequency of microbeams for different mode numbers and slenderness ratios
based on EBT, TBT, and SSDBT

Mode Theory
L = 10h L = 30h L = 100h

CT MCST CT MCST CT MCST

1

EBT, present work 13.448 0 24.513 0 13.497 2 24.602 7 13.502 8 24.612 9

EBT, Ref. [24] 13.448 4 24.513 7 13.497 5 24.603 1 13.503 1 24.613 3
TBT, present work 13.122 8 23.704 4 13.459 3 24.505 7 13.499 4 24.604 1

TBT, Ref. [24] 13.123 2 23.705 3 13.459 5 24.506 1 13.499 6 24.604 5
SSDBT, present work 13.123 3 24.314 9 13.459 3 24.579 8 13.499 4 24.610 8

SSDBT, Ref. [24] 13.123 9 24.315 7 13.459 5 24.580 1 13.499 6 24.611 2

2

EBT, present work 53.146 6 96.875 8 53.915 1 98.276 6 54.004 1 98.440 1

EBT, Ref. [24] 53.147 3 96.876 7 53.916 1 98.277 9 54.005 6 98.441 2
TBT, present work 48.674 3 86.491 6 53.318 4 96.769 2 53.950 1 98.299 1

TBT, Ref. [24] 48.675 1 86.492 4 53.319 5 96.770 8 53.950 7 98.300 5

SSDBT, present work 48.691 4 94.112 7 53.319 4 97.915 1 53.950 1 98.407 2
SSDBT, Ref. [24] 48.692 2 94.113 4 53.320 6 97.916 3 53.950 7 98.408 0

3

EBT, present work 117.267 3 213.756 1 121.620 2 220.620 6 121.485 1 221.446 7

EBT, Ref. [24] 117.269 8 213.758 9 121.623 6 220.623 6 121.487 7 221.447 1

TBT, present work 98.884 7 174.070 1 118.104 5 213.344 1 121.208 2 220.735 4
TBT, Ref. [24] 98.886 5 174.072 4 118.108 6 213.347 3 121.210 3 220.738 3

SSDBT, present work 98.997 7 202.329 4 118.111 2 218.839 7 121.208 8 221.277 0
SSDBT, Ref. [24] 98.999 7 202.331 7 118.114 8 218.841 6 121.210 7 221.279 4

Fig. 2 Dimensionless pulsation amplitude
versus dimensionless pulsation fre-
quency for different elastic media

Fig. 3 Dimensionless pulsation amplitude
versus dimensionless pulsation fre-
quency for different values of mode
numbers

Figure 4 depicts the effect of the ratio of length to thickness on the dimensionless pulsation
frequency with respect to the dimensionless pulsation amplitude. It is obvious that increasing
length to thickness ratio causes the DIR and dimensionless pulsation frequency to shift to the
left and decrease, respectively. This is due to the fact that decreasing length to thickness ratio
makes the system more stable.

Figure 5 demonstrates variations of the dimensionless pulsation frequency versus the dimen-
sionless pulsation amplitude for different values of nonlocal parameters. It can be observed
that the increment of nonlocal parameter in the MCST makes the DIR and dimensionless pul-
sation frequency shift to the right and increase. This is because the MCST expresses the one
additional rotation gradient tensor.
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Fig. 4 Dimensionless pulsation amplitude
versus dimensionless pulsation fre-
quency for different values of length to
thickness ratio

Fig. 5 Dimensionless pulsation amplitude
versus dimensionless pulsation fre-
quency for different values of nonlocal
parameter

6 Conclusion

The dynamic response of SWCNTs has applications in designing many NEMS/MEMS de-
vices such as sensors, actuators, fluid storage, and solar cell. The dynamic stability of SWCNTs
is studied in this paper. The size effects are considered based on the MCST. With the appli-
cation of the SSDBT and Hamilton’s principle, the motion equations are derived. The DIR of
the SWCNT is obtained using the DQM in conjunction with the Bolotin method. The effects
of nonlocal parameter, visco-Pasternak foundation, mode numbers, and aspect ratio are shown
in the dynamic response of system. Results indicate that the MCST is higher than the classical
one. In addition, considering the elastic medium causes the DIR and dimensionless pulsation
frequency to shift to right and increase. Furthermore, increasing length to thickness ratio causes
the DIR and dimensionless pulsation frequency to shift to the left and decrease, respectively.
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[24] Akgöz, B. and Civalek, Ö. A size-dependent shear deformation beam model based on the strain
gradient elasticity theory. International Journal of Engineering Science, 70, 1–14 (2013)


