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Abstract The bending of the Euler-Bernoulli micro-beam has been extensively modeled
based on the modified couple stress (MCS) theory. Although many models have been
incorporated into the literature, there is still room for introducing an improved model in
this context. In this work, we investigate the thermoelastic vibration of a micro-beam
exposed to a varying temperature due to the application of the initial stress employing the
MCS theory and generalized thermoelasticity. The MCS theory is used to investigate the
material length scale effects. Using the Laplace transform, the temperature, deflection,
displacement, flexure moment, and stress field variables of the micro-beam are derived.
The effects of the temperature pulse and couple stress on the field distributions of the
micro-beam are obtained numerically and graphically introduced. The numerical results
indicate that the temperature pulse and couple stress have a significant effect on all field
variables.
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1 Introduction

More recently, small scale and nano-scale structures have been used in several design devices
such as nuclear drive and switches. A few models are developed for small scale and nano-
structures, including strain gradient and couple stress. The modified couple stress (MCS)
theory can be seen as an exceptional example of the strain gradient theory. The MCS theory
considers the revolution as a variable in determining curvature, while the strain inclination
theory considers the strain to be variable in curvature pronounce[1–4].

The classical elasticity theory is not suitable to capture the effect of the size of the micro-
structure. In addition, it is appropriate to study the material behavior on a large scale. As
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the size of the study decreases, the accuracy of the classical theory diminishes and therefore
its expectation of the material behavior on the micro- and nano-scales does not match with
experimental results. It is observed that the explanation behind this deviation is the critical
effect of the micro-structure[5–7].

On the other hand, non-classical theories (e.g., strain gradient and couple stress) are used
to concentrate on the material behavior on these scales. These theories also contain size scale
factors which show the influence of micro-structure. The MCS model is noted to be the simplest
among these models. Constitutive equations established for an isotropic material based on the
classical MCS model include Lame’s coefficients and two size scale factors.

Through the experimental observations of micro-/nano-scale structures, it is shown that
mechanical properties depend on the size, and these properties cannot be seen when we use
the classical theories of elasticity[8–11]. Hence, modified elasticity theories such as the MCS,
the nonlocal continuum mechanics, the nonlocal strain gradient theory, and the strain gradi-
ent theory are widely used to analyze the dynamic and static responses of micro-/nano-scale
structures[12].

An extensive modification of the classical MCS theory has been conducted and mathemat-
ically analyzed in Refs. [13]–[15]. In Ref. [16], the authors introduced the MCS model where
the couple stress tensor was antisymmetric. However, the constitutive equations established by
this theory consist of only one length scale factor. In Ref. [17], the reaction of the thermoelastic
micro-beam using the MCS theory due to thermal source was introduced. In Ref. [18], the
authors considered the beam problem using the Euler-Bernoulli model and the MCS theory.

More recently, higher-order continuum theories have been developed to predict the relation-
ships dependent on the size-dependent size[19]. In the 1960s, some researchers proposed a couple
stress theory of elasticity that could be classified as a non-classical theory[20]. The theory made
it possible to explain the size-dependent effects using two higher-order material constants in
state equations. A simplification introduced by Yang et al.[21] to the scaling complex relations
of the couple stress theory of elasticity resulted in the modified coupled stress theory which
was suitable due to the effects using only one scale parameter for the length of the material.
Recently, many researchers have investigated non-classical continuum theorems to formulate
and study the size-dependent mechanical behavior of beams and plates.

Tsiatas[22] proposed a new model of Kirchhoff plates based on the MCS theory with the
consideration of the size-dependent effects. Wang et al.[23] proposed the Euler-Bernoulli beam
model on the basis of the MCS model, and studied the effects of the length material parameter
on the properties of the static mechanical micro-beam. Duan et al.[24] used the Hamilton
principle and relations of the non-local Eringen’s theory to develop the non-local theories of the
Euler-Bernoulli, Timoshenko, Reddy, and Levinson beams. An advanced continuum mechanics
theory should be used to capture the size effects, and these papers used the MCS theory[25–28].

This article contributes to introducing the thermomechanical response of micro-beams based
on the generalized theory of thermoelasticity. The MCS theory is introduced to study the
effect of size on small-scale Euler-Bernoulli beams. The micro-beam is subject to a varying
temperature plus an initial compression stress. Using a combination of the dynamic equation of
the transverse deflection, MCS theory and generalized thermoelasticity, two partial differential
equations are derived and completely solved using the Laplace transform method. The effects of
the scale parameter, initial stress, relaxation time, and pulse width on the temperature, stress,
displacement, and couple stress are studied. The results of some previous work are also inferred
from the current analysis as special cases. The current work is a framework for the models
conducted in Refs. [29]–[31].
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2 Basic equations

For simplicity and readability propose, all the mathematical notations appearing in this
paper are defined in nomenclature. The basic equations of the isotropic homogenous thermoe-
lastic medium (in the Oxyz coordinates) at an initial uniform temperature T0 based on the
MSC theory are given as follows[17,23,32]:

σij = λekkδij + 2µeij − γθδij , (1)

mij = 2αχij , (2)

χkl =
1

2

(∂ωk

∂xl
+

∂ωl

∂xk

)

, (3)

ωi =
1

2
eijkuk,j , (4)

ekl =
1

2

(∂uk

∂xl
+

∂ul

∂xk

)

, (5)

where λ and µ denote Lame’s constants, σij are components of the stress tensor, ekl are compo-
nents of the strain tensor, uk is the displacement vector, θ = T − T0 is the excess temperature
distribution, ωi is the rotation vector, mij is the couple stress tensor, α = l2µ is a higher-
order modulus and is considered as the rotational modulus indicating the resistance of the
material versus the gradient of its element rotation, l is the material length scale parameter,
γ = αtE/(1− 2ν), E is Young’s modulus, αt is the thermal expansion coefficient, ν is Poisson’s
ratio, and δij is the Kronecker delta function. The parameter α is indeed a higher-order modu-
lus which can be regarded as the rotational modulus representing the resistance of the material
against the gradient of the rotation of its elements.

In this paper, we take the equation of heat conduction corresponding to that conducted in
Ref. [33]. This equation can be written as follows:

∇ (K∇θ) =
(

1 + τ0
∂

∂t

)(K

k

∂θ

∂t
+ γT0

∂ekk

∂t

)

, (6)

where K is the thermal conductivity, k = K/(ρCE), CE is the specific heat per unit mass at
constant strain, τ0 indicates the thermal relaxation time, which guarantees that Eq. (6) will
expect a limited speed of heat spread. The values of λ and µ are defined as[34]

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
. (7)

3 Mathematical model description

In this model, we assume that the thermoelastic micro-beam properties are unstrained,
unstressed, and clamped-clamped. Let the constants ρ, σ0, and A denote the density, the
initial tension, and the area cross-sectional of the micro-beam, respectively. As shown in Fig. 1,
the micro-beam length, width, and uniform thickness are denoted as L, b, and h, respectively.

In order to formulate the governing equations of the thermoelastic micro-beam, the following
assumptions are considered: (i) the cross-sectional area along the x-direction does not change;
(ii) the Euler-Bernoulli beam theory is employed[35–36]; (iii) the only transverse motion is taken
into consideration. As explained in Refs. [36]–[39], the axial motion can be very important and
in some cases cannot be ignored. Based on the Euler-Bernoulli beam theory, the displacements
may be written as follows:

u = −z
∂w

∂x
, v = 0, w = w(x, t), (8)
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Fig. 1 Schematic diagram for the micro-beam (color online)

in which u is the axial displacement and w is the lateral deflection. By substituting Eq. (8) into
Eq. (4), the rotation vector can be written as

ωy = −
∂w

∂x
, ωx = ωz = 0. (9)

The components of the curvature tensor are derived by substituting Eq. (9) into Eq. (3) as

χxy = −
1

2

∂2w

∂x2
, χxz = χzx = χzy = χyz = 0. (10)

Using Eq. (8), the axial thermal stress σx given in Eq. (1) is reduced to

σx = −E
(

z
∂2w

∂x2
+ αT θ

)

. (11)

The bending moment M resultant of the micro-beam can be defined as follows:

M = b

∫ h/2

−h/2

mxydz + b

∫ h/2

−h/2

zσxdz. (12)

Substituting Eqs. (2), (10), and (11) into Eq. (12), the moment M is given by

M(x, t) = −EI
(∂2w

∂x2
+ αT MT

)

− αA
∂2w

∂x2
, (13)

where

MT =
12

h3

∫ h/2

−h/2

θ(x, z, t) zdz, mxy = −
1

2
α

∂2w

∂t2
. (14)

The transversely governing equation of motion due to the initial compression stress σ0 can
be formulated as[30,40]

∂2M

∂x2
= σ0A

∂2w

∂x2
+ ρA

∂2w

∂t2
. (15)

Note that a negative estimation of σ0 suggests the initial tensile stress. By substituting
Eq. (13) into Eq. (15), the equation of motion can be expressed as

(

(EI + αA)
∂2

∂x4
+ ρA

∂2

∂t2
+ σ0A

)

w + αT EI
∂2MT

∂x2
= 0. (16)

It can be noticed from Eq. (16) that the motion equation of the Euler-Bernoulli beam is
composed of some parts: some of them are associated with ρA, σ0A, EI, and αA, and the
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others are relevant to αT EI. The first part is the same as the one in the classical model, while
the second part is added due to the existence of the MCS theory. The third part is due to
the initial stress, and the last part is due to the temperature field. When the parameter of the
couple stress of the material vanishes (α = 0), the basic equation reduces to the classical model.

Substituting Eq. (8) into Eq. (6), the heat conduction will be in the form

∂2θ

∂x2
+

∂2θ

∂z2
=

(

1 + τ0
∂

∂t

)( 1

k

∂θ

∂t
−

γT0z

K0

∂

∂t

(∂2w

∂x2

))

. (17)

The temperature θ(x, z, t) can be assumed to be in the form of sinusoidal function[41], i.e.,

θ(x, z, t) = Θ (x, t) sin
(πz

h

)

. (18)

By substituting Eq. (18) into Eqs. (16) and (13), we get

(EI + αA)
∂2w

∂x4
+ ρA

∂2w

∂t2
+ σ0A

∂2w

∂x2
+ EI

24αT

π2h

∂2Θ

∂x2
= 0, (19)

M(x, t) = − (EI + αA)
∂2w

∂x2
− EI

24αT

π2h
Θ. (20)

Integrating Eq. (17) along the z-axis, the following heat equation is attained:

∂2Θ

∂x2
−

π2

h2
Θ =

(

1 + τ0
∂

∂t

)(1

k

∂Θ

∂t
−

γT0π
2h

24K0

∂

∂t

(∂2w

∂x2

))

. (21)

We use the non-dimensional quantities as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x′, u′, w′, z′) =
1

L
(x, u, w, z), Θ′ =

γΘ

E
, σ′

x =
σx

E
,

(t′, t′0) =
c

L
(t, t0), M ′ =

M

bEh2
, c =

√

E

ρ
.

(22)

The non-dimensional basic equations can be rewritten as (dropping primes for convenience)

∂4w

∂x4
+ A1

∂2w

∂t2
+ A8

∂2w

∂x2
+ A2

∂2Θ

∂x2
= 0, (23)

∂2Θ

∂x2
− A3Θ =

(

1 + τ0
∂

∂t

)(

A4
∂Θ

∂t
− A5

∂

∂t

(∂2w

∂x2

))

, (24)

σx = −z
∂2w

∂x2
− θ, (25)

M(x, t) = −A6
∂2w

∂x2
− A7Θ, (26)

where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A1 =
L2AEc2

EI + αA
, A2 =

24LEI

π2h (EI + αA)
, A3 =

π2L2

h2
, A4 =

cL

k
,

A5 =
γ2 T0π

2h

24KE
, A6 =

(EI + αA)

bEh2L
, A7 =

24IαT

π2hb
, A8 =

L2Aσ0Ec2

EI + αA
.

(27)
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4 Initial and boundary conditions

The initial conditions are assumed to be homogeneous, i.e.,

w(x, 0) =
∂w(x, 0)

∂t
= 0, Θ(x, 0) =

∂Θ(x, 0)

∂t
= 0. (28)

We consider the case that the two ends of the micro-beam are clamped. Then, the following
boundary conditions are expressed as:

w(x, t)|x=0, L = 0,
∂w(x, t)

∂x

∣

∣

∣

∣

x=0, L

= 0. (29)

Also, we suppose that the surface x = 0 of a micro-beam is subject to a temperature pulse
in the form

Θ(0, t) = Θ0

⎧

⎨

⎩

sin(ωt), 0 � t �
π

ω
,

0, t >
π

ω
,

(30)

where Θ0 is the amplitude of the thermal load, and ω is the temperature pulse. Furthermore,
the temperature change at the end boundary x = L should satisfy the condition

∂Θ

∂x
= 0, x = L. (31)

5 Solution in the transformed domain

The Laplace transform is characterized by the integral

f (x, s) =

∫ ∞

0

e−st f (x, t) dt. (32)

The governing equations in the Laplace domain are given by

d4w

dx4
+ A8

d2w

dx2
+ A1s

2w + A2
d2Θ

dx2
= 0, (33)

( d2

dx2
− B1

)

Θ = −B2
d2w

dx2
, (34)

σx = −z
d2w

dx2
− θ, (35)

M = −A6
d2w

dx2
− A7Θ, (36)

where

B1 = A3 + s(1 + τ0s)A4, B2 = s(1 + τ0s)A5. (37)

Combining Eq. (33) and Eq. (34) gives the differential equation for w or Θ as

( d6

dx6
− A

d4

dx4
+ B

d2

dx2
− C

)

{

w, Θ
}

= 0, (38)

where the coefficients A, B, and C are given, respectively, by

A = B1 + A2B2 − A8, B = s2A1 − B1A8, C = A1B1s
2. (39)
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Introducing mi into Eq. (38) yields

(D2 − m2
1)(D

2 − m2
2)(D

2 − m2
3)

{

w, Θ
}

= 0, (40)

where D = d/dx, and m2
1, m2

2, and m2
3 are the characteristic roots of the equation

m6 − Am4 + Bm2 + C = 0. (41)

The roots of Eq. (41) achieve the notable relations

m2
1 + m2

2 + m2
2 = A, m2

1m
2
2 + m2

2m
2
3 + m2

3m
2
1 = B, m2

1m
2
2m

2
2 = C. (42)

The analytical solution to Eq. (40) can be calculated as

w =

3
∑

i=1

(Li cosh(mix) + Mi sinh(mix)), (43)

Θ =

3
∑

i=1

βi(Li cosh(mix) + Mi sinh(mix)), (44)

where Li and Mi are constant coefficients depending on s, and

βi = −
B2m

2
i

m2
i − B1

. (45)

The bending moment M , given in Eq. (36) in the Laplace space using Eqs. (43) and (44),
can be gained as

M = −

3
∑

i=1

γi(Li cosh(mix) + Mi sinh(mix)), (46)

where γi = A6m
2
i + A7βi.

Also, the axial displacement after using Eq. (43) takes the form

u = −z
dw

dx
= z

3
∑

i=1

mi(Li sinh(mix) + Mi cosh(mix)). (47)

Furthermore, the strain can be calculated as

e =
du

dx
= −z

3
∑

i=1

m2
i (Li cosh(mix) + Mi sinh(mix)), (48)

σx = −

3
∑

i=1

(zm2
i + βi sin(πz/h))(Li cosh(mix) + Mi sinh(mix)). (49)

In the domain of the Laplace transform, the boundary conditions (29)–(31) take the forms

w(x, s)|x=0,L = 0,
dw(x, s)

dx

∣

∣

∣

∣

x=0,L

= 0, (50)

Θ(x, s)
∣

∣

x=0
=

ω Θ0

s2 + ω2
= G(s). (51)

∂Θ

∂x
= 0, x = L. (52)
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Substituting Eqs. (50)–(52) into Eqs. (43) and (44) yields

3
∑

i=1

Li = 0, (53)

3
∑

i=1

(Li cosh(miL) + Mi sinh(miL)) = 0, (54)

3
∑

i=1

miMi = 0, (55)

3
∑

i=1

mi(Li sinh(miL) + Mi cosh(miL)) = 0, (56)

3
∑

i=1

βiLi = G(s), (57)

3
∑

i=1

βimi(Li sinh(miL) + Mi cosh(miL)) = 0. (58)

To complete the analytical solution within the Laplace transform domain, it remains for us
to find the values of the coefficients Li and Mi. These values can be easily derived by solving
the system of equations (53)–(58).

To obtain the field variables in the physical domain, the inversion of the Laplace transform
will be derived. Due to the complexity of obtaining the inversion of the Laplace transform
analytically, instead, the Riemann-sum approximation technique will be employed. To accom-
plish this task, the following well-known Riemann-sum approximation formula defined will be
used[42]:

f(x, z, t) =
eυt

t

(1

2
Re(F (x, z, υ)) + Re

N
∑

n=0

(

F
(

x, z, v +
inπ

t

)

(−1)n
))

. (59)

For convergence of the solution reasons, the Riemann-sum approximation technique[43] insists
that υ ≈ 4.7/t.

6 Numerical results

In this section, the effects of the temperature pulse, the absence and presence of the couple
stress, and the relaxation time on the field amounts are numerically discussed. All the numerical
calculations are conducted using MATHEMATICA platform. The mechanical properties of the
Nickel micro-beam can be introduced as[44]

{

E = 210 GPa, ρ = 8 900 kg/m
3
, CE = 438 J/(kg · K),

αT = 13 × 10−6 K−1, ν = 0.31, K = 92 W/(m · K).

We assume that the values of the micro-beam non-dimensional operational parameters are
assigned as h = 10, L/h = 10, b/h = 0.5, t = 0.12 s, and Θ0 = 1. Using the approximation
method defined in Eq. (59), the values of the deflection w, temperature θ, thermal moment M ,
displacement u, and stress σx are computed. The effects of the presence of the couple stress,
initial stress, and temperature pulse on the micro-beam will be introduced.
6.1 Couple stress effect

This subsection indicates the effects of the small length scale α (couple stress) on micro-
beams in terms of the deflection w, temperature θ, thermal moment M , displacement u, and
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stress σx in two cases. Namely, the presence and absence of couple stress are indicated as
α = 2.5 and 0.0, respectively. Figures 2–6 illustrate the two cases, where the parameters σ0, ω,
and τ0 are fixed to certain values.

In order to verify the results obtained in this subsection, they are compared with the results
of the classical Euler-Bernoulli beam. It is worth noting that the values obtained by the MCS
theory in the present study are always greater than the calculated values based on the classical
theory. This important observation is consistent with the results obtained by Babaei et al.[45].

As displayed in Fig. 2, compared with the classical theory considering the effect of the
material length scale parameter on the MCS theory, it leads to a decrease in the lateral deflection
of the micro-beam. Therefore, taking into account the parameter of the material length scale,
the maximum and minimum of the lateral deflection decrease. Also, as time goes by, the
deflection starts from zero and reaches a maximum value at x = 0.2 based on the couple stress
theory, and finally quickly tends to zero, satisfying the mechanical boundary condition.

Fig. 2 The transverse deflection w versus x with different modified couple stress parameters α (color
online)

Figure 3 depicts that the parameter α has a small effect on the temperature change in both
the MCS and the classical theory models, where the two curves are very close to each other.
On the other hand, the figure indicates that the temperature values drop dramatically in the
micro-beam towards the length of the beam. This situation corresponds to the physical state.

Fig. 3 The temperature θ versus x with different modified couple stress parameters α (color online)

Thus, we can conclude that the thermal vibrations of the micro-beams obtained with the
help of the MCS are higher than those predicted by the classical theory of Euler-Bernoulli
beams. Comparing the results with Kong et al.[46], we find that there is a convergence of the
results.
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As can be seen in Fig. 4, the MCS model predicts lower values of natural axial stress σx in
comparison with the classical theory. The parameter α has a significant effect on the distribution
of the bending moment M as shown in Fig. 5. It is clearly observed in Fig. 5 that the value
of the bending moment M decreases with a decrease in the value of the small length scale
parameter α, and this corresponds to Refs. [47]–[49]. Figure 6 illustrates that the value of the
axial displacement u goes down in the range 0 � x � 0.1 and then goes up to the maximum
amplitudes in the range 0.1 � x � 0.3. In addition, the small length scale parameter α has
a great impact on the displacement distribution u. From Figs. 2–6, we note that the values of
distribution fields increase in the presence of the couple stress term and decreases in the absence
of that term.

Fig. 4 The stress σx versus x with different modified couple stress parameters α (color online)

Fig. 5 The bending moment M versus x

with different modified couple stress
parameters α (color online)

Fig. 6 The displacement u versus x with differ-
ent modified couple stress parameters α

(color online)

6.2 The initial stress effect on solid materials
This case depicts the variety of the dimensionless physical fields of the micro-beam with

three different values of the dimensionless initial stress σ0 (see Figs. 7–11). In this case, we have
assumed that the pulse of temperature ω = 0.2 and the relaxation time τ0 = 0.1. Note that,
the value of σ0 = 0 indicates the absence of the initial stress, while other values indicate that
the micro-beam is subject to compressive strength.

Figure 7 shows the deflection of the micro-beam for various values of the non-dimensional
initial stress parameter σ0. Obviously, by raising the value of the parameter σ0, the deflection
increases. Figure 8 displays the temperature response of the micro-beam for various values of
the initial stress parameter versus the distance x. In this figure, the increase in the initial stress
force σ0 causes a weak effect on the temperature of the micro-beam. Figures 9–11 indicate the
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Fig. 7 The transverse deflection w versus x with different initial stress parameters σ0 (color online)

Fig. 8 The temperature θ versus x with
different initial stress parameters σ0

(color online)

Fig. 9 The stress σx versus x with different ini-
tial stress parameters σ0 (color online)

Fig. 10 The bending moment M versus x

with different initial stress parame-
ters σ0 (color online)

Fig. 11 The displacement u versus x with dif-
ferent initial stress parameters σ0 (color
online)

variations of the thermal stress σx, the displacement u, and the bending moment M for various
values of the dimensionless initial stress σ0. As can be seen, the initial pressure increase leads
to an increase in the field variables.
6.3 The effect of temperature pulse

Figures 12–16 display the reactions of a clamped-clamped micro-beam resonator in the
direction of the axial x with different temperature pulses ω, σ0 = 1, and α = 2.5.
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Fig. 12 The transverse deflection w versus x with different temperature pulses ω (color online)

Fig. 13 The temperature θ versus x with
different temperature pulses ω

(color online)

Fig. 14 The stress σx versus x with different
temperature pulses ω (color online)

Fig. 15 The bending moment M versus x

with different temperature pulses ω

(color online)

Fig. 16 The displacement u versus x with dif-
ferent temperature pulses ω (color on-
line)

From these figures, we note that the pulse temperature constant has a significant effect on
the mechanical behaviors of the Euler-Bernoulli micro-beam. The inclusion of the temperature
pulse effect in the beam theory leads to an increase in the thermodynamic interactions in the
micro-beam. As a result, this study gives a physical realization that can be practical to design
and analyze the vibrations for micro-/nano-structures.
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6.4 Comparable results in Lord-Shulman (LS) and coupled thermoelasticity (CTE)
theories

In the current case, the responses of variable fields in the cases of the theories of coupled
thermoelasticity and the Lord-Shulman theory are analyzed. The calculations are conducted
based on the values of the relaxation parameter τ0. If τ0 = 0, the responses of variable fields are
applied to the CTE theory. If τ0 > 0, the responses of variable fields are applied to the LS theory.
The other parameters are assumed to be constants. From Figs. 17–21, we conclude that: (i) the
magnitudes of the considered field variables in the CTE model are greater compared with those
in the LS model; (ii) the parameter τ0 has a great effect on the propagation of all field quantities;
(iii) the micro-beam exhibits more deflection in the case of the coupled thermoelastic (CT) beam
than that for the generalized thermoelastic LS model; (iv) the mechanical distributions indicate
that the wave propagates with a finite velocity in the medium; (v) although the thermal wave
spreads with a finite speed in the coupled theory thermoelasticity as seen in Figs. 17–21, there
are great differences between the coupled theory and the generalized theory.

Fig. 17 The transverse deflection w versus
x for different theories of thermoe-
lasticity (color online)

Fig. 18 The temperature θ versus x for differ-
ent theories of thermoelasticity (color
online)

Fig. 19 The stress σx versus x for different
theories of thermoelasticity (color
online)

Fig. 20 The bending moment M versus x for
different theories of thermoelasticity
(color online)

7 Conclusions

In this work, the effects of the initial stress, temperature pulse heating, and MCS term on
the thermoelastic response of a micro-beam are mathematically analyzed. A governing equation



1818 A. E. ABOUELREGAL

Fig. 21 The displacement u versus x for different theories of thermoelasticity (color online)

that governs the studied problem dependent on the Euler-Bernoulli theory is proposed by the use
of Hamiltonian’s principle. Using the Laplace transform, the expressions of the field variables
are derived. The proposed model is numerically analyzed using MATHEMATICA.

The numerical results indicate that the parameter of the couple stress has significant ef-
fects on all the distributions of the studied fields. Increasing the effect of couple stress leads
to decreasing the values of the basic field variables. Furthermore, the thermoelastic deflec-
tions, thermal stress, displacement, temperature, and moment strongly depend on the pulse of
temperature.

The current investigation can be furthered to the analysis and design of micro-structures
with geometrical shapes and different load conditions under different boundary conditions based
on the Euler-Bernoulli beam theory, and the obtained results may be valuable to mechanical
engineers in designing small scale resonators and MEMS applications.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author (s) and the source, provide a link
to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

References

[1] YANG, F., CHONG, A. C. M., LAM, D. C. C., and TONG, P. Couple stress based strain gradient
theory for elasticity. International Journal of Solids and Structures, 39, 2731–2743 (2002)

[2] AKGOZ, B. and CIVALEK, O. Strain gradient elasticity and modified couple stress models for
buckling analysis of axially loaded micro-scaled beams. International Journal of Engineering Sci-
ence, 49, 1268–1280 (2011)

[3] REDDY, J. N. and KIM J. A nonlinear modified couple stress-based third-order theory of func-
tionally graded plates. Composite Structures, 94, 1128–1143 (2012)

[4] ABOUELREGAL, A. E. and MOHAMMED, W. W. Effects of nonlocal thermoelasticity on
nanoscale beams based on couple stress theory. Mathematical Methods in the Applied Sciences
(2020) https://doi.org/10.1002/mma.6764
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