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The size-dependent elasticity of a series of nickel cantilever microbeams was inves-

tigated experimentally for the first time. The experimental results revealed that the

dimensionless natural frequencies of the cantilever microbeams increase to about

2.1 times with the beam thickness decreasing from 15 to 2.1 µm. Furthermore, based

on the strain gradient elasticity theory (SGT) and by using the differential quadra-

ture method (DQM) and the least square method (LSM), the experimental results

were interpreted and the material length scale parameters in the scale of micron

in elastic range were obtained. This investigation will be useful and helpful for

the theoretical and numerical simulation of micro-structures and important for the

design of the MEMS/NEMS. © 2016 Author(s). All article content, except where

otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4964660]

I. INTRODUCTION

Microbeams and microplates are the main components of micro- and nano-electro mechani-

cal systems (MEMS and NEMS), such as micro-resonators,1 Atomic Force Microscopes (AFMs),2

micro-switches3 and micro-actuators,4 etc. Many experiments, mainly about the plastic behaviors,

have found that the mechanical behaviors of the micro- and nano-structures are size-dependent when

the characteristic dimension of the structures is in the micro- and nano-meter scale.5–18 For exam-

ple, Fleck et al.9 found that the normalized torque increases dramatically with the wire diameter

decreasing from 170 to 20 µm in the torsion tests of polycrystalline copper wires. Liu et al.10 also

observed the significant size effects at initial yielding and plastic flow stress in the torsion test of

polycrystalline copper wires with diameters from 18 to 105 µm. In addition, experiments on the

size-dependent elasticity of the micro-structures in the scale of nano-meter can be found in open

literature.19,20 For instance, Shin et al.20 found the elastic modulus of a single EAP nanofiber is

size-dependent with the diameter from 50 to 110 nm due to the influence of the surface effect.

However, at micro-meter scale, the experiments on size-dependent elasticity are very limited.21,22

Lam et al.21 performed the micro bending test of epoxy beams, and found that the normalized

bending rigidity increases about 2.4 times as the thickness of the microbeam reduces from 115

to 20 µm due to the effect of strain gradient elasticity. It should be pointed that the experimental

reports on size-dependent elasticity in the scale of micron mainly focused on the micro-structures

composed of non-metallic materials, and the experimental method was static bending test by using

the AFM.

The classical continuum theory is size-independent and cannot predict the small-scale effects.

Thus, for capturing the size effects of micro and nano-structures, various higher-order continuum

theories involving additional material length scale parameters have been proposed. For example, the

classical couple stress theory,23,24 nonlocal elasticity theory,25 surface elasticity theory,26,27 strain
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gradient theory,9,21 modified couple stress theory28 and nonlocal strain gradient theory.29 Based on

these theories, theoretical and numerical investigations on small-scale effects of micro-structures

have been performed.30–39

Review of the previous research on the size effects of the micro-structures in the scale of micron,

most of the investigations are the theoretical and numerical simulation, however, the experimental

investigations of size effects and the measurement of the material length scale parameters in elastic

range are very limited, especially on size-dependent elasticity of metal micro-scale structures. In this

study, an experimental study of size-dependent elasticity for cantilever microbeams composed of

nickel by using a dynamic test was reported for the first time.

II. EXPERIMENT DESIGN

The nickel foils (99.99% purity) with thicknesses (h) of 2.1, 3.2, 5.2, 10.0 and 15.0 µm (with the

thickness tolerance of 0.2 µm) were employed in this study. The Young’s modulus (E) and the mass

density (ρ) of nickel are 207 GPa and 8900 kg/m3, respectively. Each foil was cut into 5 strips with

1 mm wide and 17 mm long (shown in FIG. 1(a)) with the length tolerance of 0.15 mm for reducing

the errors of the experiment by multiple independent measurements. Then these stripes were vacuum

annealed at 300◦C for 5 hours to eliminate the machining residual stresses. A cantilever microbeam

with width 1 mm and length 5 mm was obtained by clamping a strip to a special gripper (the deepness

of the gripper is 12 mm), as shown in FIG. 1(b). Furthermore, the typical images of the surface

morphology and the roughness of the foils were measured by using the laser microscope, as shown in

FIG. 1(c) and (d). From the Figure, the roughness is very small (less than 2 percent of the thickness

of the foils) and the surface smoothness is enough for our experimental study (the roughness of the

foils with 2.1, 10.0 and 15.0 µm thickness is 0.036, 0.028 and 0.039 µm respectively which are not

given in FIG. 1).

A vibration test system made up of laser Doppler vibrometer (LDV), PC, loudspeaker and three-

dimensional translation stage was used to measure the natural frequencies of the nickel cantilever

microbeams, as shown in FIG. 2(a). During the test process, a nickel cantilever microbeam was

fixed on the top surface of the three-dimensional translation stage. The sinusoidal sound signal was

produced by the loudspeaker to act upon the cantilever microbeam. The real-time vibration responses

of the cantilever microbeam were captured by the LDV and displayed on the PC. To obtain the

natural frequency of the cantilever microbeam, the frequency of the sinusoidal sound signal was

modulated in a certain frequency range with the accuracy of 0.1 Hz. While the resonant response

of the cantilever microbeam was captured by the LDV, one can obtain the natural frequency of the

cantilever microbeam which was equal to the resonant frequency.

FIG. 1. Typical images of the: (a) nickel stripes; (b) nickel cantilever microbeam; (c) and (d): surface morphology and the

roughness of the foils.
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FIG. 2. (a) A schematic of the vibration test system; (b) Typical frequency–response curves of the cantilever microbeams.

TABLE I. Natural frequencies of the cantilever microbeams with different thickness.

Thickness
Natural frequency of experimental values (Hz)

Mean

(µm) 1 2 3 4 5 value (Hz)

2.1 118.9 132.2 136.5 140.3 153.9 136.4

3.2 138.1 141.0 145.9 148.3 162.2 147.1

5.2 202.3 204.7 209.0 211.9 212.9 208.2

10.0 347.6 352.5 371.6 381.2 390.0 368.6

15.0 440.7 448.9 449.9 457.2 465.7 452.5

Repeating the above test, the natural frequency of each cantilever microbeam was obtained in

TABLE 1. In addition, the typical frequency-response curves of the cantilever microbeams (2.1, 3.2

and 5.2 µm thickness) were given in FIG. 2(b), from the figure, the resonant responses were observed

and the natural frequencies of the microbeams could be obtained directly.

III. RESULTS AND DISCUSSION: STRAIN GRADIENT ELASTICITY

In order to analyze the experimental results, the following process was performed. Based on the

classical Bernoulli-Euler beam theory, the analytical solution of the classical natural frequency of a

cantilever beam is given by

ωct =
(snL)2

2π

√

EI

ρbhL4
, snL = 1.875, 4.694, 7.855 (1)

where EI is the bending rigidity of the microbeam, h is the thickness, b is the width, L is the length,

n is the order of the frequency, and I = bh3/12. In this experiment, the obtained natural frequencies

of the nickel cantilever microbeams were the first-order natural frequency, thus the value of snL is

set to 1.875.

The dimensionless frequency (frequency ratio) is defined as

⌢

ω =ω/ωct (2)

where ω is the obtained natural frequency of the nickel cantilever microbeams.

The dimensionless bending rigidity (the ratio of bending rigidity) can be given as

ξ = (ω/ωct)
2 (3)

Then one can obtain the dimensionless frequency and the dimensionless bending rigidity based

on TABLE 1, Eqs. (1), (2) and (3), as shown in FIG. 3.

From FIG. 3, one can observe that the dimensionless frequency increases to about 2.1 times and

the dimensionless bending rigidity increases to about 4.4 times with decreasing the beam thickness

from 15 to 2.1 µm. It reveals that the elastic vibration of the nickel cantilever microbeams is size-

dependent in the scale of micron, which was not reported in other open literature.
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FIG. 3. Raw experimental data for: (a) dimensionless frequency; (b) dimensionless bending rigidity.

In order to capture the size effects of the micro-structures, Lam et al.21 developed the strain

gradient elasticity theory (SGT) which involves three material length scale parameters correspond-

ing to the dilatation gradient vector, the deviatoric stretch gradient tensor and the curvature tensor

respectively. Based on the SGT and the variational principle, Kong et al.33 and Kahrobaiyan et al.40

gave the equation of motion of the microbeams as

S
∂4w

∂x4
− K
∂6w

∂x6
+ ρA

∂2w

∂t2
= 0 (4)

where

K = I

(

2µl2
0 +

4

5
µl2

1

)

, S =EI + 2µAl2
0 +

8

15
µAl2

1 + µAl2
2 (5)

and l0, l1 and l2 are additional material length scale associated with dilatation gradient, deviatoric

stretch gradient and rotation gradient, respectively, and A= bh.

For cantilever microbeams, the differential quadrature method (DQM) is employed to solve the

partial differential equation for obtaining the natural frequency. Based on the DQM, the beam domain

is discretized by N nodes along the neutral axis (x-axis), the value of w and its partial derivative with

respect to x can be approximated by

w=

N
∑

i=1

li (ξ) wi,
∂mw

∂ξm

�����ξ=ξi

=

N
∑

j=1

C
(m)

ij
wj (6)

where li(ξ) is Lagrange interpolation polynomial and C
(m)

ij
is the weighting coefficients whose

recursive formula can be found in literature.41,42 The sample points are selected to be the

Chebyshev-Gauss-Lobatto points as43

ξ1 = 0, ξ2 = 0.0001L, ξN−1 = 0.9999L, ξN =L,

ξi =
L

2

(

1 − cos

(

(i − 2) π

N − 3

))

, i= 3, ..., N − 2 (7)

By employing the DQM, the discrete counterpart of the equation of motion can be derived as

S

N
∑

j=1

C
(4)

ij
wj − K

N
∑

j=1

C
(6)

ij
wj + ρA

∂2w

∂t2
= 0 (8)

The associated boundary conditions of the cantilever microbeam can be given as

wi = 0,

N
∑

j=1

C
(1)

ij
wj = 0, i= 1,

N
∑

j=1

C
(2)

ij
wj = 0,

N
∑

j=1

C
(3)

ij
wj = 0, i=N (9)
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By denoting the unknown displacement vector as following

d= {ui} , i= 1, 2, ..., N (10)

Based on the Eqs. (8) and (9), we have the following matrix form

Kd +Md̈= 0 (11)

where K is the stiffness matrix; M is the mass matrix.

Expand the displacement vector d in the form of

d=d
∗eiωt (12)

where d
∗
=

{
u∗

i

}
is the vibration mode shape vector. Then we can obtain the eigenvalue equation as

Kd
∗ − ω2

Md̈
∗
= 0 (13)

By solving the Eq. (13), the natural frequency of the cantilever microbeams can be obtained.

For obtaining the values of the material length scale parameters (l0, l1 and l2), the method of

minimization of least squares of the error between the experimental results (TABLE 1) and the SGT

results (solved by Eq. (13)) was employed. In the process of calculation, the values of the three

material length scale parameters are set to equal to each other (l0 = l1 = l2 = l),22,33 the resolution of

the l is defined as ∆l = 1 nm, the sample points N is set to 20 which can give convergent results. Then

the value of the material length scale parameters of nickel microbeams for SGT can be obtained as

l0 = l1 = l2 = l = 0.843 µm. It should be noted that by setting l0 = l1 = 0, the SGT can be reduced to the

modified couple stress theory (MCST),28 thus by using the solving process above, one can obtain the

value of the material length scale of nickel microbeams for MCST as l2 = l = 1.553 µm. Compared

to the value of the material length scale of epoxy microbeams (the value for SGT is 11.01 µm,21,40

for MCST is 17.6 µm21,35), the value of the material length scale of nickel microbeam is smaller

than one-tenth of that of epoxy microbeam, it reveals that the material length scale parameters have

important relationship with the material’s micro-structure.

By using the material length scale of nickel microbeams for SGT and MCST, the dimensionless

frequency based on the SGT (l = 0.843 µm), MCST (l = 1.553 µm), classical theory (l = 0) and the

mean values of experimental results are displayed in FIG. 4. From FIG. 4, it can be seen that the

experimental results agree well with those predicted by the SGT and the MCST. Meanwhile, the SGT

and the MCST give nearly the same results, however, the value of the material length scale is very

different as the MCST ignores the influences of the dilatation gradient and the deviatoric stretch

gradient.

For investigating the influences of different gradient elasticity on dimensionless natural frequen-

cies of cantilever microbeams, the results which only consider the dilatation gradient (by setting

l0 = 0.843 µm and l1 = l2 = 0), deviatoric stretch gradient (by setting l1 = 0.843 µm and l0 = l2 = 0)

FIG. 4. Mean values of the experimental results, SGT solution, MCST solution and the classical solution of the dimensionless

natural frequencies for the nickel cantilever microbeams.
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FIG. 5. The effects of dilatation gradient, deviatoric stretch gradient and rotation gradient on dimensionless natural frequencies

of cantilever microbeams.

and rotation gradient (by setting l2 = 0.843 µm and l0 = l1 = 0) are presented respectively in FIG. 5.

From the Figure, one can observed that for the SGT microbeam model, the dilatation gradient has the

greatest influence on the microbeams, then is the rotation gradient, and the deviatoric stretch gradient

has the least influence.

IV. CONCLUSIONS

In conclusion, an experimental study of elastic vibration for nickel cantilever microbeams was

performed in this paper. The experimental results revealed that the dimensionless natural frequency

and dimensionless bending rigidity of nickel cantilever microbeams increase with decreasing the beam

thickness. It indicates the size-dependent elasticity of metal (nickel) microbeams by experiment for

the first time. Furthermore, in the light of the SGT and by using the DQM and the least square

method, the experimental results were interpreted and the material length scale parameters in the

scale of micron in elastic range were obtained. For comparison, the value of material length scale

parameter for MCST is given as well. As the MCST ignores the influences of the dilatation gradient

and the deviatoric stretch gradient, the value of material length scale parameter is larger than that

for SGT. In addition, compared to the value of the material length scale of epoxy microbeams, the

value of the material length scale of nickel microbeam is smaller than one-tenth of that of epoxy

microbeam, it reveals that the material length scale parameters have important relationship with the

material’s micro-structure. The results will be useful and helpful for the theoretical and numerical

simulation of micro-structures and the design of the MEMS.
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