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Size distribution and scattering phase function 

of aerosol particles retrieved from sky brightness measurements 

Y. J. Kaufman, 1 A. Gitelson, • A. Karnieli, • E. Ganor, 3 R. S. Fraser, 

T. Nakajima, 4 S. Mattoo, 5 B. N. Holben 6 

Abstract. Ground-based measurements of the solar transmission and sky radiance in a 
horizontal plane through the Sun are taken in several geographical regions and aerosol 
types: dust in a desert transition zone in Israel, sulfate particles in Eastern and 
Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in 
California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo 
in June 1991. Therefore measurements taken before the eruption are used to analyze 
the properties of tropospheric aerosol; measurements from 1992 are also used to detect 
the particle size and concentration of stratospheric aerosol. The measurements are 
used to retrieve the size distribution and the scattering phase function at large 
scattering angles of the undisturbed aerosol particles. The retrieved properties 
represent an average on the entire atmospheric column. A comparison between the 
retrieved phase function for a scattering angle of 120 ø, with phase function predicted 
from the retrieved size distribution, is used to test the assumption of particle 
homogeneity and sphericity in radiative transfer models (Mie theory). The effect was 
found to be small (20% _ 15%). For the stratospheric aerosol (sulfates), as expected, 
the phase function was very well predicted using the Mie theory. A model with a 
power law size distribution, based on the spectral dependence of the optical thickness, 
a, cannot estimate accurately the phase function (up to 50% error for A = 0.87/am). 
Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse 
particles was very well correlated with a. The Pinatubo stratospheric aerosol destroyed 
this correlation. The aerosol optical properties are compared with analysis of the size, 
shape, and composition of the individual particles by electron microscopy of in situ 
samples. The measured volume size distributions before the injection of stratospheric 
aerosol consistently show two modes, sulfate particles with r m • 0.2 /am and coarse 
particles with r m • 0.7 /am. The "window" in the tropospheric aerosol in this radius 
range was used to observe a stable stratospheric aerosol in 1992, with r m • 0.5 /am. A 
combination of such optical thickness and sky measurements can be used to assess the 
direct forcing and the climatic impact of aerosol. Systematic inversion for the key 
aerosol types (sulfates, smoke, dust, and maritime aerosol) of the size distribution and 
phase function can give the relationship between the aerosol physical and optical 
properties that can be used to compute the radiative forcing. This forcing can be 
validated in dedicated field experiments. 

1. Introduction 

Study of the optical and physical properties of aerosol 

particles is important for assessment of their effect on 

climate [Charlson et al., 1991, 1992; Kaufman et al., 1991; 

Penner et al., 1992] and for development of more accurate 
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remote sensing procedures of aerosol particles from satellite 

sensors [Fraser et al., 1984; Tanr• et al., 1988a; Kaufman et 

al., 1990; King et al., 1992; Holben et al., 1992; Dulac et al., 

1992]. Tropospheric aerosol particles have a short lifetime 

(about a week), and as a result their properties vary from one 

region to another and vary with time. Aerosol concentration 

and properties depend on the strengths of the sources, on 

atmospheric processes that affect them, and on transport of 

the particles from one region to another [Holben et al., 

1991]. Because of variability in aerosol properties it is 

difficult to assess aerosol climatology, since measurements 

in remote locations, such as taken for CO2 or CH4, cannot 
be used to represent the aerosol properties. For a full 
assessment of aerosol characteristics such measurements 

have to be performed frequently in locations with different 

aerosol types and in varying meteorological conditions. 

Sky brightness and color are determined by scattering and 

absorption by aerosol particles (solid or liquid particles 

suspended in the air) and by the atmospheric gases. Mol•c- 
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ular scattering is virtually constant in time. As a result, 

measurements of the spectral brightness of the sky, in 

spectral bands where gaseous absorption is minimal, can be 

used to retrieve information about particle size distribution 
and optical characteristics [Weinman et al., 1975; Box and 

Deepak, 1981; Yamamoto and Tanaka, 1969; King et al., 

1978; Twitty et al., 1976; Shaw, 1979; Nakajima et al., 1983, 

1986a, b; Tanr• et al., 1988b; $hiobara et al., 1991]. The 

characteristics of aerosol particles, retrieved from ground- 

based measurements, are representative of their properties 

averaged over the whole atmospheric column. Analysis of 

the sky brightness, like other remote sensing techniques, 

retrieves information on the natural undisturbed particles, 

while in situ measurements subject the particles to changes 

in the relative humidity between the ambient air and the 

environment of the instrument. The collection efficiency of 

the instrument may be a function of the particle size and, 

therefore, not representing all the particles equally [Huebert 

et al., 1990]. Sky measurements, used to retrieve the aerosol 

characteristics are usually taken in the solar almucantar, a 

horizontal plane passing through the Sun (the view zenith 

angle is equal to the solar zenith angle). 

The main properties of the aerosol particles that are 

important for climate studies as manifested in recent publi- 

cations and for remote sensing are (1) size distribution of the 
aerosol particles, for the different aerosol types (e.g., sul- 

fates, smoke particles, and dust) averaged on the prevailing 

conditions and as a function of the age of the particles; (2) 

the scattering phase function at large angles for these aerosol 

types; (3) the single-scattering albedo of the aerosol particles 

(a measure of light absorption by the particles); (4) lifetime of 

the aerosol particles; and (5) the effect of atmospheric 

processes on the aerosol particles. 

Previous studies used skylight in the direction of forward 

scattering (up to 20o-40 ø from the Sun) to retrieve the particle 

size distribution. Large particles contributing mainly at small 

scattering angles and smaller particles contributing at larger 

angles. In forward direction the sky brightness is not very 

sensitive to the particle refractive index, shape, and compo- 
sition. Therefore the size distribution can be derived with 

high accuracy for particle radius in the range 0.1 -< r -< 8/am 
[Nakajima et al., 1983, 1986a; Shiobara et al., 1991]. The 

effect of multiple scattering is also smaller in the forward 
direction than in the backward direction. No retrievals of the 

scattering phase function, including scattering angles larger 

than 90 ø, were reported in the literature. These are also 

important, since this angular range of scattering determines 

the aerosol effect on climate and is used for remote sensing 

(Wang and Gordon [1993] reported a sensitivity study to 

derive the phase function and single-scattering albedo from 

almucantar data). Aerosol scattering at large angles 100 ø- 

140 ø is affected by the particle shape [Pollack and Cuzzi, 

1980; Koepke and Hess, 1988; Nakajima et al., 1989]. The 

backscattering of nonspherical particles is usually less de- 

pendent on the scattering angle than for spherical particles. 

The difference between aspherical and spherical scattering is 

nearly maximum at an angle of 120 ø [Koepke and Hess, 1988; 

Nakajima et al., 1989], which is used in this study. The 

retrieval of information from sky radiance at la•ge scattering 
angles requires accurate correction for the effects of multiple 

scattering and for the contribution of light reflected from the 

Earth's surface and scattered downward in the atmosphere. 

Recently, Nakajima et al. [1983, 1986b] developed and 

applied [Nakajima et al., 1986a, 1989; Shiobara et al., 1991] 
an inversion scheme that includes accurate radiative transfer 

modeling to account for multiple scattering. 

In this paper the retrieval procedure of Nakajima et al. 

[1983] is applied to almucantar measurements acquired in 

several geographical locations with different aerosol types. 

The purpose is to learn about the structure and geographical 

variability of the aerosol size distribution and the corre- 

sponding optical properties, including scattering at large 
scattering angles, in an attempt to evaluate aerosol models 

that are used in climate and remote sensing studies. The 

measured aerosol size distribution and single-scattering 

phase function are compared with in situ samples of the 

aerosol particles and analysis of the size, shape, and com- 

position of the individual particles [Mamane et al., 1980]. 

2. Measurements 

The measurements were performed with a combined sun- 

photometer/sky radiometer, that can measure both the sky 

radiance and the attenuated direct sunlight, using the same 

detector, optics, and spectral filters, by changing the elec- 

tronic gain between two settings. Eight spectral bands, 10 
nm wide were used: 0.44, 0.52, 0.56, 0.62, 0.67, 0.78, 0.87, 

and 1.03 /am. The sunphotometer/radiometer is a portable, 

battery-operated instrument that was easily carried from one 

place to another. The measurements are manual, by pointing 

the instrument to the specific direction of observation. The 

instrument was positioned on a rotating table for fast and 
accurate variation in the azimuth between the solar illumi- 

nation and the observation directions (the expected error in 

the azimuthal position, close to the Sun is +0.3ø). A special 

collimator, 50 cm long, was built to reject stray light. The 
field of view of the instrument is 1ø. Tests indicated that at 2 ø 

from the Sun and beyond, there is no measurable effect of 

the stray light. Morning and afternoon measurements were 
performed. Measurements were taken only if local sources 

of pollution were not evident, so that it is possible to assume 
that the atmosphere is spatially homogeneous across the 

lowest 2 to 4 km of atmosphere where most of the tropo- 

spheric aerosol is present. The measurements were re- 

stricted to solar zenith angles around 60 ø, in order to be able 

to measure the scattering phase function for scattering 

angles up to 120 ø . 

The measurement sequence includes measurements of 

transmission of the direct sunlight in order to retrieve the 

total aerosol optical thickness in the eight spectral bands, 

followed by measurements of the almucantar sky irradiance 

in three spectral bands (0.44, 0.62, and 0.87/am), on both 
sides of the Sun. The sequence was concluded by an 

additional measurement of the transmitted sunlight. The 

aerosol optical thickness derived from the transmitted sun- 

light taken before and after the almucantar measurements 

were interpolated for the time of the almucantar measure- 

ments. Each sequence of measurements took 30-40 min. 

Almucantar sequence for a single wavelength took about 5 

min, requiring that the sky conditions won't change signifi- 

cantly during this period of time. The sky radiances from 

both sides of the Sun were averaged, and the difference was 

used to check for atmospheric nonhomogeneities. If the 

difference between the two parts of the sky was systemati- 
cally more than 8% (for scattering angle >4 ø ) then the 

measurement sequence was discarded. Singular points more 
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Table 1. Summary of the Solar Transmission Measurements and Inversion of the Sky Measurements 

Single-Scattering Phase Function 

Aerosol Optical Thickness 
a = (A In •a/ Ps(0.62) - Ps(0.87) - 

•'a(0.62) •'a(0.87) A In A) P•(0.62) Pa(0.62) P•(0.87) Pa(0.87) 

Desert, 1990 and 1991, 15 Measurements 

Average 0.096 0.052 - 1.55 0.201 -0.061 0.171 -0.059 
s.d. 0.041 0.035 0.55 0.036 0.072 0.035 0.091 

Europe (Prague, Budapest, Salzburg), 1991, 9 Measurements 
Average 0.333 0.159 - 1.93 0.218 0.074 0.263 0.001 
s.d. 0.153 0.081 0.12 0.018 0.021 0.023 0.063 

California, 1990, 8 Measurements 
Average 0.075 0.043 - 1.35 0.184 -0.064 0.137 -0.070 
s.d. 0.020 0.013 0.34 0.041 0.053 0.032 0.039 

Desert, 1992, 22 Measurements 

Average 0.294 0.228 -0.24 0.153 0.001 0.125 -0.016 
s.d. 0.169 0.110 0.43 0.043 0.050 0.040 0.036 

Italy, 1992, 7 Measurements 
Average 0.645 0.440 - 1.04 0.188 0.066 0.175 -0.030 
s.d. 0.436 0.303 0.23 0.060 0.047 0.048 0.053 

Brazil, 1992, 5 Measurements 

Average 0.281 0.234 -0.64 0.261 0.043 0.300 -0.089 
s.d. 0.061 0.028 0.28 0.050 0.055 0.294 0.087 

Aerosol optical thickness at 0.62 /am, •'a(0.62) and 0.87 /am, •'a(0.87); the wavelength dependence of the optical thickness 

a = A In •a/A In A (in the range 0.44-1.03/am); the phase function at 0.62/am, P•(0.62), and at 0.87/am, P•(0.87), computed 
from the size distribution assuming spherical and homogeneous particles; the difference between this phase function and the 
phase function derived from the backscattering sky radiance Pa(0.62) and Pa(0.87). The phase functions are computed for 
scattering angle of 120 ø . 

than 8% off the rest of the curve were also discarded. Sky 

radiances for a scattering angle of 00-40 ø were used to derive 

the aerosol size distribution, and the whole sky data set was 

used to derive the aerosol scattering phase function. Polar- 
ization was not accounted for but as will be shown in the 

sensitivity study section, the resulting errors from ignoring 

polarization are very small. The scattering angle is expressed 

by the illumination and view zenith angles and the azimuth 

between the two directions [see, for example, Hansen and 

Travis, 1974]. The optical thickness measurements in the 

eight spectral bands were used to derive the }•ngstr6m 
exponent (the slope of In •'a as a function of In A) a. 

To calibrate the instrument, two calibration procedures 

were performed. The sky radiances are calibrated to radi- 

ance units using the integrating sphere at NASA/GSFC 
which is traceable to the National Bureau of Standards. The 

radiances were normalized to reflectance units (rrL/Fo) 
where F 0 is the solar flux [Neckel and Labs, 1984]. The 
absolute accuracy of the sky radiance measurements is 

expected to be +-10%. The spectral precision and reproduc- 

ibility is expected to be ---5%. The sunphotometer measure- 

ments were calibrated using a Langley plot technique in 

clear conditions [see, for example, Kaufman and Fraser, 

1983]. The optical thickness is measured with an error of 

-0.01 to ___0.02. The aerosol optical thickness was derived 

from the total optical thickness by subtracting the Rayleigh 

optical thickness and the gaseous absorption optical thick- 

ness. In the following we shall describe the main results from 

the measurements followed by detailed analysis. 

3. Summary of the Results 

Table 1 summarizes the locations and year of the measure- 

ments and the key results. The data are averaged for six 

geographical regions with three different aerosol types: 

desert aerosol, mainly sulfate particles, and tropical aerosol. 

In several of these regions we observed the aerosol type 

using samples of the aerosol particles and electromicroscope 

analysis. Part of the data sets were collected before the 

Mount Pinatubo eruption in June 1991 and the enhancement 

of the stratospheric aerosol layer. The data sets from 1992 

are affected by the stratospheric aerosol. 
Desert measurements: The data are taken in a desert 

transition zone in Israel (a semidesert area with low precip- 

itation). Most of the measurements were done at the Israeli 

Desert Research Institute in Sede Boker. In the first data set, 

collected during a field experiment in May 1990 and later 

during continuous measurements from December 1990 till 

March 1991 (all before the Pinatubo eruption), no major dust 

outbreaks took place and the aerosol optical thickness •a 

was of background level (average 7a = 0.10 at 0.62 /am). 
Heavy dust at this location is usually associated with a 

low-pressure system that advects dust from North Africa or 
from the Arabian Desert. Dust storms from North Africa are 

more common, with typical trajectories passing over the 

Mediterranean [Ganor et al., 1991]. This system is accom- 

panied with cloudy conditions, due to the advection of 

humidity from the maritime air [Mamane et al., 1980]. 
Therefore almucantar measurements in these conditions are 
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basically impossible. Meteorological data show that cloud 

free conditions are very common in this area between May 

and October when the cloud fraction is less than 30% (June 

to September, the cloud fraction is less than 10%). The 

interaction among desert aerosol, maritime aerosol, sulfates, 

and clouds was discussed by Levin et al. [1990]. The second 

data set, collected from January to June 1992 is affected by 

stratospheric aerosols from the Mount Pinatubo eruption, 

that increased the average optical thickness from q'a (0.62 

/zm) = 0.10 to 0.29 and changed the ]kngstrfm exponent (the 
slope of In •'a as a function of In A for the eight spectral 
bands) from -1.5 to -0.2. This reduction, as will be shown 

later, is due to the introduction of large stratospheric sulfate 

particles (average radius of 0.5/xm). 

Sulfate aerosol: Two data sets, that are expected to be 

dominated by tropospheric sulfate aerosol, were collected in 

Europe. The first in 1990, was collected mainly in Eastern 

Europe and Austria. The second data set was measured 

around Lake Maggore in northern Italy in 1992 and therefore 

is affected also by stratospheric aerosol. The average optical 

thickness was 0.33 and 0.64, respectively. The difference is 

partially due to the contribution of the stratospheric aerosol 

and partially due to the heavy pollution in northern Italy 

during the summer in the presence of high humidity. The 

•ngstrfm exponent changed from -1.9 to -1.0 which can 
also be associated with the effect of the stratospheric aero- 
sol. 

Mixed aerosol: A data set from California, before the 

eruption, represents a mixture of continental and maritime 

aerosol with an average optical thickness of 0.07 and •ng- 
strfm exponent of- 1.3. 

Tropical aerosol: A data set from Brazil during the dry 

season (August 1992) is included. Though the measurements 

were taken during the dry season, no substantial biomass 

burning was noticed in the area. The average optical thick- 

ness affected by the stratospheric aerosol is 0.28. 

Scattering phase function: Table 1 also indicates the 

average aerosol scattering phase function for each of the 

data sets for a scattering angle of 120 ø. Two phase functions 

were computed: P s, the phase function computed from the 
derived particle size distribution assuming tha! the particles 

are spherical and homogeneous with a given refractive 

index; P a, the phase function computed from the whole 
almucantar sky radiance (scattering angle ranging from 2 ø to 

120 ø ) by correcting the radiance for multiple scattering, 

allowing for surface reflection, and subtracting the contribu- 

tion from molecular scattering. At 120 ø we expect the effects 

of particle nonsphericity to be maximal [Koepke and Hess, 

1988]. The effects of size distribution on the phase function 

are also large at this scattering angle (see Figure 4 for 

examples). 

To derive the phase function P a from the measured sky 
radiance, we need to correct for multiple scattering and 

account for the contribution of gaseous scattering and ab- 

sorption. The procedure is based on the assumption that the 

optical properties of the aerosol that determine the sky 

almucantar radiance can be represented by a unique set of 

single-scattering phase function, P, single-scattering albedo, 

to 0, and optical thickness, •-. For this purpose an "equiva- 

lent" size distribution is computed for which the phase 

function describes correctly the sky radiance for the given 

aerosol optical thickness. Even though this size distribution 

is also computed assuming spherical homogeneous particles, 

it differs from the "true" size distribution derived from the 

aureole due to the effects of particle nonsphericity on the sky 

radiance in the backscattering direction. If the reconstructed 

sky radiance fits the measured sky radiance within the noise 

in the data (which we found was always the case), then the 

derived single-scattering phase function should represent the 

actual aerosol phase function. Phase functions, P s and P a, 
are shown in Table 1 for 0.62 and 0.87 •m. In the 0.44-•m 

channel a combination of a high detector noise and small 

fraction of the sky radiance originating from aerosol scatter- 

ing made this channel not useful for phase function retriev- 
als. The results show that the difference between the two 

phase functions, P s and P a, can be positive or negative and 
vary between 0 and 30% of the value of the phase function. 

An average on all the measurements gives a negligibly small 
difference. The uncertainties in this difference are discussed 

later in the detailed analysis of the results. Wang and 

Gordon [1993] proposed a different scheme to retrieve the 

phase function (simultaneously with the single-scattering 

albedo). They also found in a sensitivity study a small effect 

of calibration errors on the retrieved phase function except 

for the blue region where it is difficult to retrieve the phase 

function for small optical thicknesses. 

4. Data Analysis 

The data set, summarized in Table 1, includes 66 almu- 

cantar measurements, with corresponding values of the 

aerosol optical thickness. Figure 1 shows two examples of 

the measured almucantar radiances (solid curves) plotted as 

a function of the scattering angle. These two cases are of 

extreme conditions of size distributions (shown in Figure 2). 

The first is of dust in the desert transition zone, with large 

particles that cause the strong angular dependence of the sky 

radiance close to the Sun. The second is of an atmosphere 

with a large concentration of small sulfate particles (in 

Prague, the Czech Republic) that generates a smaller angular 

dependence of the sky radiance. 

The angular dependence of the almucantar sky radiances 

for scattering angles less than 40 ø are used to compute the 

aerosol size distribution. In this range of scattering angles 

the scattering properties are only weakly dependent on the 

aerosol refractive index and on the sphericity and homoge- 

neity of the particles [Nakajima et al., 1989]. Therefore 
these radiances are used to retrieve the size distribution of 

the particles, using the retrieval procedure of Nakafima et 

al. [1983]. First, the aerosol phase function is derived. Then 
the aerosol size distribution is derived from the aerosol- 

scattering phase function. Two versions of the procedure are 

applied to the almucantar data. In the first version the 

radiances at the three wavelengths are used simultaneously 

as described by Nakajima et al. [1983, 1986a] and Shiobara 

et al. [1989]. The resultant size distributions are shown in 

Figure 2 and the recomputed sky radiance for two of these 

size distributions is shown by the dashed curves in Figure 1. 

We found this procedure unsatisfactory for the present set of 
measurements, since in some cases it resulted in oscillations 
of the size distribution. The oscillations can result from some 

variability in the sky conditions during the 30 min of mea- 

surements and from errors in calibration of one spectral band 

relative to another. Note, however, that this procedure was 

applied successfully by Nakajima et al. [1983, 1986a] and 
Shiobara et al. [1989] for data from an automatic instrument 
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Figure 1. Examples of the measured almucantar sky radiances (solid curves), the recalculated radiance 
from the derived size distribution (dashed) and from the retrieved single-scattering phase function for the 
0.62-/•m and the 0.87-/•m channels, respectively (solid with symbols). There are two curves of the latter 
kind, each corresponding to a different value of the surface reflectance. The size distribution is retrieved 
from the best fit of an aerosol model to the sky radiance for scattering angle O -• 40 ø. The phase function 
is retrieved from the whole almucantar. Two extreme cases of measurements are shown (a) in desert 

transition zone in Sede Boker, Israel, with a strong influence from large dust particles and (b) in Prague, 
the Czech Republic, with a strong influence from sulfate particles. (c) and (d) The relative differences 
between the recalculated and the measured radiances (%). Solid curves, inversion for O -• 40ø; dashed, for 

all values of O. Thin curves for A = 0.44/•m, thick for A = 0.87/•m, and intermediate for A = 0.62/•m. 
The derived size distributions are shown in Figure 2. 

that collected the data much faster. As a result a second 

version of the procedure was applied, in which the sky 

radiances from each channel are used separately to derive 

the aerosol size distribution (dashed curves in Figure 2) and 

then averaged to obtain the final size distribution (solid 

curves with marks). The oscillations are much smaller on the 

individual size distributions and insignificant for the average 
size distribution. Note the differences in the derived size 

distributions for the different aerosol types: 

1. The heavily polluted air in Prague during the summer 

has a strong accumulation mode (radius <0.6 /xm) which 

indicated the presence of particles generated in a gas to 

liquid conversion (e.g., sulfates). 

2. The coarse particle mode (particle radius 1-4/•m) is 

most dominant in desert conditions (Sede Boker) during a 

dust storm (e.g., on February 6, 1991). In situ measurements 

during a dust storm in the vicinity of Sede Boker show very 
similar elevated concentrations of the volume distribution 

between 1 •m and 5/•m [Levin et al., 1980]. 
3. The size distribution retrieved from the data in 1992 

indicates the presence of stratospheric sulfate aerosol lo- 

cated around a radius of 0.5/•m. In this radius range there 

are not many particles in the troposphere, thus generating a 

"window" through which the stratospheric particles can be 
observed. 

In Figure 1 the recomputed sky radiance for the retrieved 

scattering phase function is also plotted. The fact that we 

were able to get a very good fit between the recomputed 
radiance and the measured radiance shows that the retrieved 

size distribution is able to explain the angular dependence of 

the sky radiance and, therefore, also the angular dependence 

of the single-scattering phase function. 

5. Sensitivity Study 

A sensitivity study was performed to test the accuracy of 

the inversion scheme and the effect of anticipated sources of 
errors on the retrieval of the aerosol size distribution. The 

results are shown in Figure 3. The inversion was performed 

for a single lognormal distribution (top two rows) and for two 

lognormal distributions with separate and overlapping 

modes (bottom row). The simulation of the sky radiance 

included the effects of polarization and used the vector code 

of Dave and Gazdag [1970] for the top two rows of Figure 3. 

Scalar code with no polarization was used for the bottom 

row. The size distribution was retrieved using the scalar 

code of Nakajima et al. [1983]. It is expected that the 

retrieved size distribution will be accurate for a radii range of 

0.1/•m -< r -< 8/•m [Shiobara et al., 1991]. 
Size distributions retrieved from the simulated radiances, 

without noise in the data or errors in the retrieval procedure, 

result in high accuracy ot the retrieval in the range of 0.1/•m 

-< r -< 8/•m. In cases of a single aerosol mode with very low 

concentration of small or large particles, artificial particles of 

up to 4% of the maximum concentration were generated by 

the inversion process. The sensitivity to errors in the as- 

sumed refractive index, or in the measurement conditions 

(calibration, stray light, or errors in the measurements of the 

azimuth), an average error of 10% was detected for particles 

above 3-/•m radius. For particles under 0.1/•m (0.05/•m -< r 

-< 0.1 /•m) the retrieved size distribution diverges from the 
true distribution but is within a factor of 2 of the true density 
and therefore still useful. We tested the effect of several 

sources of errors: uncertainty in the refractive index of the 

real part An r = 0.05, uncertainty in the imaginary index of 
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Figure 2. Examples of size distributions derived from the 
sky radiances. The dashed curves are the size distribution 

derived from the radiances in each channel separately (the 
shortest dashed curve for 0.44/xm and the longest dashed for 
0.87/xm). The thick solid curve gives the average of the three 
size distributions. The thin solid curve is the size distribution 

derived from the radiances in all the wavelengths simulta- 
neously. This size distribution is more "noisy" due to 
calibration errors and due to variability of the sky condi- 
tions. The location of the measurement, the date, value of 
the optical thickness, •-at 0.62 /xm, and the ]kngstr6m 
exponent, a = A In •-/A In A, derived from -t(A) are given for 
each figure. 

An i = 0.0015, uncertainty in the ground reflectance of Ap = 
0.1, error in the measured scattering angle by 0.5 ø, calibra- 

tion errors of 10% and 15% in various channels, and the 

effect of stray light (3% at 2 ø decreasing to 0% at 4ø). All 

these errors represent the maximum anticipated uncertainty 
in each parameter. The only significant errors occurred due 

to an error in the scattering angle, which affected the 

concentration of the coarse particles by 40%. Therefore 

special care was given to precise measurements of the 

scattering angle, and mainly for small scattering angles, 

where the sky radiance is very sensitive to the concentration 

of the large particles. We estimate that the average error in 

a single measurement of the scattering angle for viewing 
close to the Sun is +_0.5 ø . This error combines error in the 

location of the Sun relative to the field of view and error in 

the viewing position. Since each size distribution is the result 

of analysis of six aureole measurements (three wavelengths 

and the two sides of the Sun), therefore the average error in 

the measured scattering angle is -0.2 ø . 

The main errors in retrieving the single-scattering phase 

function from the wide angle radiances are from the assumed 

value of the surface reflectance and from spatial nonhomo- 

geneity of the aerosol layer. The plots of the recomputed 

radiances in Figure 1 show that the measured radiance can 

be very accurately reconstructed by the radiative transfer 

inversion except for fluctuations in the measured radiances 

due to nonuniformity of the sky conditions. The error in the 

derived phase function for a given uncertainty in the surface 

reflectance depends on the ratio of molecular scattering to 

aerosol scattering. For small aerosol optical thicknesses the 

contribution to the sky radiance and to the error from 

backscattering by molecules of light reflected from the 

surface is larger. To show the effect of the error in the 

assumed surface reflectance on the derived phase function, 

the phase functions are derived from the measured sky 

radiance always using two values of the surface reflectance. 

An uncertainty of Ap = 0.1 was used for A = 0.62/xm and Ap 

= 0.2 for A = 0.87/xm. In Figure 4 the effect of the various 

error sources on the derived phase function is shown for 

lognormal size distributions with small particles (rg = 0.05) 
and large particles (rg = 0.5). The main source of error is 
due to uncertainty in the surface reflectance (Ap = 0.2 - the 

dashed curve for r• = 0.5) which for the purpose of 
demonstration is twice the error assumed in the analysis of 

the data. Wang and Gordon [1993] reported the results of a 

sensitivity study of the derivation of the scattering phase 

function and single-scattering albedo from almucantar radi- 

ances. The sensitivity of the phase function to sources of 

errors (error in the optical thickness, calibration, noise) was 

small, similar to the present results. 

6. Detailed Results 

In this section we discuss the detailed results of the 

retrieved size distributions and the single-scattering phase 

function. In some cases, parallel information on the aerosol 

particles can be derived both from the solar attenuation 

measurements and from the sky brightness measurements. 

We shall use these opportunities to compare and test the 

aerosol properties derived from these two measurements. 

Aerosol Optical Thickness From Solar and Sky 
Measurements 

The analysis of the size distribution is essentially indepen- 

dent of the measured optical thickness. Therefore as a check 

of the quality of measurements, calibrations, and the inver- 

sion procedure, the aerosol optical thickness derived from 

the solar measurements (%un) is compared with optical 
thickness computed as an integral on the retrieved size 

distributions from the sky brightness (%ky). In Figure 5a, 
scatter diagrams between •'sun and %ky are plotted for three 
wavelengths. Different symbols are used for the 1990-1991 
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Figure 3. Result of a sensitivity study of the effect of uncertainties in the measurements and the 
inversion procedure on the retrieved size distribution. The simulation was done using the radiative code 
of Dave and Gazdag [1970] for polarized (top two rows) and unpolarized light (bottom row) and the 
inversion using the scalar code of Nakafima et al. [1983]. The simulation was performed for a single 

lognormal mode with small (top row, rg = 0.05 /am) and large particles (middle row, rg - 0.5 /am) and 
for two lognormal modes (bottom row). (a) and (d) The simulated size distribution (thin curves), the 
retrieved distributions from single channels (dashed), and the average of these distributions (thick). (b) and 
(e) The simulated size distribution (thin), an the retrieved one, averaged on the three channels for •'a = 0.2 
and 0.4. (c) and (f) Sensitivity to errors in the refractive index (1.50 instead of 1.45) calibration, 
measurement of the azimuth and stray light. The simulated size distribution is given here by thick solid 
curves. (g) The simulated size distribution (thick) for a biiognormal size distribution. Sensitivity to 
refractive index (dashed), errors in the scattering angle of 0.5 ø (dashed-three dotted), and calibration errors 
(short dashed). 

data, before the Mount Pinatubo eruption, and for 1992 after 

the eruption (o and x, respectively). The correlation coeffi- 

cient between rsu n and rsky varies between 0.92 and 0.98. 
Systematic variation between the two optical thicknesses 

can result from an error in the solar calibration, or an error 

in the sky calibration. The first would cause a shift in the 

intercept of the least square fit, while the second would 

affect the slope of the fit. For the shortest wavelength (0.44 

/am) a shift of 0.03 +- 0.01 for the two data sets indicates a 

possible inaccuracy of 0.03 in the Sun calibration, while the 

slope of the least squares fit is very close to one: 1.01 +_ 0.02. 
Shifts of 0.01 to 0.03 are also found in the other two 

wavelengths, with slopes between 0.83 and 0.93. Such 
calibration inaccuracies are expected, since the accuracy of 
the calibration itself is with errors of +_0.02 for the Sun 

calibration and +_ 10% for the sky calibration. Variation in 

the instrument response through this period of time and 

uncertainty in the refractive index can also account for part 
of the error. 

Relation Between the Volume Distribution and the •ngstr6m 
Exponent 

Spectral dependence of the aerosol optical thickness ex- 
pressed by the •ngstr6m exponent 

Aln •'a 
a = (1) 

AlnA 

is directly related to a power law size distribution [Junge, 

1963; Kaufman, 1989]' 
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A In r a dN • 
a = • = Cr (a-2) (2) O. 

A In A d In r O 0.2 

where N is the particle number density and r is the particle O 
radius. From the sky measurements we derive the particle 09 o 
volume distribution, which is related to the particle size •- 
distribution {D 

dV dN 

• = 4,rr 3 • = C1 r"+l (3) 
d In r d In r 

Even though the volume distributions derived from the sky 

radiances, e.g., Figure 2, do not resemble a power law, it is 

interesting to check the relationship of the ratio of the two 

size distribution modes to the •ngstr6m exponent a; a is 
easier to measure and can be measured more frequently. 

Note that the optical thickness is sensitive to particle sizes in 

the range of 0.06/zm to 2.5/zm [King et al., 1978], which is 
narrower than the range of sensitivity of the almucantar 

measurements. In Figure 6 a scatter diagram is shown 

between the ratio of the concentration of small particles A V1 
= (0.057 /zm-0.21 /zm) to the concentration of large parti- 

cles A V2 - (1.8/zm-4.0/zm) and the value of a. The scatter 
diagram is for data taken before and after the enhancement 

of the stratospheric aerosol. The relationship between A V1/ 
A V2 and a can be approximated by an exponential function 

for the 1990-1991 data (straight line in Figure 6a), while there 
is no clear relation for 1992 due to the dominance of the 

intermediate particle size (radius around 0.5 /am) of the 

stratospheric aerosol. The exponential dependence between 

AV1/AV2 and a observed for 1990-1991 can be explained 
from (1) and (3) for a power-law size distribution 

Irl" A V'• • Ar 2 or In ••22] = Co + a In (r l/r2) (4) 
Detailed information on the distributions of the aerosol 

particles in several particle size ranges are shown in Figure 

7. In this figure the fraction of the volume of particles is 

shown in each particle size range as a function of a. The 

results are shown separately for the desert transition zone 

' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ' 
0 

.... "'" Xa(0.44 p.m) 1990-1991 

25 :Xa(0'4• 4 !zm) 1_992 .......• 

0.6 

O. 4 
0.2 

0 
0 0.2 0.4 0.6 0.8 1 1.2 

aerosol optical thickness (sun) 

Figure 5. A scatter diagram between 'rsun, the aerosol 
optical thickness derived from the solar measurements, and 

'rsky , the optical thickness computed from the retrieved size 
distributions from the sky data. Open circles, data for the 
1990-1991 period, before the Pinatubo eruption; (x), data for 
1992 after the eruption. The correlation coefficient between 

rsu n and 'rsky varies between 0.92 and 0.98. The least squares 
fit line is shifted from the origin by 0.01-0.03, indicating a 
possible inaccuracy in rsun. The slope of the line is very close 
to a unit: 1.01 +- 0.02 for ,• = 0.44/zm and 0.83 and 0.93 for 
the other two wavelengths (0.62 and 0.87 /zm). Difference 
from 1.0 indicates a possible error in the sky calibration (see 
text). 

and for Europe and California. The aerosol optical thickness 

is smaller in California (taken within 30 km off the coast from 

San Diego to San Francisco), where it is dominated by 

maritime/rural aerosol with contribution from urban pollu- 
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tion, than in Europe. In Europe the stable meteorological 

conditions and high humidity causes a high rate of sulfate 

aerosol production and accumulation. Only data collected in 

1990-1991 before the injection of the stratospheric aerosol 

are plotted. The figure shows that the increase in a is 

associated in both cases, as expected, with a reduction in the 

concentration of the small particles. The aerosol optical 

thickness is also plotted in the same figure for comparison. It 

is interesting to note that for the desert transition zone 

(Figure 7b) an increase in a is associated with an increase in 

the optical thickness. In this region, the advection of large 

dust particles increases the optical thickness and increases 

the value of a. The trend is opposite in the industrial zone 

(Europe and California, Figure 7a) where the increase of 

aerosol optical thickness is associated with a decrease in the 
value of a due to an increase in the concentration of the 

small sulfate particles. 

Stratospheri½ Aerosol From the Mount Pinatubo Eruption 

The collection of the almucantar measurements started in 

May 1990 and continued to the end of 1992. The purpose of 

this long though sporadic data collection was to generate 
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Figure 6. Scatter diagrams between the ratio of the con- 
centration of small particles (radius range: 0.057-0.21/xm) to 
the concentration of large particles (radius range: 1.8-4.0 
/xm) and the exponent a that describes the spectral depen- 

ß 

dence of the optical thickness. (a) Data for 1990-1991 before 
the injection of the stratospheric aerosol; (b) data for 1992 
after the injection of the stratospheric aerosol. (x) Data from 
the desert transition zone in Israel; open circles, data from 
other areas as indicated in each figure. Data from Europe 
were heavily affected by sulfate particles and the data from 
Brazil by smoke. 
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Figure 7. Fraction of the volume of particles in each size 
range, as indicated in the figures, as a function of the spectral 
dependence of the optical thickness, a. The aerosol optical 
thickness Ta is also plotted (x and solid lines). (a) Result for 
Europe and California in 1990. (b) Results for the desert 
transition zone in 1990-1991. 

significant statistics of the aerosol physical and optical 
properties for various aerosol types. The eruption of the 

Mount Pinatubo in June 1991 changed the characteristics of 

the data set. As a result we were forced to use only the 

1990-1991 data in the analysis of the previous section, 

leaving the 1992 data primarily to analyze the properties of 

the stratospheric aerosol. This is similar to the measure- 
ments of Shiobara et al. [1991] which were influenced, in a 

similar way, by the eruption of E1 Chichon. 

The effect of the stratospheric aerosol on the measured 

size distribution was shown in the individual examples of 

Figure 2. In Figure 8, individual size distributions are 

magnified around the stratospheric aerosol size for measure- 

ments at three locations: Sede Boker, Israel; Lake Maggore, 

Italy; and Brasilia, Brazil. The size distribution around the 

0.5-/xm stratospheric aerosol particles is much more stable 
than in other size ranges. This is expected since the mea- 

surements were taken at least 6 months after the eruption, 

which is long enough for most SO2 to convert to sulfate 

particles [Turco et al., 1983], for coagulation processes to 

take place [Thomason, 1992] and for the aerosol layer to 

spread across longitudinal lines and homogenize [Stowe et 

al., 1992]. The derived size of the stratospheric aerosol 
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Figure 8. Individual size distributions derived from the 
almucantar measurements in Sede Boker, Israel (30.5øN, 
34.7øE); Lake Muggore, Italy (45.5øN, 8.3øE); and Brasilia, 
Brazil (16.1øS, 44.3øW). The size distribution around the 
0.5-/zm radius shows the presence of the stratospheric aero- 
sol. 

pai'ticles is very similar to the results of Shiobara et al. 
[1991] and to analysis of aircraft measurements by King et 
al. [1984] for the E1 Chichon aerosol. 

Averaging the different size spectra prior to and after the 
Pinatubo eruption for the different ecosystems results in 

smooth size distributions that show clearly the presence of 
the stratospheric aerosol. These average size distributions 

are plotted in Figure 9. For both the desert transition zone 

data and the data from Europe and California the average 
size distribution of the small and large particles is very 

similar for the 1990-1991 and the corresponding 1992 data 
sets. The main difference between the data sets is the 

stratospheric aerosol that is located in a range of particle 
sizes that corresponds to a "hole" in the tropospheric 
aerosol size distribution and therefore is clearly seen. 

From individual size distributions for the lowest total 

optical thickness, indicating the lowest concentration of 

tropospheric aerosol, it is possible to compute the detailed 

size distribution of the stratospheric aerosol. These size 

distributions are fitted with lognormal functions: 

dV 

dlnr 
• = No e -(in r/rm)2/(2(r 2) (5) 

where r m is the volume mean particle radius and o-is the 

standard deviation of the distribution. No is the particle 
volume density in units of cm3/cm2. The results for No, a, 
and •r are plotted in Figure 10. During the period of 6-12 

months after the eruption of Pinatubo and beyond, the 

values of these parameters of the lognormal distribution did 
not change significantly with time. Similar stability of the 

stratospheric aerosol optical thickness was determined from 
pyrheliometer measurements from Mauna Loa in Hawaii 

[Duton and Christy, 1992]. Sunphotometer measurements 

from Mauna Loa show stability of the optical thickness and 

its wavelength dependence (E.G. Dutton, personal commu- 

nication, 1992) during this period of time. $hiobara et al. 
[1991] found from similar measurements that the concentra- 

tion of stratospheric aerosol from E1 Chichon increased 

during the first 6 months and was stable during the next 6 

months before decreasing afterward. This is probably due to 
a temporal equilibrium between aerosol formation from the 

gaseous form and gravitational deposition of the aerosol 

particles. 

Single-Scattering Phase Function 

A comparison between Ps, phase function computed from 

the derived size distribution assuming homogeneous spher- 
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Figure 9. Comparisons between the average size distribu- 
tion prior and after the Mount Pinatubo eruption. The 
average size distributions are shown for the desert transition 
zone, for Europe/California, and for Brazil. The standard 
deviations in two of the data sets are shown by the vertical 
bars. The average size distribution of the small and large 
particles is very similar for the 1990-1991 data sets and the 
corresponding 1992 data sets. The 1992 data show the 
presence of the stratospheric aerosol around 0.5-tam radius. 
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ical particles, and P a, the actual phase function derived from 
the sky radiance at large scattering angles, can show the 

effects of particle nonsphericity and nonhomogeneity on the 

scattering phase function. A comparison between P s and P a 
is plotted in Figure 11 as a function of the •ngstrfm 
exponent a (a = A ra/A In A). The left column is for data 
measured in the desert transition zone in Israel and the right 

column is for the rest of the data with strong contribution 

from sulfate aerosol. The data are separated into pre- 

Pinatubo (1990-1991) and post-Pinatubo (1992) data. Be- 

cause of the large aerosol particles present in the strato- 

sphere from the volcanic eruption the value of a is much 

larger for 1992, separating it from the 1990 to 1991 data. For 

comparison, also the optical thickness is plotted in the figure 

as a function of a. Due to a large noise in individual phase 

functions, of 10-30%, instead of showing the individual 

values of the phase function, the averages are displayed for 

subgroups of 4-7 measurements, in order of increasing 

optical thickness. 

In 1992 the stratospheric aerosol dominates the spectral 

dependence of the optical thickness, a. The large particle 

size of the stratospheric aerosol corresponds to values of a 

close to zero, and therefore reduction of the tropospheric 

aerosol optical thickness increases the value of a. The 

stratospheric aerosol is dominated by liquid sulfuric acid, 

therefore it is expected that the majority of the particles are 

spherical and homogeneous, resulting in a good agreement 

between P s and Pa' The present measurement, shown in 
Figure 11, confirms this hypothesis. In other cases the 

difference between P s and P a is 0-50%. Note that the 
difference between the small and large open symbols repre- 

sent the error in the derived value of P a due to uncertainty 
in the surface reflectance. This uncertainty causes large 

errors for small aerosol optical thicknesses. We expected the 

difference between P s and P a to correlate with the value of 
a. High a is generated by large particles that are expected to 

be nonspherical (except for the stratospheric aerosol). But 

no such clear relationship was observed. 

In addition to the two phase functions P s and P a a third 

phase function, P,, is plotted in Figure 11. This phase 
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Figure 11. The aerosol optical thickness and the scattering 

phasoe function (for scattering angle of 120 ø) as a function of 
the Angstr6m exponent a = Ara/A In A. The left column is 
for data measured in the desert transition zone in Israel and 

the right column for the rest of the data with strong influence 
of anthropogenic sulfate aerosol. The data are separated into 
pre-Pinatubo data (1990-1991) and post-Pinatubo data 
(1992). The first row of figures shows the aerosol optical 
thicknesses for 0.62/am (solid symbol) and for 0.87/am (open 
symbol). The second and third rows of figures are for the 
phase function for 0.62 and 0.87 /am, respectively. Solid 
symbols are for the scattering phase function computed from 
the derived size distributions assuming spherical homoge- 
neous particles. The open symbols (large and small) are for 
the actual phase function derived from the sky radiance at 
large scattering angles for low and high estimates of the 
surface reflectance (respectively). For comparison also a 
phase function computed assuming a power law size distri- 
bution for the measured value of a is also shown (pluses). 
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Figure 10. Lognormal parameters of the stratos- 
pheric aerosol size distributions that correspond to five 
measurements with the lowest total optical thicknesses 
during 1992. The lognormal function is defined by 

2 

(dV/d In r) No e-(lnr/rm) /(2ø2), where r m is the median 
particle size of the volume distribution and rr is the width 
of the distribution. No is the particle volume density 
(cm3/cm2). 

function is computed assuming a power law size distribution 

with the measured •ngstr6m exponent a. For A = 0.62/am 
the power law phase function, P,, has similar values to the 

other phase functions. This is mainly true for the desert 

conditions. At A = 0.87/am, the power law phase function 
overestimates the actual phase function by 30-50%. 

It is concluded that the effect of nonsphericity and nonh- 

omogeneity of the particles on the phase function is small in 

the present data set (20% -+ 15%), in contrast with a 

threefold effect suggested by Koepke and Hess [ 1988] and a 

difference of 25-80% for yellow dust shown by Nakajima et 

al. [1989]. Part of this small difference between P s and P a 
may be the result of uncertainty in the surface reflectance 

and part in real difference in the phase functions. No 

dependence was found of the difference P s - P a on a (or on 

the particle size). While P s tends, on average, to underesti- 
mate the phase function, a phase function based on a power 

law size distribution, P,, predicts reasonably well the phase 
function for 0.62 /am but overestimates it for the 0.87-/am 

channel. In a previous paper [Kaufman, 1993], predictions of 

the atmospheric path radiance using a power law assumption 



10,352 KAUFMAN ET AL.' SIZE DISTRIBUTION AND PHASE FUNCTION OF AEROSOL 

E 
=1.1o 

o .... ' ..... • J, 
.... I • ........ I ........ 

100 .............. -? .......... ---•-' ................................. !--. , Sade Boker ].. 
i •. May 9, 1990 / ! 

i : 
! ++ i : 

i ,I-: 

............... :'i ....................................................... :: ............................ : .................. 
lOO 

lO 

o.1 1 lO 

particle radius (!.tm) 

Figure 12. Size distributions obtained from nine analyses 
of filter samples. Top figure is for five background aerosol 
samples from a desert transition zone in Sede Baker, Israel. 
The middle figure is for a moderate dust event May 9, 1990, 
in Sede Baker, showing the enhancement of large particles. 
The bottom figure is for three samples in Eastern Europe in 
July 1991. Total number of particles counted per radius 
range of Ar = 0.1 /xm is plotted as a function of the particle 
radius. The lines in the figures shows a smooth curve passing 
through the points. 

were found to be in agreement with measurements for 0.63 

/xm but were underestimating the measurements for 0.82 

/xm. This spectral difference in the applicability of the power 

law assumption in the computation of the scattering phase 

function may result from the larger influence of the coarse 

particle mode on the phase function at larger spectral wave- 

lengths. 

7. Individual Particle Analysis 

During the almucantar measurements on May 9, 1990, 

aerosol particles were collected directly on three carbon- 

covered electron microscope stages of a Casella cascade 

impactor [May, 1945]. They were used to study the morphol- 

ogy and chemistry of individual particles with the aid of a 
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Figure 13. Comparison between the aerosol size distribu- 
tions derived from almucantar data collected prior to the 
Mount Pinatuba eruption and size distribution derived from 
analysis of particles collected on filters. (a) Comparison 
between almucantar spectra for May 11, 1990, taken 1.5 
hours apart for background desert transition aerosol (ra = 
0.16 at 0.52/xm and a = - 1.8) and for a moderate dust storm 
at May 9, 1990 (ra = 0.33 at 0.52/xm and a = -0.3). For 
May 9, 1990, also the size distribution derived from analysis 
of a cascade impactor is shown. The cascade impactor was 
exposed to the dust from an aircraft, during the aircraft 
climbing from 1300 m above sea level to 1700 m. (b) 
Comparison between the average size distribution from 
almucantar analysis and filter sampling 1 rn above the 
ground. Data are given for Europe (solid curve and circles 
for the filter data and long-dashed for the almucantar data) 
and for the desert transition zone in Israel (dotted curve and 

triangles for the filter data and short dashed for the almu- 
cantar data). The filter data include six samples in the desert 
transition zone and four in Eastern Europe. 
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Figure 14. Examples of scanning electron microscope data of dust collected in Sede Baker, Israel, from 
an aircraft on May 9, 1990. On the left, with a scale of 1 tam, most particles are of submicron size, with 
large concentrations of sulfates (bottom left). On the right, with a scale of 10 tam, dust particles are 
observed, with large concentrations of calcium and silicon. The sulfate particles are spheroids, while the 
dust particles have an irregular shape. The sulfate (left) and dust (right) particles that are being analyzed 
are indicated by a circle. 

transmission electron microscope (TEM) and a scanning 

electron microscope (SEM) equipped with an X ray energy 

analyzer. One screen was analyzed in the TEM for particle 

shape and the second was studied in the SEM for the 

elemental content of the particles. In other instances, parti- 

cles were collected on polycarbonate membrane filters with 

a 0.8-tam pore for 30-60 min. Figure 12 shows the size 

distributions obtained from nine analyses of filter samples. 

Top figure is for five background aerosol samples from a 
desert transition zone in Sede Baker, Israel, collected be- 

tween 1 m and 90 m above the ground (from a tower). The 

spectra are very similar one to another. The middle figure is 

for a moderate dust event May 9, 1990, in Sede Baker, 

collected with a cascade impactor from an aircraft during its 

ascent from 1300 m above sea level to 1700 m. This sample 

shows the enhancement of large particles above the back- 

ground. This size distribution was measured during a field 

experiment in May 1990 during a moderate dust storm that 

increased the aerosol optical thickness from an average of 

0.10 in other days (see Table 1) to 0.32 at A = 0.62 tam and 

increased the value of a from -1.5 to -0.3. The cascade 

impactor was pumped with a constant airflow and was 

exposed to the dust from the light aircraft. The size distri- 

bution was obtained from the four stages of cascades by 

counting particles of a given size range. The bottom part of 

Figure 12 is for three samples in Eastern Europe in July 

1991, showing that the large particles present in the desert 

are missing in this environment. 

The size distribution obtained from the filter data during 

the moderate dust storm on May 9, 1990, are converted in 

Figure 13a to volume distributions and compared with 

results of almucantar analysis. For comparison the size 

spectra from almucantar analysis on a background day, May 

11, are also plotted. The sampled spectra were normalized to 

a unit particle volume. There is some similarity between the 

in situ (filter) size distributions and the almucantar measure- 

ments. Both show a strong increase in the concentration of 

the micron size particles on May 9, above that on May 11. 

The submicron particle mode is much smaller in the analysis 

of the cascade impactor from the analysis of the almucantar. 
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Figure 15. Example of analysis with transmission electron microscopy. On the left a maritime particle 
with a strong signature from Na, Mg, and CI and on the right a dust particle with signatures of A1, Si, and 
Fe. The scales of 1 and 0.5/am are given in the right bottom corner of each figure, respectively. 

Similar results were reported by Nakajima et al. [ 1986a] and 

Tanaka et al. [1990]. This may result from a lower sampling 

efficiency for small particles, from a possible higher concen- 

tration of small particles above the layer sampled by the 

aircraft and from the drying of the particles in the electron 

microscope analysis. Under 0.1-/am radius the almucantar 
analysis tends to overestimate the particle concentration, a 

process that can add to the difference between the two size 

distributions. Particles above 4/am are also missing from the 

cascade impactor analysis, due to a cutoff in the particle size 

by the collection process. Note that the two spectra on May 

11, collected 1.5 hours apart, are quite similar to each other 

showing the repeatability of the almucantar measurements. 

Comparison between the average size distribution from 

almucantar analysis and filter samples is shown in Figure 

13b. Data are given for Europe and for the desert transition 

zone in Israel. The filter data include six samples in the 

desert transition zone and four in Eastern Europe. The filter 

samples taken in Eastern Europe show concentration of the 

small particles to be an order of magnitude higher than that 
in the desert transition zone. Data from the desert transition 

zone have a much higher concentration of large particles, 

with particles above 3 /am missing from the filters taken in 

Europe. Note that the cutoff at radius of 3/am, present in the 

aircraft data (Figure 13a) does not exist in the ground-based 

samples of Figure 13b due to a different collection technique. 

Particle morphology and elemental composition, analyzed 

with the electron microscope (SEM and TEM) is shown in 

Figures 14 and 15 for the desert transition zone. Small 

particles, radius less than 0.4/am, as in the left-hand side of 

Figure 14 are usually spherical and show high concentration 

of sulfates, similar to industrial or maritime particles formed 

from SO2. The large particles (radius larger than 1 /am, 

right-hand side of Figure 14) are solid nonspherical particles 

composed of calcium carbonate and silicon (quartz). Some 

large particles were found to be more spherical with large 

concentration of sea salts (Figure 15), indicating maritime 

origin. Similar compositions of dust were found from analy- 

sis of samples of settling dust in Israel [Ganor et al., 1991]. 

8. Conclusions 

A combination of solar transmission measurements, sky 

almucantar measurements and analysis with electron micro- 

scope of sampling of aerosol particles on filters, can reveal 

many of the physical, chemical, and optical properties of 

aerosol particles. In the present paper, measurements were 

taken in several climatic regions: desert transition zone, 

polluted atmosphere in Eastern and Western Europe, tropi- 
cal aerosol from Brazil, and mixed aerosol from California. 

The following analysis was conducted: 

1. Analysis of the spectral optical thickness as a measure 

of the total aerosol loading and of the •ngstr0m exponent a, 
a measure of the size distribution (a = (/x In %/ix In A)). 
These and other aerosol properties derived from the optical 

measurements are of the undisturbed aerosol integrated on 
the vertical column. 
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2. Analysis of the almucantar sky radiance for scattering 

angles -<40 ø , to derive the aerosol size distribution. The 

analysis is performed with a radiative transfer inversion that 

accounts for multiple scattering and gaseous scattering and 

absorption. 

3. Analysis of the sky radiance to derive the single- 

scattering phase function for large scattering angles that are 
relevant to satellite observations and for climate studies. 

4. Analysis of filter samples for composition and shape 

of particles for different size ranges. Most of the samples 

were taken 1 m above the ground, thus not representing the 

whole atmospheric profile. One sample was collected from 

an aircraft between 1300 and 1700 m, and two from a tower 

at 45 and 90 m. The analysis by electromicroscope is done in 

vacuum for dry particles, thus underestimating the size of 

the ambient particle. 

The measured volume size distributions, taken before the 

injection of stratospheric aerosol, show consistent two par- 

ticle modes, sulfate particles with radius -<0.2 /am, and 

coarse particles above 0.7 /am. The window in the tropo- 

spheric aerosol in this radius range was just right to observe 

a stable stratospheric aerosol in 1992, with a mode radius 

around 0.5 /am. The spectral dependence of the optical 

thickness, a, though not a good predictor of the scattering 

phase function through a power law size distribution as- 

sumption is a good indicator of the ratio between the small 

(0.06-0.2 /am) and large aerosol particles (2-4 /am) except 

when Mount Pinatubo aerosol was present (Figure 6). This 

relationship was etected for the desert transition zone and 

for the data from Europe and California. 

The measurements were used to observe the predictability 

of the actual single-scattering phase function at a scattering 

angle of 120 ø from the derived size distribution, using Mie 

theory for homogeneous spheres. The results show that the 

effect of nonsphericity and nonhomogeneity of the particles 

on the single-scattering phase function is small (20% _ 15%). 

Part of this difference may be the result of uncertainty in the 

surface reflectance and part in real difference in the phase 

functions. No relationship was found between the effect of 

these uncertainties on the phase function and the relative 

magnitude of the coarse particle mode. For the stratospheric 

aerosol, as expected, the phase function was very well 

predicted from the Mie theory. A power law assumption 

generated large errors in the estimated phase function of up 
to 50%. 

A combination of optical thickness and sky measurements 

is important to assess the direct forcing and the climatic 

impact of aerosol. Systematic inversion for the key aerosol 

types (sulfates, smoke, dust, and maritime aerosol) of the 

size distribution and phase function can give the relationship 

between the aerosol physical and optical properties. Combi- 

nation with field experiments where the aerosol particles are 

sampled, the effect of humidity on the particles is estimated 

and the upward fluxes measured can be used to relate the 

ground-based measurements to the actual aerosol properties 

and their effect on the outgoing reflected sunlight. A field 

experiment along these principles and others was conducted 

recently in the eastern United States (the "Sulfate Clouds 

and Radiation Atlantic" experiment (SCAR A)). Other field 

experiments are planned. 
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