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Abstract. Most of the recent work on image-based object recognition
and 3D reconstruction has focused on improving the underlying algo-
rithms. In this paper we present a method to automatically improve
the quality of the reference database, which, as we will show, also af-
fects recognition and reconstruction performances significantly. Starting
out from a reference database of clustered images we expand small clus-
ters. This is done by exploiting cross-media information, which allows for
crawling of additional images. For large clusters redundant information
is removed by scene analysis. We show how these techniques make object
recognition and 3D reconstruction both more efficient and more precise
- we observed up to 14.8% improvement for the recognition task. Fur-
thermore, the methods are completely data-driven and fully automatic.

Keywords: Image retrieval, image mining, 3D reconstruction.

1 Introduction

Recognition, reconstruction and analysis of 3D scenes are topics with broad cov-
erage in the Computer Vision literature. However, in recent years the enormous
amount of photos shared on the Internet has added a few new twists to these
research problems. On the one hand there is the obvious challenge of scale, on
the other hand there is the benefit that photos shared online usually come with
meta-data in form of (geo-) tags, collateral text, user-information, etc. Besides
the interesting research that can be done with this data, they also open doors
for real-world deployments of computer vision algorithms for consumer applica-
tions, as recent examples from 3D scene browsing [1], or face recognition [2] have
shown.

Consequently, a number of works have started to exploit these cross-media
data in several ways [1, 3–13]. Quack et al . [10] have used a combination of GPS
tags, textual and visual features to identify labeled objects and events in data
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from community photo collections such as Flickr1. Crandall et al . [6] have done
similar experiments, but at even larger scale (up to 10s of millions of photos)
and analyzing temporal movement patterns of photographers in addition to GPS,
textual and visual features. Very recently, with works such as [7], the community
has started to exploit these cross-media data collections from the Web in order
to build applications for auto-annotation.

Also in the 3D reconstruction field there has been a long-lasting interest in
reconstruction the whole world in 3D, and not astonishingly, community photo
collections nowadays serve as a data source for this purpose as well [1, 5, 12].
In spite of the different target applications, all these works have one theme in
common: the underlying data structures are clusters of photos depicting the
same object or scene, accompanied by some cross-modal data, such as (geo-
)tags etc. In this work we are particularly interested in clusters of consumer
photos showing “places”. Places include any geographic location, which is of
interest to people, such as landmark buildings, museums, mountain peaks, etc.
Similar to most works cited above, in a first step we also cluster images in order
to identify relevant places. While attention has recently been directed towards
harvesting larger and larger collections of data, in this paper we want to take a
step back and look at the collected image clusters in more detail. The objective
is to investigate if and how basic knowledge about the 3D scene in combination
with analysis of cross-media data is helpful towards improving the quality of the
database of places as well as the performance of applications building on top of
the database. More precisely, we show how

– cross-media retrieval helps identifying missing information for small clusters.
– scene analysis helps removing redundant data in large clusters.
– those measures affect performance of object recognition and 3D reconstruc-

tion applications relying on the database of image clusters.

In other words, if we take the analogy of a web search engine for hypertext doc-
uments, we focus on the crawling and indexing part of the system. While in the
hypertext retrieval community this topic is well documented, in the Computer
Vision field most work has focussed on the retrieval side of things [14–16]. For
instance, Chum et al . [14] could show how to improve retrieval precision using
query expansion, using an algorithm which operates mainly at retrieval time.

With our improvements on the crawling and indexing stages of the pipeline, we
can indirectly achieve significant improvements in an object recognition setting.
We focus on the object recognition task, since there are clearly defined evaluation
metrics available. In addition our contributions are valuable for unsupervised 3D
reconstruction as well, however, the improvement in this application is in general
less easily quantified, but easily visualized. Most importantly, for both scenarios,
every proposed improvement happens offline and all the processes we show in
this paper are fully automated.

The paper is structured as follows: Section 2 describes our basic methods
for image cluster mining and object recognition. The core of our methods for
1 www.flickr.com

www.flickr.com
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Fig. 1. Geographic quadtree used for image crawling. The example shows the area
around Italy. Note how the density of tiles adapts to the number of photos available,
e.g. densely covering populated areas and with large tiles on the ocean.

automated cross-media cluster analysis and optimization follows in Section 3.
Experiments and analysis of the effects of optimization on retrieval tasks follow
in Section 4. Section 5 concludes the paper.

2 Mining and Recognition of Objects

As discussed in the introduction, harvesting photos from online services for land-
mark mining, recognition or 3D reconstruction has been addressed in a number
of recent works. We build on some of those ideas in order to construct our own
image mining pipeline. We also introduce the object recognition methods, which
we apply on top of the mined data.

2.1 Object Mining

Several ways have been proposed to collect data from online photo collections
in order to solve computer vision tasks. They either start out by querying with
certain keywords such as ”Rome”, ”Venice” [1, 12, 17, 18], or with collecting
geo-tagged photos [6, 10]. For bootstrapping our system we chose the latter
strategy.

In order to harvest photos from Flickr based on their geo-tags, we overlay
several geographic quad-trees over the world and retrieve the number of photos
in each tile. Each of the trees is initialized by a country’s geographic bounding
box coordinates. Recursively this initial area is then subdivided as follows. We
retrieve the number of photos in the current area from the Flickr API. When
the number of photos is higher than a threshold (250 in our implementation),
we split the area into 4 tiles of equal size and repeat the process for each tile.
The recursion stops when the threshold for the number of photos is reached. In
addition, the dimension of the tile in meters also serves as a second stopping
criterion: the process returns when the tile’s extent is less than 200m (on the
smaller side). The outcome of this is shown in Fig. 1. Photos are then downloaded
for all child leaves, and the photo clustering is also distributed based on the
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child leaves of the geographic quadtree. For clustering photos, we then proceed
as proposed in [10] in three steps

1. Match photos pair-wise using local image features (we use SURF [19]).
2. Build a set of image similarity matrices. We create one matrix per geographic

leaf tile. The similarity is the number of inlying matches after RANSAC
filtering of feature matches for each similar image pair.

3. Cluster the photos using single-link hierarchical agglomerative clustering.

For each cluster we keep its photos including their meta data (tags, titles, user
information etc.) for further processing. Very similar to [10] we observed that the
image clusters usually represent one common object, but covered with photos
from various viewpoints and under various lighting conditions etc. Thus, we
think of each cluster representing one particular object and consider the images
of a cluster to form an exemplar based object model.

Qualitatively, we think our crawling method ends-up with very similar data
like [10], but is significantly more efficient ([10] scans the world in evenly dis-
tributed tiles of equal size, in effect querying a lot of empty cells unnecessarily.)
We believe our crawling approach is also beneficial over [6], since we can split
the clustering problem into smaller parts, and the tree based approach is directly
“pulled” towards densely populated areas already while collecting the data. In
contrast, [6] is one huge clustering problem. Finally we crawled a significantly
larger dataset than [7] with our quadtree method (17 million images w.r.t. 4
million), to be able to compare our results in terms of object recognition with
theirs as a baseline, for the remainder of this paper we conduct all our analysis
on the same data (the dataset is available from the authors web-site).

2.2 Object Recognition

Given a query image depicting a landmark, the goal is now to identify and label
this object based on the information aggregated in our reference database of
image clusters. This task is very similar to the one recently posed by Gamme-
ter et al . [7]. (In contrast to image/object retrieval [20–22], where the expected
outcome is a ranked list of similar images or images showing the same object as
the query, sorted by similarity).

Much like the work of [7], at the lowest level, our object recognition system
builds on “standard” visual word based image retrieval. Local image features [19]
are clustered into a visual vocabulary of 1 million visual words using approximate
k-Means (AKM) [21]. An initial top-n list of the n most similar images in the
database in terms of set intersection is efficiently computed using an inverted
file structure. We then use RANSAC to estimate a homography between the
query image and every image in the top-n list. Candidate images for which the
RANSAC estimate yields less inliers than a threshold (13 in our implementation)
are discarded. We then simply let the image with the highest number of inliers
to identify the object in the query image. This is in contrast to [7], where the
images in the filtered top-n list are used to vote for “their” object.
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Fig. 2.

3 Cross-Media Cluster Analysis

The main object of study for the remainder of this paper are the image clus-
ters mined from the Internet as described in the preceding section. Given our
target applications — object recognition or 3D reconstruction — we can now
analyze and improve the image clusters in several aspects. The first and most
obvious aspect is cluster size. Intuitively, objects which are represented by a
smaller cluster should be more difficult to recognize, since they may lack images
taken from an important viewpoint. Fig. 2(a) shows a (histogram) plot of the
cluster size versus recognition rate. It confirms that recognition tends to be more
successful for larger image clusters. (Detailed results for recognition are given
in Section 4 of this paper.) Further, as illustrated in Figure 2(b), it seems that
the cluster size distribution follows a power law: p(ClusterSize) ∝ 1

ClusterSizeα

with a maximum likelihood estimate of αMLE = 1.41. Such distributions are
extremely heavy tailed, and thus imply several characteristics. For instance, one
should note that it is unreasonable to consider an average cluster size, since the
expectation value diverges for α ≤ 2. Further, from the power law distribution
also follows that the majority of clusters is small, but due to the heavy tail
quite a few clusters are disproportionally large. It stands to reason that these
extremely large clusters carry a large amount of redundant information. Thus,
in the following, we investigate the effect of expanding small clusters with addi-
tional (non geo-tagged) images, and propose strategies for reducing redundant
information contained in very large image clusters.

3.1 Expansion of Small Clusters

Even though an increasing number of digital images shared online contain geo-
tags, owning a GPS-equipped camera is still not standard today. Consequently, a
significant fraction of clusters mined using an approach relying on geo-tags, con-
sists only of a handful of images (Fig. 2(b)). In fact, in our dataset 81% of all clus-
ters contain 10 images or less. For some places this is simply because they are not
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3. Verification

2. Image search
via text query

1. Itemset mining

Mined itemsets:
e

(CMR 0.2% | EST 0.0063%)
EST

stonia (CMR 0.5% | EST 0.04%)
town hall
square town hall estonia (CMR 20% | 1%)

Fig. 3. Cross-media expansion of image clusters: 1) starting out from clusters of images
(clustered by their visual similarity with the help of geo-tags for efficiency), we use
itemset mining to generate text queries from frequent tags. 2) in order to retrieve
additional images thus expanding the image cluster with additional information, 3)
and finish with a verifying matching based on visual similarity. We also show the
Cluster Match Rate (CMR) for each itemset query (see Section 3.2.)

popular enough. Note that with keyword based mining we would not have been
able to find such rare objects in the first place — a list of terms that extensive that
it covers such locations is simply not available. But even for much-visited locations
many images can lack GPS tags, if the location is e.g. inside a building. In order
to enrich such small clusters, we propose to use a cross-media crawling method.
First, text queries are generated using the tags associated with an existing image
cluster. To that end, we follow the approach taken by [10], where text queries are
automatically created from the meta-data of the photos in each cluster. They then
use these queries for crawling Wikipedia articles intended to serve as descriptions
for image clusters. In order to generate the text queries automatically, the authors
propose to use itemset mining [23] to form frequent combinations of tags for each
cluster. We follow the same approach, but query the WWW for images instead
for Wikipedia articles. For the remainder of this paper we call these automatically
generated text queries itemset queries. The itemset queries are used to query com-
mon Google for additional photos. The retrieved images are then matched against
the images inside the cluster, again by estimating a Homography using RANSAC
and SURF [19] features. Matching images are added to the cluster. Match vs. no
match is determined based on an inlier threshold of 15 feature correspondences.
This procedure is illustrated in Fig. 3.

3.2 Efficient Itemset Query Selection

It turns out, that for a surprisingly large amount of clusters additional images
can be retrieved (96% of clusters in our test dataset have been expanded by
at least one image). Furthermore, one should note that as shown in Fig. 2(a)
this procedure is more likely to be successful for larger clusters than for smaller
ones. Obviously, when applying such an automatic query generation approach
for a large amount of data with many clusters, the number of text queries can
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reach a level, where efficiency considerations become crucial. (Each cluster can
generate dozens or even up to hundreds of different itemset queries). Unlike other
resources like bandwidth or storage, the amount of HTTP requests that can be
made to a public service like Google is often limited. Furthermore, results from
search engines are returned aggregated to pages. Each page usually contains
only about 20 images and requires one additional HTTP request to retrieve it.
While the prices of resources like computation power (Moore’s Law), bandwidth
(Nielsen’s Law) and storage (Kryder’s Law) drop exponentially over time, this
most likely does not imply the same exponential increase in the number of queries
that can be made to search engines. (They are already confronted with a rapidly
growing user base.) So, unless one has the resources to crawl the entire Internet
in order to avoid public search engines, it is of great interest to minimize the
number of queries required. However, if an itemset query is not very specific (e.g.
“town hall”, compare Fig. 3), it might lead to the retrieval of a large number of
images, which do not have anything in common with the object in the cluster,
and consequently won’t match to its images. In other words, to be efficient, we
have to find a way to automatically select itemset queries which have a higher
probability of returning relevant images.

As a basic measure for how successful an itemset query is in retrieving ad-
ditional images of the object, we define first the cluster matching rate (CMR).

CMR =
# Matching images
# Retrieved images

(1)

This is a straightforward choice, which records for a given itemset query the
fraction of retrieved images that match to the images in the database cluster.
While CMR is useful to determine the quality of an itemset query once all images
have already been retrieved and matched, an efficient approach should discard
itemset queries with low CMR well before that. This could entail estimating the
CMR, which in turn would require in the order of (1/CMR − 1) images. Thus,
the lower the CMR of an itemset query, the more images we would have to
download before we can reject it. By comparing the improvement in recognition
quality on the test set when considering all queries vs. the improvement when
only accepting queries with a CMR above a given threshold, we find that the
largest improvement comes from queries with a CMR between 0.01 and 0.1.
This is shown in Fig. 7. In other words, we might have to download at least 100
images before we can safely reject any itemset query. We can, however, exploit an
observation made by [10, 24]. The authors used text queries in order to retrieve
Wikipedia articles intended as descriptions for the image clusters. The trick
they came up with, is to verify the retrieval result by matching images from the
articles to the source cluster. They found that itemset queries yielding articles
containing images matching the cluster have a higher probability of yielding
matching images from other sources as well. This could be a crude indicator
to a-priori assess an itemset query’s CMR. In order to test this hypothesis, we
downloaded and indexed a dump of all English Wikipedia articles and their
images. Then, as illustrated in Fig. 4, for any given cluster, we query both
the text index with the itemset queries and the image index with the cluster’s
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Fig. 4. A priori estimation of CMR using a local copy of Wikipedia. An inverted text
index and an image index are queried simultaneously. The result sets are intersected
in order to determine if the text could have yielded any useful images

images. The text index returns ids of Wikipedia articles with words matching
the itemset query, while the image index returns ids of Wikipedia articles with
images matching the cluster images. The two result sets are then intersected.
The ratio of the number in the intersected set and the number of elements in
the set returned by the text index can be taken as a crude estimate of the CMR.
This estimation is shown as EST value in Fig. 3. With this measure at hand, we
are able to discard a significant amount of irrelevant itemset queries early on.

3.3 Reduction of Large Clusters

While small objects that are only modeled by few images in their respective
image clusters are more difficult to recognize, having too much data is not a
blessing either. Unusually large amounts of photos are often collected at popular
tourist destinations such as Notre Dame de Paris, or the Eiffel Tower. Many of
these photos contain redundant information, which in an image retrieval sce-
nario, unnecessarily increase the size of the inverted index. Furthermore, since
our method from Section 3.1 allows for augmenting almost any cluster by an ar-
bitrary amount of images, we desire to find a method that purges the redundant
information, while leaving complementary information untouched. Note that it is
a-priori also unclear what “a good” number of images would be for an arbitrary
cluster, since it strongly depends on the 3D scene structure of the given object.
This is illustrated in Fig. 5. The object on the top left is a free standing struc-
ture which can be photographed from arbitrary viewpoints, so an image cluster
which serves as a model for this object has to contain many images. In contrast,
the example on the bottom left is the extreme case of a painting in a museum,
which can be seen from a small number of viewpoints only, so fewer reference
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Fig. 5. Left column: example of a free-standing 3D object which can be photographed
from many viewpoints (top) vs. one which is visible nearly from only a single viewpoint
(and even only 2-dimensional in this particular case). Right column: example of cluster
reduction. the full single-linked matching graph is shown on the top left. A complete-
linked section which is removed on the top right. Bottom left: images from the removed
complete-link segment. Bottom right: images which stay in the cluster.

images are necessary to “describe” the object. In fact, while 3D scene structure
makes it impossible to generalize to a “good” cluster size, it is at the same time
key to attack the problem of extraordinary cluster size. It turns out, that with
some simple 3D scene analysis we can compact the clusters in both an effec-
tive and scalable manner. Remember, that the image clusters were created using
single-link clustering (Section 2). We now decompose these single-link clusters
into several overlapping complete-link clusters. Note the definition of single-link
and complete-link criteria in hierarchical agglomerative clustering [25]

single-link: dAB = min
i∈A,j∈B

dij complete-link: dAB = max
i∈A,j∈B

dij

where for clusters A and B the indices i, j run over the images in the clusters
and dij is the image distance measure that is proportional to the inverse of the
number of inliers. Complete-link requires that all image pairs in a segment are
fully connected to each other. In our setting this is the case if all image pairs
match to each other, which means that they are all taken from a very similar
viewpoint. This procedure is illustrated in Fig. 5. Then, for every complete-link
cluster with more than 3 nodes, we find the node with the minimum edge-weight-
sum (i.e. the image most similar to all its neighbors) and remove all other nodes.
In essence it is an idea similar to the scene graph in [26], but can here be derived
with standard tools using the already calculated distance matrix.

When we remove these highly similar images from the index we automatically
remove highly redundant information, while guaranteeing that we keep relevant
data. As demonstrated in the experiments in section 4.1 this procedure reduces
the index size for retrieval tasks significantly, without affecting precision.
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4 Experiments and Results

For all our experiments we used the dataset of [7], which can be obtained from
the authors website. The dataset consists of roughly 1 Million images from Flickr
that were clustered into 63′232 objects and a test set of 676 images which are
associated with 170 of the 63′232 objects. The goal is to correctly identify which
object in the database is shown in the images of the test set. The percentage of
images correctly associated with their object serves as an evaluation metric. We
first report evaluation results on overall recognition performance including the
overall effects of cluster expansion and cluster reduction. Finally, we demonstrate
that our additionally mined images can be vital in 3D reconstruction.

4.1 Object Recognition

We compare our object recognition system to the one of [7]. On their benchmark
dataset we achieve similar baseline performance, as shown in Fig. 6. Adhering
to the original evaluation protocol of [7] we consider the percentage of test im-
ages for which the correct object is returned in its top-n candidate list vs. the
toplist size n. This is an upper limit for the recognition rate after geometric
verification. We then applied our cluster expansion and reduction methods to
the image clusters in the benchmark dataset. For each of the 170 clusters in the
testset we generated itemset queries in order to retrieve additional images for
cluster expansion according to the methods described in Section 3.1. We car-
ried out experiments with 3 major image search engines and found that using
Google yielded the best resultsFor every itemset query we retrieve the first 420
images returned by Google to expand our object models. Fig. 6 clearly shows
that expanding clusters substantially improves recognition. However, since we
only expand clusters that are relevant to the test dataset, we created an unfair
situation: the expanded clusters now have a higher probability of randomly oc-
curring in a top-n list. We thus plot the chance level in Fig. 6 (dashed lines) for
each expanded index. The comparison highlights that the observed improvement
is not simply an artifact of an increased chance level.

A summary of the achieved improvements over the baseline is given in Ta-
ble 1. The first two columns show cluster retrieval results with bag of visual
words lookup for finding the correct cluster in the top n ranked results. The
third column shows results for identifying the correct object/cluster on the first
rank, using geometric verification. To that end the top ranked 1000 results after
bag of words lookup were verified by estimating a Homography mapping be-
tween query and retrieved images using RANSAC. For this last task, we achieve
14.8% improvement over [7], when using our cluster expansion method. We also
applied the reduction strategy from Section 3.3 to the baseline index, as well
as to the expanded index. In both cases we find that our strategy for “purg-
ing” unnecessary images does not significantly influence recognition quality as
demonstrated in Fig. 6. However, it reduces the inverted index file size signif-
icantly, as shown in Table 2. One can also observe that the relative reduction
in size is much larger for the expanded index. This is due to the fact, that re-
trieving additional images via itemset queries more often leads to duplicates or
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Table 1. Absolute number of testsets with a correct cluster within the top-100 and
top-1000 list. The last column is the absolute number if test images correctly labeled
after geometric verification of the top-1000 list.

Description top-100 top-1000 top-1
Geo.Ver.

Baseline 63.4% 78.6% 73.52%
Expanded 73.0% 86.1% 78.1%

Table 2. Index size comparison for indices built from the original clusters vs. reduced
clusters

Description Original Reduced

Baseline 1.5GB 1.3GB (−13%)
Expanded 2.1GB 1.5GB (−29%)

near duplicate images compared to images retrieved using GPS queries during
the initial crawling of clusters.

4.2 Efficient Itemset Query Selection

In total 2030 itemset queries were generated for the testset of 170 image clusters.
As mentioned in Section 3.2, on the fly estimation of CMR based on retrieved
images is not beneficial, since at least 100 images have to be retrieved before
an itemset query can be safely discarded. However we can use the estimated
CMR (c.f . Section 3.2) as an indicator if an itemset query is useful or not.
This is demonstrated in Fig. 7. We found that if we do not discard itemset
queries with an estimated CMR above 0.01% we retain about 75% of the original
improvement. For the test dataset only 40% of all queries fulfill this requirement,
however as visible in Fig. 7 these queries alone are responsible for the 75%
improvement in recognition quality.

4.3 3D Reconstruction

So far we focussed on demonstrating the outcome of the proposed cluster ex-
pansion and reduction methods on an object recognition task. As mentioned
earlier, this is due to the easy quantification of the evaluation. However, the
same methods can also be beneficial in a 3D reconstruction scenario. The out-
come of image based 3D reconstruction is highly dependent on the images used
as input. In essence, a large number of high-resolution images taken from a wide
variety of viewpoints is desired.

That a simple keyword search or geographic query yields enough images for a
decent reconstruction of an arbitrary object is far from a given. Such a strategy
in fact only works for a fraction of all landmarks. Even for popular sites, manual
keyword search is not trivial, because it is not feasible to efficiently come up
with so many appropriate keywords. For less famous landmarks, the situation is
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even more dire. Even a keyword search with the precise description of the object
may not yield enough useful images nor would GPS-based retrieval.

In such cases every single image matters, and a couple of additional images
of high quality may dramatically change the outcome of the reconstruction. In
this section, we briefly demonstrate with two examples that our cluster expan-
sion method yields additional images crucial for 3D reconstruction. Using the
publicly available ARC3D [27] reconstruction tool, we compare the 3D recon-
struction of the originally mined image clusters of [7] to the reconstruction based
on our expanded clusters. From a set of uncalibrated images, ARC3D generates
dense, textured depth maps for each image. Input images are uploaded and pro-
cessing is performed remotely on a cluster, so that results can be obtained within
short time. As demonstrated in Fig. 8, additionally mined images clearly help in
reconstructing more complete 3D models.
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reconstruction based on:

original images extended imageset

original images extended imageset

Fig. 8. Unsupervised 3D reconstruction using ARC3D. The first row shows the initial
clusters (red box) and the additional mined images (green box). The second row shows
the 3D reconstruction only using the initial image set. Reconstruction based on the
extended set is shown in the third row. As can be seen, our additionally mined images
clearly make the reconstructed 3D models more complete

5 Conclusion

We have shown a fully automated cross-media method to improve the quality
of reference databases for object recognition. Small image clusters were enriched
with additional information by automatically generating text-queries from image
meta-data. Redundant information was purged from large clusters by a simple
graph based approach. The combination results in better performance and higher
efficiency (in index size) for object recognition tasks on recent benchmark data
for object instance recognition. We have also shown that it is possible to exploit
the wisdom of crowds to a-priori determine if a potential text query may be
useful for retrieving additional images. Finally, while this paper focussed on
object recognition, the cluster expansion method would be also valuable for
unsupervised 3D reconstruction.
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