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Heat flow in a cylinder with internal heating is used as a basis for deriving a simple theory
of detonation front curvature, leading to the predktion of quadratic curve shapes. A
thermal conductivity of 50 MWhmn2 is found for TATB samples.

We fmt consider the size effect for CHNO

explosives, where the detonation velocity declines

with decreasing radius. If energy is lost out the side

of the cylinder,we have:1
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where E. is the total energy of detonation, Us and D

are the detonation velocities in cylinders of radius IL

and infinite size, and <x> is the sonic reaction zone

length. Also, c is a wall expansion function,

empirically set for unconfined samples to
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As the reaction zone increases, the skin layer

increases exponentially to a limiting value. Eq. 2 was

createdempirically and is designed to enlarge the

reactionzone length as the radius increases.

We now consider the detonation frontjusing

the mathematics for uniformheat flow in a cylinder

with an internalheat source.z We replace

temperaturewiththedetonationfrontlag,L, asthe

causeof theenergyflowfromthecylindercenterto

theedge.Thethermalconductivitybecomesaheat

flowconstantK, withtheunitsW/mm2.IfR isthe

radius,wehave

(3)

where AOis the energy lost per unit volume out the

side of the cylinder, because this is replaced from

farther inside the cylinder. The energy must be

divided by the time to cross the reaction zone

(<xC>/U,) to get power. We obtain the lost energy

from Eq. 1:

2upo
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We integrate Eq. 3 and substitute Eq. 4 to get

(5)



The lag is quadraticwith radius, a result that fits The explosive uses the lag to move energy to the

fairly well for most explosives, as seen for Forbes’ edge but needs to keep the front as short as possible

PBXN- 111 shots in Figure 1.3TheconstantK inEq. 5 so that Eq. 8 seemsreasonablein this regard. In Eq.

is the curvature and 1/K is the radius of curvature. 6, U~E~ = 1 and R~21s = <%>, so that Eq. 8 is a

The quadratic relation has a 15-20% deviation at the coincidence from our few examples.

edge. Table 13“9Iists some of the limited data. We see From Eqs. 1,5 and 8, we obtain

that ~ is not constant for a given group of the same

explosive but increases with radius. At the cylinder u. =D - f$)~K

fJ2$o
Lo=—

2Kcr ‘0

J
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FIGURE 1. Quadratic detonation front shapes forPBXN-111 at
three radii.

The thermal conductivity may be found fromzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-s ((-l]. (9)

This is the starting equation in Detonation Shock

(6) Dynamics and Whithams Shock Dynamics, where we

see some of the structure of the constant that goes

with the curvature.lO>l1

Table 1 and the above theory applies to most

explosive data, type 1, where voids are present to

create hot spots and the reaction zone is longer than

the void size. The type 2 curvature is the 1.74 g/cc

PETN curve from our laboratory shown in Figure 2.
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The best data in Table 1 is for the TATB explosives

where K = 50 MW/mm2. We also see that

‘a
g
* 0.0.5-

70?’!. RDx at TMD, 1.45
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FIGURE 2. Two different types of detonation front curvatures
where the edge lag is ordy 0.1 mm. The PETN is not quadratic in

<x~z~o (8)
shape: the RDX paste is quadratic but does not follow the theory in
the text
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The edge lag is only 0.1 mm and the cs.uvature is

rough and not quadratic. Here, we believe the

intergrain voids are of the size of the reaction zone so

that energy flow to the edges is scattere~ producing a

raggedfront.

The rare type 1a quadratic curvature of the fine-

grained 70’XORDX explosive, which has had all voids

pressed out that no hot spots occur, is shown in

Figure 2.12’13Although the edge lag is 0.1 mm, the

size effect of Eq. 6 predicts a reaction zone of 1.0

mm. This discrepancy is caused by the added

difficulty of getting the binder-enclosed grains to

burn. This does not appear in pure liquids (like NM)

because the liquid is continuous. The RDX shape is

quadratic because the 6 ~m grains are smaller than

the reaction zone.
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TABLE 1. Summary of detonation fkont curvature and size effect data for various explosives in cylinders.
“u” me~ Unconfined; “C” is metal-confmed.

u, D K

IL Lo (mm/ (mm/ (MW/

Explosive ~p~c) (mm) (mm) ~~) (ml-’) Jls) us) mmz) ref

5PBX-9502 1.89 4.99 0.77 0.9 0.02400 ‘ - - U7.46 7.78 54

EDC-35

EDC-35

EDC-35

PBX-9502

PBX-9502

PBX-9502

PBX-9502

T2

PBX-9502

EDC-35

EDC-35

EDC-35

LX-17

7-2

NM 1.12 6.35 0.21 0.3 0.00490 6.20 6.21 33 C 8

NM 1.12 9.57 0.86 0.3 0.00800 6.21 6.24 22 U 9

NM 1.12 13.78 0.80 0.2 0.00330 6.23 6.24 33 U 9

NM 1.12 18.42 0.85 0.1 0.00186 6.23 6.24 42 U 9

NM-guar 1.17 5.26 0.98 1.2 0.03350 5.80 6.55 24 U 9

NM-guar 1.17 6.80 0.95 0.9 0.01810 6.09 6.55 23 U 9

NM-guar 1.17 9.57 0.99 1.1 0.00866 6.13 6.55 32 U 9

NM-guar 1.17 18.59 1.13 1.9 0.00215 6.14 6.55 62 U 9

PBXN-111 1.79 20.45 4.81 6 0.01120 5.15 5.81 7 U 3

PBXN-111 1.79 20.52 4.29 6 0.00981 5.16 5.81 8 U 3

PBXN-111 1.79 24.01 4.75 6 0.00870 5.31 5.81 7 U 3

PBXN-111 1.79 24.06 4.87 6 0,00797 5.31 5.81 8 U 3

PBXN-I 11 1.79 34.12 5.74 7 0.00457 5.57 5.81 9 U 3

1.90 5.00

1.90 5.00

1.90 5.00

1.89 5.00

1.89 6.00

1.89 8.98

1.89 24.99

1.86 25.00

1.89 25.01

1.90 25.40

1.90 25.40

1.90 25.40

1.91 25.40

1.86 50.00

0.9

0.9

0.9

0.74 0.9

0.78 1.0

1.03 1.4

2.18 2.5

1.92 2.5

2.08 2.5

2.5

2.5

2.5

2.07 3.1

2.92 3.0

0.02830

0.02880

0.03070

0.02370

0.01705

0.00995

0.00276

0.00271

0.00283

0.00261

0.00267

0.00284

0.00293

0.00107

7.44 7.73 45 u

7.44 7.73 45 u

7.44 7.73 42 U

7.46 7.78 54 U

7.50 7.78 60 U

7.55 7.78 66 U

7.67 7.78 64 U

7.62 7.65 65 U

7.68 7.78 62 U

7.67 7.73 66 u

7.67 7.73 64 U

7.67 7.73 60 U

7.63 7.72 39 C

7.63 7.65 65 U

6

6

6

5

5

5

5

7

5

6

6

6

4

7
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